The Living Dead: Acknowledging Life After Tree Death to Stop Forest Degradation

Total Page:16

File Type:pdf, Size:1020Kb

The Living Dead: Acknowledging Life After Tree Death to Stop Forest Degradation See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344149332 The living dead: acknowledging life after tree death to stop forest degradation Article in Frontiers in Ecology and the Environment · September 2020 DOI: 10.1002/fee.2252 CITATIONS READS 0 41 9 authors, including: Simon Thorn Sebastian Seibold Field Station Fabrikschleichach Technische Universität München 85 PUBLICATIONS 1,484 CITATIONS 61 PUBLICATIONS 1,181 CITATIONS SEE PROFILE SEE PROFILE Alex Leverkus Jörg Müller University of Granada University of Wuerzburg 42 PUBLICATIONS 524 CITATIONS 356 PUBLICATIONS 7,716 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: research View project Environmental anthropology View project All content following this page was uploaded by Reed Noss on 08 September 2020. The user has requested enhancement of the downloaded file. REVIEWS 1 The living dead: acknowledging life after tree death to stop forest degradation Simon Thorn1,*, Sebastian Seibold2,3, Alexandro B Leverkus1,†, Thomas Michler4, Jörg Müller1,4, Reed F Noss5, Nigel Stork6, Sebastian Vogel1, and David B Lindenmayer7 Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures. Front Ecol Environ 2020; doi:10.1002/fee.2252 he world’s forests not only provide essential ecosystem mammals, amphibians, and birds (Betts et al. 2017). However, Tservices to humans, including the storage of vast amounts as important carbon sinks and habitat for species, dying trees of carbon, but also support most of the planet’s terrestrial bio- and deadwood – both of which can decline even in the diversity. Approximately 1.6 billion people directly depend on absence of obvious changes in the amount of forest cover – are forests for their lives and livelihoods. The UN recognizes the largely ignored by these initiatives (Stokland et al. 2012). unique importance of forests through major global policy ini- Deforestation is typically initiated when hunting and gather- tiatives, such as the Aichi targets (https://www.cbd.int/sp/ ing societies shift to agricultural systems. For example, in targets) and REDD+ (https://redd.unfccc.int). Policy atten- Central Europe, large- scale deforestation began in the Bronze tion directed toward deforestation is well justified, given that Age (2000–1000 BCE; Stokland et al. 2012). In the early 18th forest loss is a major threat to terrestrial biodiversity, including century CE, when European forests had been reduced to their smallest extent due to overexploitation, wood production declined. Early concepts of sustainable forest management In a nutshell: then began to evolve to end deforestation and ensure a long- • Public awareness about the importance of deadwood for term supply of timber (von Carlowitz 1713). Historically, biodiversity is lacking large, old trees and deadwood were widespread, but “sustaina- • Removal of dead and dying trees often results in major ble” forest management practices that were popular at that losses of forest biodiversity, but elicits little or no public time called for their removal, as their presence was considered response a waste of economic resources and a source of forest diseases • Halting forest degradation requires protecting and restoring (Hartig 1808). The economic rationale of not wasting timber key attributes of forest structure, especially large deadwood resources remains a major reason why deadwood is still rou- structures with long persistence times tinely removed, even under so- called ecologically sustainable • Enhancing public understanding of the ecological impor- forest management. In contrast to deforestation, forest degra- tance of deadwood is critical dation due to the removal of dying and dead trees is often legal and goes unnoticed by the public (Müller et al. 2015). Unfortunately, the pervasive effects of forest degradation may 1Field Station Fabrikschleichach, Department of Animal Ecology and Tropical magnify biodiversity loss well beyond that caused by deforest- Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany ation (Barlow et al. 2016). *([email protected]); †current address: Department of Ecology, University In this review, we outline the importance of deadwood for of Granada, Granada, Spain; 2Ecosystem Dynamics and Forest Management biodiversity, illustrate several examples of where deadwood is Group, Department of Ecology and Ecosystem Management, Technical 3 commonly removed from forest ecosystems, and discuss the University of Munich, Freising, Germany; Berchtesgaden National Park, ways in which deadwood could be promoted through passive Berchtesgaden, Germany; 4Bavarian Forest National Park, Grafenau, Germany; 5Florida Institute for Conservation Science, Melrose, and active management to restore degraded forest ecosystems. FL; 6Environmental Futures Research Institute, Griffith School of Finally, we briefly review scientific evidence to explain why Environment and Science, Griffith University, Nathan, Australia; 7Fenner deadwood and associated biodiversity has a low public profile School of Environment and Society, The Australian National University, and elaborate on how awareness can be improved through tar- Canberra, Australia geted environmental education. © 2020 The Authors. Frontiers in Ecology and the Environment published by Wiley Periodicals LLC on behalf of the Ecological Society of America. 2 REVIEWS S Thorn et al. Deadwood in natural forests structures, including snags and downed deadwood, and can also generate the spatially heterogeneous recovery of vege- In forests subject to natural dynamics, deadwood is com- tation (Swanson et al. 2011). These so- called biological leg- monly created by the complete or partial die- off of large, acies can be crucial for biodiversity and forest recovery old trees (Holzwarth et al. 2013), as well as by natural following major disturbances, such as the Mount St Helens disturbances, which can affect single trees up to entire land- volcanic eruption in 1980 (Franklin et al. 2000). Natural scapes (Kulakowski et al. 2017). Forests are characterized deadwood amounts are variable and range from a few cubic by natural tree death (Figure 1), which typically creates a meters per hectare (m3 ha−1) up to more than 1000 m3 high diversity of deadwood ranging from branches to stand- ha−1 (Lindenmayer et al. 1999). Following stand-replacing ing stems and downed logs (Stokland et al. 2012). However, natural disturbances, the amount of deadwood can even the diversity of tree species, each of which may exhibit exceed the amount of living tree biomass, making deadwood varying vulnerability to different mortality sources, serves a characteristic and abundant resource in natural forest as an important proxy for the diversity of deadwood ecosystems (Seibold and Thorn 2018). (Holzwarth et al. 2013). Deadwood- dependent taxa are asso- ciated with numerous microhabitats such as dead branches The reduction of deadwood (Seibold et al. 2018) or cavities (Müller et al. 2014) provided by the gradual death of large, old trees – often called “vet- At present, deadwood removal includes, for instance, fuel eran trees”. In addition to single- tree dieback, natural dis- wood and stump biomass extraction (Jonsell 2007), selec- turbances can leave behind disturbance- specific deadwood tive logging of high-value large old trees (Ahrends et al. (a) (b) (c) (d) Figure 1. Deadwood structures characteristic of old intact forests include (a) fallen logs with large numbers of fruiting bodies of wood-inhabiting fungi; (b) large logs in an advanced state of decay, which facilitate the regrowth of natural vegetation, such as in old- growth forests in the US Pacific Northwest; and (c) standing dead old trees created by natural disturbances like bark- beetle outbreaks. Such dead trees can persist for decades and are often sun- exposed ecological islands in otherwise closed canopies, such as in (d) old-growth mountain ash (Eucalyptus regnans) forests in Victoria, Australia. Front Ecol Environ doi:10.1002/fee.2252 Protecting deadwood to counter forest degradation REVIEWS 3 2010), and deadwood collection for firewood and charcoal positively related to the amount of available deadwood, production (Ulyshen 2018). The removal of deadwood has and therefore a reduction in deadwood results in a decline been accelerated by forest exploitation for biomass-based of associated biodiversity. Not surprisingly, saproxylic fuels during recent decades (Jonsell 2007). Furthermore, insects and fungi feature prominently in lists of endan- deadwood is created by natural (Thorn et al. 2018) and gered forest species (Seibold et al. 2015b). anthropogenic disturbances,
Recommended publications
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Scientific Support for Successful Implementation of the Natura 2000 Network
    Scientific support for successful implementation of the Natura 2000 network Focus Area B Guidance on the application of existing scientific approaches, methods, tools and knowledge for a better implementation of the Birds and Habitat Directives Environment FOCUS AREA B SCIENTIFIC SUPPORT FOR SUCCESSFUL i IMPLEMENTATION OF THE NATURA 2000 NETWORK Imprint Disclaimer This document has been prepared for the European Commis- sion. The information and views set out in the handbook are Citation those of the authors only and do not necessarily reflect the Van der Sluis, T. & Schmidt, A.M. (2021). E-BIND Handbook (Part B): Scientific support for successful official opinion of the Commission. The Commission does not implementation of the Natura 2000 network. Wageningen Environmental Research/ Ecologic Institute /Milieu guarantee the accuracy of the data included. The Commission Ltd. Wageningen, The Netherlands. or any person acting on the Commission’s behalf cannot be held responsible for any use which may be made of the information Authors contained therein. Lead authors: This handbook has been prepared under a contract with the Anne Schmidt, Chris van Swaay (Monitoring of species and habitats within and beyond Natura 2000 sites) European Commission, in cooperation with relevant stakehold- Sander Mücher, Gerard Hazeu (Remote sensing techniques for the monitoring of Natura 2000 sites) ers. (EU Service contract Nr. 07.027740/2018/783031/ENV.D.3 Anne Schmidt, Chris van Swaay, Rene Henkens, Peter Verweij (Access to data and information) for evidence-based improvements in the Birds and Habitat Kris Decleer, Rienk-Jan Bijlsma (Guidance and tools for effective restoration measures for species and habitats) directives (BHD) implementation: systematic review and meta- Theo van der Sluis, Rob Jongman (Green Infrastructure and network coherence) analysis).
    [Show full text]
  • Mitochondrial Genomes Resolve the Phylogeny of Adephaga
    1 Mitochondrial genomes resolve the phylogeny 2 of Adephaga (Coleoptera) and confirm tiger 3 beetles (Cicindelidae) as an independent family 4 Alejandro López-López1,2,3 and Alfried P. Vogler1,2 5 1: Department of Life Sciences, Natural History Museum, London SW7 5BD, UK 6 2: Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot SL5 7PY, UK 7 3: Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Campus 8 Mare Nostrum, 30100, Murcia, Spain 9 10 Corresponding author: Alejandro López-López ([email protected]) 11 12 Abstract 13 The beetle suborder Adephaga consists of several aquatic (‘Hydradephaga’) and terrestrial 14 (‘Geadephaga’) families whose relationships remain poorly known. In particular, the position 15 of Cicindelidae (tiger beetles) appears problematic, as recent studies have found them either 16 within the Hydradephaga based on mitogenomes, or together with several unlikely relatives 17 in Geadeadephaga based on 18S rRNA genes. We newly sequenced nine mitogenomes of 18 representatives of Cicindelidae and three ground beetles (Carabidae), and conducted 19 phylogenetic analyses together with 29 existing mitogenomes of Adephaga. Our results 20 support a basal split of Geadephaga and Hydradephaga, and reveal Cicindelidae, together 21 with Trachypachidae, as sister to all other Geadephaga, supporting their status as Family. We 22 show that alternative arrangements of basal adephagan relationships coincide with increased 23 rates of evolutionary change and with nucleotide compositional bias, but these confounding 24 factors were overcome by the CAT-Poisson model of PhyloBayes. The mitogenome + 18S 25 rRNA combined matrix supports the same topology only after removal of the hypervariable 26 expansion segments.
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Rhysodes Sulcatus (Fabricius, 1787) by Paweł Sienkiewicz
    INSPECTION OF ENVIRONMENTAL PROTECTION Methodology of nature monitoring Methodological guide for: Species of animals: 4026 Rhysodes sulcatus (Fabricius, 1787) by Paweł Sienkiewicz Translated by LIDEX Sp. z o.o. ul. Magiera 16/17, 01-873 Warszawa LIBRARY OF ENVIRONMENTAL MONITORING Warszawa 2017 Contents: 4026 Rhysodes sulcatus (Fabricius, 1787) ....................................................................................... 3 I. INFORMATION CONCERNING THE SPECIES ...................................................................................... 3 1. Systematic classification .............................................................................................................. 3 2. Legal status and threat to species ............................................................................................... 3 3. Description of the species ........................................................................................................... 3 4. Biology of the species .................................................................................................................. 4 5. Habitat requirements .................................................................................................................. 5 6. Species distribution ..................................................................................................................... 6 II. METHODOLOGY ............................................................................................................................... 7 1. Concept
    [Show full text]
  • Guidance Document on the Strict Protection of Animal Species of Community Interest Under the Habitats Directive 92/43/EEC
    Guidance document on the strict protection of animal species of Community interest under the Habitats Directive 92/43/EEC Final version, February 2007 1 TABLE OF CONTENTS FOREWORD 4 I. CONTEXT 6 I.1 Species conservation within a wider legal and political context 6 I.1.1 Political context 6 I.1.2 Legal context 7 I.2 Species conservation within the overall scheme of Directive 92/43/EEC 8 I.2.1 Primary aim of the Directive: the role of Article 2 8 I.2.2 Favourable conservation status 9 I.2.3 Species conservation instruments 11 I.2.3.a) The Annexes 13 I.2.3.b) The protection of animal species listed under both Annexes II and IV in Natura 2000 sites 15 I.2.4 Basic principles of species conservation 17 I.2.4.a) Good knowledge and surveillance of conservation status 17 I.2.4.b) Appropriate and effective character of measures taken 19 II. ARTICLE 12 23 II.1 General legal considerations 23 II.2 Requisite measures for a system of strict protection 26 II.2.1 Measures to establish and effectively implement a system of strict protection 26 II.2.2 Measures to ensure favourable conservation status 27 II.2.3 Measures regarding the situations described in Article 12 28 II.2.4 Provisions of Article 12(1)(a)-(d) in relation to ongoing activities 30 II.3 The specific protection provisions under Article 12 35 II.3.1 Deliberate capture or killing of specimens of Annex IV(a) species 35 II.3.2 Deliberate disturbance of Annex IV(a) species, particularly during periods of breeding, rearing, hibernation and migration 37 II.3.2.a) Disturbance 37 II.3.2.b) Periods
    [Show full text]
  • Life and Invertebrate Conservation
    LIFE NATURE | LIFE AND INVERTEBRATE CONSERVATION BEETLES Saving the distinctive Rosalia alpina beetle A small number of LIFE Nature projects have targeted the conservation of Rosalia alpina, a saproxylic beetle species that is listed in Annexes II and IV of the Habitats Directive. he Rosalia longicorn (Rosalia alpina), is one considerably within the next decades. In particular, Tof the most attractive of all European insects. dead timber is expected to occur more frequently, of- Despite its distinctive appearance, however, there fering additional opportunities for all saproxylic insects. is a lack of scientific information about its biology Moreover, according to the report, thanks to the already and habitat preferences. Widely distributed in some existing old-growth forest within the wilderness area, mountainous regions (notably in Central Europe) its the chances for colonisation of the set-aside forests by populations and ranges have nevertheless suffered typical forest species such as Rosalia alpina “are much significant long-term declines; and in several coun- higher” than if the area had been created elsewhere, tries its conservation status is “threatened”. The main without a well-preserved core zone. long-term threats identified are habitat loss in rela- tion to logging and wood harvesting and the decline of Pollarded trees provide particular habitat features for old broad-leaved trees, especially of old beech forest saproxylic beetles. The main objective of an ongoing (Fagus silvitica) within which it lays its eggs. project in Gipuzkoa in the Spanish Basque Country (LIFE08 NAT/E/000075) is to support the conserva- LIFE projects looking to improve the conservation sta- tion status of rare dead wood beetle populations found tus of Rosalia alpina have focused on preserving the there, particularly Rosalia alpina and the hermit bee- species’ preferred habitats and of ensuring an ade- tle.
    [Show full text]
  • A Comparison of Three Trapping Methods Used to Survey Forest-Dwelling Coleoptera
    Eur. J. Entomol. 103: 397–407, 2006 ISSN 1210-5759 A comparison of three trapping methods used to survey forest-dwelling Coleoptera ESKO HYVÄRINEN, JARI KOUKI and PETRI MARTIKAINEN Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FIN – 80101 Joensuu, Finland; e-mail: [email protected] Keywords. Abundance distribution, beetles, biodiversity inventories, boreal forest, Coleoptera, interception traps, pitfall traps, sampling, species richness, window traps Abstract. Sampling of insect communities is very challenging and for reliable interpretation of results the effects of different sam- pling protocols and data processing on the results need to be fully understood. We compared three different commonly used methods for sampling forest beetles, freely hanging flight-intercept (window) traps (FWT), flight-intercept traps attached to trunks (TWT) and pitfall traps placed in the ground (PFT), in Scots pine dominated boreal forests in eastern Finland. Using altogether 960 traps, forming 576 sub-samples, at 24 study sites, 59760 beetles belonging to 814 species were collected over a period of a month. All of the material was identified to species, with the exception of a few species pairs, to obtain representative data for analyses. Four partly overlapping groups were used in the analyses: (1) all, (2) saproxylic, (3) rare and (4) red-listed species. In terms of the number of species collected TWTs were the most effective for all species groups and the rarer species the species group composed of (groups 1-2-3-4) the larger were the differences between the trap types. In particular, the TWTs caught most red-listed species. However, when sample sizes were standardized FWTs and TWTs caught similar number of species of all species groups.
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Size and Quality of Wood Used by Rosalia Alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in Beech Woodlands of Gipuzkoa (Northern Spain)
    Munibe (Ciencias Naturales-Natur Zientziak) • Nº 60 (2012) • pp. 77-100 • DONOSTIA-SAN SEBASTIÁN • ISSN 0214-7688 Size and quality of wood used by Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in beech woodlands of Gipuzkoa (northern Spain) ALBERTO CASTRO 1*, LETICIA MARTÍNEZ DE MURGUÍA1, JON FERNÁNDEZ 1, ALAZNE CASIS 1, FRANCISCO MOLINO-OLMEDO 2 ABSTRACT The conservation of the legally protected saproxylophagous species Rosalia alpina (Linnaeus, 1758) in European beech woodlands and forests involves the proper management of dead, dying and decaying trees. However, the cha- racteristics of preferred trees (their size and wood quality) are still poorly known. In this paper we analyze data obtained from six year surveys on the distribution of R. alpina in four Sites of Community Interest of the province of Gipuzkoa (northern Spain). Living individuals of R. alpina and their emer- gence holes were recorded in European beeches exclusively. 72 living indivi- duals and 520 holes were recorded in 77 trees. Evidences of occupation (pre- sence of living individuals or holes or both) were more frequent on trunks Ø > 25 cm of standing beeches (either dead or still alive) than on branches, logs and thinner trees. However, the number of holes did not show differen- ces among classes of main trunk size and wood quality. The thickest branches (Ø > 15 cm) registered higher rates of presence and number of holes than thin- ner ones. We suggest that conservation strategies for R. alpina should include a map of habitat availability based on tree preference. • KEY WORDS: Rosalia alpina, European beech, Fagus sylvatica, host material selection, Gipuzkoa.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Masterproeven 09-10 Compleet Dossier Minerva
    OPLEIDINGSCOMMISSIE BIOCHEMIE EN BIOTECHNOLOGIE Voorzitter: Prof. Dr. Peter Vandenabeele Ondervoorzitter: Prof. Dr. Bart Devreese 27 februari 2009 Beste studenten, Enkele overwegingen bij het aanvatten van de masterproef In deze brochure hebben wij de onderwerpen verzameld voor de masterproeven. Het is een lange lijst geworden met een gevarieerd aanbod. Dit laat jullie toe om keuzes te maken volgens jullie eigen interesse en ambitie. Ik zou bij deze gelegenheid de begeleiders (postdocs, doctoraatsstudenten), technici en promotoren willen bedanken die de inspanningen zullen leveren om de studenten een intensieve en zeer degelijke opleiding te bezorgen. Het is inderdaad zo dat de hoeveelheid werk die gepaard gaat met masterprojecten in Master 1 en masterproeven in Master 2 niet kan onderschat worden. Het is een zware en jaarlijks terugkerende inspanning van deze personen, die bijdraagt tot jullie vorming als jonge wetenschappers. De kwaliteit van deze vorming is de basis van het wetenschappelijk onderzoek van de komende 20 jaar. Wij zijn ervan overtuigd dat jullie dit weten te appreciëren en dat jullie de mogelijkheden die tijdens de masterproef worden geboden, ten volle zullen benutten. De keuze van de masterproef ligt in de regel in het verlengde van jullie majorkeuze (BSB, BIS, BIB, MIB, PLB). Gemotiveerde afwijkingen van deze regel kunnen worden aangevraagd bij de OC Biochemie en Biotechnologie. De onderwerpen van de masterproeven zijn gerangschikt volgens de departementen die de masterproeven begeleiden. Het merendeel wordt aangeboden door de 4 departementen die grotendeels bij jullie opleiding zijn betrokken (WE09, WE10, WE14, WE15), maar ook enkele andere departementen bieden masterproeven aan. Elke masterproef wordt ook nog gerangschikt volgens de major waarop de masterproef aansluit.
    [Show full text]