Astrocyte-Specific Overexpressed Gene Signatures in Response to Methamphetamine Exposure in Vitro Nikki Bortell1,6†, Liana Basova1†, Svetlana Semenova2, Howard S

Total Page:16

File Type:pdf, Size:1020Kb

Astrocyte-Specific Overexpressed Gene Signatures in Response to Methamphetamine Exposure in Vitro Nikki Bortell1,6†, Liana Basova1†, Svetlana Semenova2, Howard S Bortell et al. Journal of Neuroinflammation (2017) 14:49 DOI 10.1186/s12974-017-0825-6 RESEARCH Open Access Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro Nikki Bortell1,6†, Liana Basova1†, Svetlana Semenova2, Howard S. Fox3, Timothy Ravasi4,5 and Maria Cecilia G. Marcondes1,7* Abstract Background: Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use. Methods: We developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders. Results: We identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes. Conclusions: Gene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis. Keywords: Astrocytes, Methamphetamine, Central nervous system, Systems biology Background system (CNS) localized insults [7, 8]. These cells can initi- Astrocytes are glial cells that are involved in numerous ate an inflammatory response, which can interestingly brain functions, including interacting with neurons and both promote tissue healing and neuronal loss and dam- maintaining brain structure [1, 2], synthesizing cholesterol age, as well as control the permeability of the blood-brain [3], and controlling synaptogenesis and neuronal plasticity barrier (BBB) [9–11]. [4–6]. In addition, together with microglia cells, astrocytes Drug abuse is one of the factors that can induce the are first responders to both systemic and central nervous activation of astrocytes [12]. One such drug is metham- phetamine (Meth), which is widely used due to its strong * Correspondence: [email protected] † effects as a psychotropic stimulant and its low price. Equal contributors Meth abusers develop an enormous number of degen- 1Cellular and Molecular Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA erative symptoms, particularly in the CNS, manifested 7Present address: San Diego Biomedical Research Institute, 10865 Road to by cognitive deficits and motor dysfunction [13]. Astro- the Cure, Suite 100 - San Diego, San Diego, CA 92121, USA cytic activation is one of the most common findings in Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Bortell et al. Journal of Neuroinflammation (2017) 14:49 Page 2 of 20 the brain of Meth abusers, as well as in various models Cell harvest and RNA extraction of Meth exposure [14–17], often associated with neuro- Total RNA was isolated from the cells using Trizol re- toxicity. The effects of Meth on astrocytes could be po- agent (Thermofisher, Waltham, MA), according to the tentially direct and have been attributed to its binding to manufacturer’s instructions. Total RNA concentration sigma1 receptors [18]. was measured using the Nanodrop spectrophotometer In the present studies, we tested the hypothesis that and then used for reverse transcription and for gene astrocytes, as important first responders, may develop array (below). phenotypic changes that can contribute and be associ- ated to neurological decline and multiple disorders com- Gene expression array monly found in Meth abusers. We evaluated whether The integrity of total RNAs was examined in an Agilent Meth can affect astrocytes by producing changes in gene Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, expression and whether such changes can be critical at- USA). Total RNA concentration was measured using the tributes in the development of CNS disorders. We ex- Nanodrop spectrophotometer. The mouse Agilent micro- amined genes that were upregulated following Meth array service was performed by Phalanx Biotech (San exposure, with an in vitro approach using primary cor- Diego, CA). A total of 4 μg Cy5-labeled RNA targets were tical astrocytic cultures. Using systems biology, we have hybridized to Gene Expression v2 4x44K Microarrays integrated the expression changes caused by Meth and (Agilent Technologies, Santa Clara, CA), according to the have identified important astrocytic patterns, finger- manufacturer’s protocol. The data were analyzed using the prints, and pathways among genes that are transcrip- provided manufacturer’s protocol. Following the tionally enriched by the exposure to Meth. Although the hybridization, fluorescent signals were scanned using an analysis is limited to upregulated genes, these changes Axon 4000 (Molecular Devices, Sunnyvale, CA, USA). could have important implications in the development Three replicates per condition were used. Microarray sig- of neurological symptoms commonly associated with nal intensity of each spot was analyzed using the GenePix drug abuse. 4.1 software (Molecular Devices, Sunnyvale, CA, USA). Each signal value was normalized using the R program in Methods the limma linear models package (Bioconductor 3.2, Primary rat astrocyte cultures https://bioconductor.org). E18 embryonic Sprague Dawley rat cortical astrocytes (BrainBits LLC, Springfield, IL) were cultured on poly- Gene expression analysis D-lysine-coated coverslips and were maintained in Raw data was loaded into ArrayStudio (Omicsoft Neuro basal medium (Invitrogen, Carlsbad, CA) with Corporation, Cary, NC) and first filtered based on a 10% horse serum and 3 mM glutamine (Invitrogen), built-in ANOVA, as well as a t test, applied to fold until confluence was reached (day 12). changes between experimental and control conditions. Significant changes had a p value <0.05. In addition, Methamphetamine treatment maximum least-squares (Max LS) mean ≥ 6 and a false (+)-Methamphetamine hydrochloride (Sigma-Aldrich, discovery rate by the Benjamini-Hochberg correction Saint Louis, MO) was added to the confluent astrocytic (FDR_BH) <0.01 were applied. Using this method, we cultures, at the final concentrations of 1, 10, and found many genes with raw p values <0.05, but if the 100 μM, diluted in PBS. The drug was maintained in the FDR_BH did not reach <0.01, they were discarded. In cultures for 24 h prior to the harvesting of the cells. this particular analysis set, the genes were further fil- Control cultures were incubated with PBS vehicle. All tered to express a robust fold change above 4 between results derive from three independent experiments, each control and experimental cultures. These filters allowed one performed in duplicate. the identification of significant, above background gene expression changes. The list of genes that were signifi- Apoptosis detection cantly upregulated by Meth in astrocytes, following the The rat astrocytes were tested for development of described criteria, were loaded into Cytoscape 3.3 apoptosis 24 h after Meth treatment, using the ter- (http://cytoscape.org), using GeneMania [19], to identify minal deoxynucleotidyl transferase dUTP (TdT) in significantly changed interaction networks of genes and situ TACS Blue (R&D systems), following the manu- relevant pathways. Pathway enrichment was examined facturer’s instructions. Counterstaining was performed using iPathwayGuide (Advaita Bioinformatics, Plymouth, with Gill’s hematoxylin (Sigma-Aldrich, St. Louis, MI) platform [20] and DAVID Bioinformatics data- MO). Coverslips were applied over Cytoseal 60 base [21] (https://david.ncifcrf.gov), which utilize the mounting media (EMS, Hatfield, PA), and cells were Kyoto Encyclopedia of Genes and Genomes (KEGG) inspected in light microscope. (www.genome.jp/kegg) and in Gene Ontology (GO) Bortell et al. Journal of Neuroinflammation (2017) 14:49 Page 3 of 20 terms (http://geneontology.org/page/go-enrichment-analysis). with PBS containing 0.1% Triton X-100 for 15 min at Diseases
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification and Validation of a Blood-Based 18-Gene Expression Signature in Colorectal Cancer
    Published OnlineFirst March 27, 2013; DOI: 10.1158/1078-0432.CCR-12-3851 Clinical Cancer Imaging, Diagnosis, Prognosis Research Identification and Validation of a Blood-Based 18-Gene Expression Signature in Colorectal Cancer Ye Xu1,4, Qinghua Xu1,6,7, Li Yang1,4, Xun Ye6,7, Fang Liu6,7, Fei Wu6,7, Shujuan Ni1,2,3,5, Cong Tan1,2,3,5, Guoxiang Cai1,4, Xia Meng6,7, Sanjun Cai1,4, and Xiang Du1,2,3,5 Abstract Purpose: The early detection of colorectal cancer (CRC) is crucial for successful treatment and patient survival. However, compliance with current screening methods remains poor. This study aimed to identify an accurate blood-based gene expression signature for CRC detection. Experimental Design: Gene expression in peripheral blood samples from 216 patients with CRC tumors and 187 controls was investigated in the study.Wefirstconductedamicroarrayanalysistoselect candidate genes that were significantly differentially expressed between patients with cancer and con- trols. A quantitative reverse transcription PCR assay was then used to evaluate the expression of selected genes. A gene expression signature was identified using a training set (n ¼ 200) and then validated using an independent test set (n ¼ 160). Results: We identified an 18-gene signature that discriminated the patients with CRC from controls with 92% accuracy, 91% sensitivity, and 92% specificity. The signature performance was further validated in the independent test set with 86% accuracy, 84% sensitivity, and 88% specificity. The area under the receiver operating characteristics curve was 0.94. The signature was shown to be enriched in genes related to immune functions. Conclusions: This study identified an 18-gene signature that accurately discriminated patients with CRC from controls in peripheral blood samples.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Technologies Available for Licensing
    Technologies Available for Licensing Office of Innovation and Industry Alliances www.moffittip.com IMMUNOTHERAPIES CD40: CD40 Agonists for Improved ex vivo TIL Manufacturing 21MA018N T cell: T cells expressing anti-CD3 antibodies autoactivate and decrease expression of T cell receptors to treat GVHD, or make T cells suitable for off-the- 21MA013N shelf treatment of allogeneic subjects ITAM: Human ITAM Mutated Variants For Better Intracellular Signaling Domains 21MA008N For Gamma-Delta CAR T-Cell Activation ESR1: Cancer Vaccine Using Novel ESR1 Derived Peptides For Neoantigen 20MB062N Therapy NOTCH: Single-domain antibodies (nanobodies) targeting the notch ligand DLL4 to 20MB053N Disrupt the interaction of DLL4 and Notch1 for GVHD CD33 CD123 NKG2DL: Bispecific Gamma Delta CAR-T Cells that Recognize 20MB050N CD33, CD123 and NKG2D Ligands for the Treatment of Acute Myeloid Leukemia OR2H1 or OR5V1: Olfactory Receptor Targeting Chimeric Antigen Receptor 20MA027 Expressing T cell (CAR-T) for Solid Tumors HER-2: Combination Therapy of a HER2-DC1 Dendritic Cell Cancer Vaccine and a 20MA016N Probiotic TILs: 12 Chemokine Gene Expression Signature to Increase the Efficacy of 20MA013N Manufacturing Tumor Infiltrating Lymphocytes PERK, IRE1: Method of Enhancing Immunotherapy Using ER Stress Pathway 20MA005 Inhibitors PGC-1α: CAR T Cells Engineered to Express PGC-1 alpha Demonstrate Enhanced 19MB066 Metabolic Fitness PGC-1α: N-Terminal Mutant PGC-1α Overexpression Enhances Metabolic Fitness 19MB066T2 Reducing CAR-T Exhaustion while Maintaining Proliferative Capacity TILs: Fucose increases tumor cell HLA-DRB1 expression increasing CD4+ T-cell 19MB049N activation with synergistic tumor killing activity with anti-PD1 checkpoint inhibitors Antibodies: Fully Human Anti-BDNF Antibodies 19MB048N Antibodies: Fully Human Anti-TSPAN7 Antibodies 19MB047N T-Bet: T-Bet Transcription Factor Armed CAR-T Cells Maintain Memory 19MA035N Phenotypes and Rescue CD4 Cells Leading to Increased Persistence Haskell Adler PhD MBA CLP Charlie Shaw PhD Praba Soundararajan PhD Sr.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • ZNF41 Antibody (N-Term) Blocking Peptide Synthetic Peptide Catalog # Bp17581a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 ZNF41 Antibody (N-term) Blocking Peptide Synthetic peptide Catalog # BP17581a Specification ZNF41 Antibody (N-term) Blocking Peptide ZNF41 Antibody (N-term) Blocking Peptide - - Background Product Information This gene product is a likely zinc finger Primary Accession P51814 familytranscription factor. It contains KRAB-A and KRAB-B domains thatact as transcriptional repressors in related proteins, and multiplezinc ZNF41 Antibody (N-term) Blocking Peptide - Additional Information finger DNA binding motifs and finger linking regionscharacteristic of the Kruppel family. This gene is part of a genecluster on Gene ID 7592 chromosome Xp11.23. Several alternatively splicedtranscript variants have been described, Other Names however, the full-lengthnature of only some of Zinc finger protein 41, ZNF41 them is known. Format ZNF41 Antibody (N-term) Blocking Peptide Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in - References solution using the appropriate buffer as needed. Ross, M.T., et al. Nature 434(7031):325-337(2005)Colland, F., et al. Storage Genome Res. 14(7):1324-1332(2004)Shoichet, Maintain refrigerated at 2-8°C for up to 6 S.A., et al. Am. J. Hum. Genet. months. For long term storage store at 73(6):1341-1354(2003)Rosati, M., et al. -20°C. Cytogenet. Cell Genet. 85 (3-4), 291-296 (1999) :Knight, J.C., et al. Genomics Precautions 21(1):180-187(1994) This product is for research use only. Not for use in diagnostic or therapeutic procedures. ZNF41 Antibody (N-term) Blocking Peptide - Protein Information Name ZNF41 Function May be involved in transcriptional regulation.
    [Show full text]
  • Curcumin Alters Gene Expression-Associated DNA Damage, Cell Cycle, Cell Survival and Cell Migration and Invasion in NCI-H460 Human Lung Cancer Cells in Vitro
    ONCOLOGY REPORTS 34: 1853-1874, 2015 Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro I-TSANG CHIANG1,2, WEI-SHU WANG3, HSIN-CHUNG LIU4, SU-TSO YANG5, NOU-YING TANG6 and JING-GUNG CHUNG4,7 1Department of Radiation Oncology, National Yang‑Ming University Hospital, Yilan 260; 2Department of Radiological Technology, Central Taiwan University of Science and Technology, Taichung 40601; 3Department of Internal Medicine, National Yang‑Ming University Hospital, Yilan 260; 4Department of Biological Science and Technology, China Medical University, Taichung 404; 5Department of Radiology, China Medical University Hospital, Taichung 404; 6Graduate Institute of Chinese Medicine, China Medical University, Taichung 404; 7Department of Biotechnology, Asia University, Taichung 404, Taiwan, R.O.C. Received March 31, 2015; Accepted June 26, 2015 DOI: 10.3892/or.2015.4159 Abstract. Lung cancer is the most common cause of cancer CARD6, ID1 and ID2 genes, associated with cell survival and mortality and new cases are on the increase worldwide. the BRMS1L, associated with cell migration and invasion. However, the treatment of lung cancer remains unsatisfactory. Additionally, 59 downregulated genes exhibited a >4-fold Curcumin has been shown to induce cell death in many human change, including the DDIT3 gene, associated with DNA cancer cells, including human lung cancer cells. However, the damage; while 97 genes had a >3- to 4-fold change including the effects of curcumin on genetic mechanisms associated with DDIT4 gene, associated with DNA damage; the CCPG1 gene, these actions remain unclear. Curcumin (2 µM) was added associated with cell cycle and 321 genes with a >2- to 3-fold to NCI-H460 human lung cancer cells and the cells were including the GADD45A and CGREF1 genes, associated with incubated for 24 h.
    [Show full text]
  • Cerebral Small Vessel Disease Genomics and Its Implications Across the Lifespan Muralidharan Sargurupremraj, Hideaki Suzuki, Xueqiu Jian, Chloé Sarnowski, Tavia E
    Cerebral small vessel disease genomics and its implications across the lifespan Muralidharan Sargurupremraj, Hideaki Suzuki, Xueqiu Jian, Chloé Sarnowski, Tavia E. Evans, Joshua C Bis, Gudny Eiriksdottir, Saori Sakaue, Natalie Terzikhan, Mohamad Habes, et al. To cite this version: Muralidharan Sargurupremraj, Hideaki Suzuki, Xueqiu Jian, Chloé Sarnowski, Tavia E. Evans, et al.. Cerebral small vessel disease genomics and its implications across the lifespan. Nature Communica- tions, Nature Publishing Group, 2020, 11, 10.1038/s41467-020-19111-2. hal-03121357 HAL Id: hal-03121357 https://hal.archives-ouvertes.fr/hal-03121357 Submitted on 26 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ARTICLE https://doi.org/10.1038/s41467-020-19111-2 OPEN Cerebral small vessel disease genomics and its implications across the lifespan Muralidharan Sargurupremraj et al.# White matter hyperintensities (WMH) are the most common brain-imaging feature of cer- ebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, fi 1234567890():,; accounting for modi cation/confounding by hypertension.
    [Show full text]