An Analysis of Random Elections with Large Numbers of Voters Arxiv
An Analysis of Random Elections with Large Numbers of Voters∗ Matthew Harrison-Trainor September 8, 2020 Abstract In an election in which each voter ranks all of the candidates, we consider the head- to-head results between each pair of candidates and form a labeled directed graph, called the margin graph, which contains the margin of victory of each candidate over each of the other candidates. A central issue in developing voting methods is that there can be cycles in this graph, where candidate A defeats candidate B, B defeats C, and C defeats A. In this paper we apply the central limit theorem, graph homology, and linear algebra to analyze how likely such situations are to occur for large numbers of voters. There is a large literature on analyzing the probability of having a majority winner; our analysis is more fine-grained. The result of our analysis is that in elections with the number of voters going to infinity, margin graphs that are more cyclic in a certain precise sense are less likely to occur. 1 Introduction The Condorcet paradox is a situation in social choice theory where every candidate in an election with three or more alternatives would lose, in a head-to-head election, to some other candidate. For example, suppose that in an election with three candidates A, B, and C, and three voters, the voter's preferences are as follows: arXiv:2009.02979v1 [econ.TH] 7 Sep 2020 First choice Second choice Third choice Voter 1 A B C Voter 2 B C A Voter 3 C A B There is no clear winner, for one can argue that A cannot win as two of the three voters prefer C to A, that B cannot win as two of the three voters prefer A to B, and that C cannot win as two of the three voters prefer B to C.
[Show full text]