Urologic Anatomy

Total Page:16

File Type:pdf, Size:1020Kb

Urologic Anatomy 162 Urologic Anatomy The adrenal glands lie within the perirenal (Gerota’s) renal artery. In contrast to the multiple arteries, usually a fascia superomedial to the kidneys, buried within the per- single large adrenal vein exits each gland from its hilum. inephric fat. However, the adrenals are embryologically On the right side, this vein is very short and enters and functionally distinct and are physically separated directly into the inferior vena cava on its posterolateral from the kidneys by connective tissue septa and varying aspect.The adrenal vein on the left is more elongated and amounts of adipose tissue. Thus, in cases of renal ectopia, is typically joined by the left inferior phrenic vein before the adrenal gland is usually located close to its normal entering the superior aspect of the left renal vein. The anatomic position and does not follow the kidney. Simi- adrenal lymphatics in general exit the glands along the larly, in cases of renal agenesis, the adrenal is typically course of the venous drainage and eventually empty into present.The right gland assumes a more pyramidal shape para-aortic lymph nodes. The adrenal medulla receives and rests more superior to the upper pole of the right greater autonomic innervation than any other organ in kidney. The left gland is more crescentic and rests more the body. Multiple preganglionic sympathetic fibers enter medial to the upper pole of the left kidney, or it may even each adrenal along the course of the adrenal vein and lie directly on the renal vessels at the left renal hilum. synapse with chromaffin cells in the medulla. This rich Each adrenal is a composite of two separate and func- sympathetic innervation of the medulla reaches the tionally distinct glandular elements, cortex and medulla. adrenal via the splanchnic nerves and celiac ganglion. In The medulla, which forms the central core of each contrast, the adrenal cortex is believed to receive no adrenal, consists of chromaffin cells derived from the innervation. neural crest and intimately related to the sympathetic The kidneys lie in the retroperitoneum along the nervous system. The cells of the medulla produce cate- borders of the psoas muscle. Gerota’s fascia forms an cholamines, primarily epinephrine and norepinephrine, important anatomic barrier around the kidney and tends which are released directly into the bloodstream through to contain pathologic processes originating from the an extensive venous drainage system. The adrenal cortex kidney. Superiorly, Gerota’s fascia fuses and tapers to dis- is mesodermally derived and completely surrounds and appear over the inferior diaphragmatic surface. Medially, encases the medulla.Three cell layers are identified in the Gerota’s fascia extends across the midline and is con- cortex. The outermost layer is the zona glomerulosa, tiguous with Gerota’s fascia on the contralateral side, which produces aldosterone in response to stimulation by although the anterior and posterior leaves are generally the renin—angiotensin system. Centripetally located are fused and inseparable as they cross the great vessels. Infe- the zona fasciculata and zona reticularis, which produce riorly, Gerota’s fascia remains an open potential space, glucocorticoids and sex steroids, respectively. Unlike the containing the ureter and gonadal vessels on either side. zona glomerulosa, these latter functions are regulated The posterior relations of the kidneys to the abdominal by pituitary release of adrenocorticotropic hormone wall musculature are relatively symmetric.The twelfth rib (ACTH). crosses the upper third of each kidney. Because the left The adrenals are very vascularized. The arterial supply kidney lies more cephalad than the right kidney, the is relatively symmetric bilaterally. Multiple small arteries eleventh rib lies directly posterior to the upper aspect of supply each adrenal gland. The three major arterial the left kidney and not the right kidney. sources for each gland are (1) superior branches from the In contrast to the similarities of posterior anatomic inferior phrenic artery, (2) middle branches directly from relations in each kidney, the anterior relation of each the aorta, and (3) inferior branches from the ipsilateral kidney is significantly different. The right kidney lies 372 162. Urologic Anatomy 373 behind the liver, and it is separated from the liver by directly, usually without receiving other venous branches. reflection of the peritoneum, except for a small area of The left renal vein is generally three times the length of its upper pole, which comes into direct contact with the the right (6 to 10cm) and must cross anterior to the aorta liver’s retroperitoneal bare spot. The extension of pari- to reach the left lateral aspect of the inferior vena cava. etal peritoneum that bridges between the perirenal fascia Lateral to the aorta, the left renal vein typically receives covering the upper pole of the right kidney and the pos- the left adrenal vein superiorly, a lumbar vein posteriorly, terior aspect of the liver is called the hepatorenal liga- and the left gonadal vein inferiorly. ment. Excessive traction on this attachment or the The adult ureter is usually 25 to 30cm long. The ureter hepatocolic ligament during right renal surgery can cause is arbitrarily divided into segments for the purposes of hepatic parenchymal tears. The duodenum is applied surgical or radiographic demonstration.The “abdominal” directly to the medial aspect and hilar structures of the ureter extends from the renal pelvis to the iliac vessels, right kidney. The hepatic flexure of the colon, which also and the “pelvic” ureter extends from the iliac vessels to is extraperitoneal, crosses the lower pole of the right the bladder. For radiographic purposes, the ureter is kidney. divided into three segments. The upper ureter is com- On the left, the retroperitoneal tail of the pancreas and monly described from the renal pelvis to the upper the related splenic vessels are applied directly to the border of the sacrum, the middle ureter from the upper upper to middle portion and hilum of the kidney. Supe- border to lower border of the sacrum, and the lower rior to the pancreatic tail, the left kidney is covered by ureter from the lower border of the sacrum to the peritoneum of the lesser sac and here is related to the bladder, respectively. There are three areas of relative posterior gastric wall. Below the pancreatic tail, the narrowing in the ureter that are of clinical importance: medial aspect of the kidney is covered by peritoneum of ureteropelvic junction, the point where the ureter crosses the greater sac and is related to the jejunum. The lower anterior to the iliac vessels, and the ureterovesical junc- pole of the left kidney is crossed by the splenic flexure of tion. Spontaneous passage of ureteral stones can be ham- the colon, generally in an extraperitoneal position. The pered at these areas of narrowing. The ureters lie on the spleen is separated from the upper lateral portion of the psoas muscle and pass medially to the sacroiliac joints left kidney by peritoneal reflection. However, there is and cross the iliac vessels anteriorly. An important typically a peritoneal extension between the perirenal anatomic landmark for easy identification of the ureters fascia covering the upper pole of the left kidney and the is at the site where the ureters cross anterior to the iliac inferior splenic capsule, called the splenorenal, or lienore- vessels. After crossing the iliac vessels, the ureters swing nal, ligament. Just as with the adjacent and often con- laterally near the ischial spines before passing medially tiguous splenocolic ligamentous attachment, care must be to penetrate the base of the bladder. The ureteral blood taken not to exert undue tension on the splenorenal lig- supply originates from the renal, aortic, iliac, mesenteric, ament during operative procedures on the left kidney to gonadal, vasal, and vesical arteries. Free intercommuni- avoid inadvertent tearing of the spleen. Such tearing may cation between these vessels permits extensive ureteral necessitate splenectomy during left nephrectomy. Both mobilization and transposition. Pain fibers refer stimuli splenocolic and splenorenal ligaments and the contralat- to the T12 through L2 segments, whereas the autonomic eral hepatocolic and hepatorenal ligaments are typically innervation is associated with intrinsic parasympathetic avascular and can be divided sharply with safety. motor and sympathetic vasomotor ganglia.The lymphatic The renal artery and vein typically branch from the drainage is to segmental periaortic and caval nodes. The aorta and inferior vena cava, respectively, to supply each ureter may be drawn medially in retroperitoneal fibrosis kidney. The renal vein is more anterior than the renal and laterally as a result of enlargement of periaortic artery, whereas the urinary collecting system is the most lymph node involvement with tumor or an aortic posteriorly located structure of the renal hilum.The renal aneurysm. It is essential to be aware of the course of the arteries and veins typically branch from the aorta and ureter during aortic and pelvic surgery and in difficult dis- inferior vena cava at the level of the second lumbar ver- sections of adjacent organs. tebral body, below the level of the anterior takeoff of the The cephalad portion of the bladder is attached to superior mesenteric artery. The right renal artery passes the anterior abdominal wall by the urachus, a fibrous behind the inferior vena cava in its course and is consid- remnant of the cloaca that attaches the bladder to the erably longer than the left renal artery. The main renal anterior abdominal wall. The obliterated umbilical artery artery typically divides into four or more segmental in the medial umbilical fold serves as an important land- vessels. The renal arteries are end branch vessels and do mark for the surgeon. It may be traced to its origin from not communicate with each other. This is in contrast to the internal iliac artery to locate the ureter, which lies on the renal venous system, which contains many intrarenal its medial side.
Recommended publications
  • Venous and Lymphatic Vessels. ANATOM.UA PART 1
    Lection: Venous and lymphatic vessels. ANATOM.UA PART 1 https://fipat.library.dal.ca/ta2/ Ch. 1 Anatomia generalis PART 2 – SYSTEMATA MUSCULOSKELETALIA Ch. 2 Ossa Ch. 3 Juncturae Ch. 4 Musculi PART 3 – SYSTEMATA VISCERALIA Ch. 5 Systema digestorium Ch. 6 Systema respiratorium Ch. 7 Cavitas thoracis Ch. 8 Systema urinarium Ch. 9 Systemata genitalia Ch. 10 Cavitas abdominopelvica PART 4 – SYSTEMATA INTEGRANTIA I Ch. 11 Glandulae endocrinae Ch. 12 Systema cardiovasculare Ch. 13 Organa lymphoidea PART 5 – SYSTEMATA INTEGRANTIA II Ch. 14 Systema nervosum Ch. 15 Organa sensuum Ch. 16 Integumentum commune ANATOM.UA ANATOM.UA Cardiovascular system (systema cardiovasculare) consists of the heart and the tubes, that are used for transporting the liquid with special functions – the blood or lymph, that are necessary for supplying the cells with nutritional substances and the oxygen. ANATOM.UA 5 Veins Veins are blood vessels that bring blood back to theheart. All veins carry deoxygenatedblood with the exception of thepulmonary veins and umbilical veins There are two types of veins: Superficial veins: close to the surface of thebody NO corresponding arteries Deep veins: found deeper in the body With corresponding arteries Veins of the systemiccirculation: Superior and inferior vena cava with their tributaries Veins of the portal circulation: Portal vein ANATOM.UA Superior Vena Cava Formed by the union of the right and left Brachiocephalic veins. Brachiocephalic veins are formed by the union of internal jugular and subclavianveins. Drains venous blood from: Head &neck Thoracic wall Upper limbs It Passes downward and enter the rightatrium. Receives azygos vein on the posterior aspect just before it enters theheart.
    [Show full text]
  • Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies
    ORIGINAL ARTICLE Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies Anouk Scholten, MD; Robin M. Cisco, MD; Menno R. Vriens, MD, PhD; Wen T. Shen, MD; Quan-Yang Duh, MD Importance: Knowing the types and frequency of ad- Results: Variant venous anatomy was encountered in renal vein variants would help surgeons identify and con- 70 of 546 adrenalectomies (13%). Variants included no trol the adrenal vein during laparoscopic adrenalec- main adrenal vein identifiable (n=18), 1 main adrenal tomy. vein with additional small veins (n=11), 2 adrenal veins (n=20), more than 2 adrenal veins (n=14), and vari- Objectives: To establish the surgical anatomy of the main ants of the adrenal vein drainage to the inferior vena cava vein and its variants for laparoscopic adrenalectomy and and hepatic vein or of the inferior phrenic vein (n=7). to analyze the relationship between variant adrenal ve- Variants occurred more often on the right side than on nous anatomy and tumor size, pathologic diagnosis, and the left side (42 of 250 glands [17%] vs 28 of 296 glands operative outcomes. [9%], respectively; P=.02). Patients with variant anatomy compared with those with normal anatomy had larger Design, Setting, and Patients: In a retrospective re- tumors (mean, 5.1 vs 3.3 cm, respectively; PϽ.001), more view of patients at a tertiary referral hospital, 506 patients pheochromocytomas (24 of 70 [35%] vs 100 of 476 [21%], underwent 546 consecutive laparoscopic adrenalecto- respectively; P=.02), and more estimated blood loss mies between April 22, 1993, and October 21, 2011. Pa- (mean, 134 vs 67 mL, respectively; P=.01).
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Aberrant Inferior Suprarenal Vessels Crossing Posterior Pararenal Space: a Case Report
    Maryna Kornieieva et al., IJCR, 2019 4:86 Case Report IJCR (2019) 4:86 International Journal of Case Reports (ISSN:2572-8776) Aberrant inferior suprarenal vessels crossing posterior pararenal space: a case report Maryna Kornieieva, Andrew Vierra, Abdul Razzaq American University of Caribbean School of Medicine, Lowlands, Sint Maarten ABSTRACT During routine educational dissection of a cadaver (63-year-old, *Correspondence to Author: male, USA), an atypical course of the left inferior suprarenal ves- Maryna Kornieieva sels via the posterior pararenal space was discovered. American University of Caribbean Detailed analysis of the abdominal vascular pattern showed that School of Medicine, Lowlands, Sint the atypical inferior suprarenal artery represented a terminal Maarten branch of the left inferior phrenic artery. The last one branched off from the very beginning of the left renal artery, ascended between the fibers of the left crus of the diaphragm, then ran How to cite this article: laterally giving off muscular branches and, finally, descended Maryna Kornieieva, Andrew Vierra, along the costal part of the diaphragm to the left posterior para- Abdul Razzaq. Aberrant inferior renal space. The terminal branch of the inferior phrenic artery suprarenal vessels crossing poste- pierced the retrorenal fascia and entered the perirenal space rior pararenal space: a case report. as an atypical left inferior suprarenal artery. It ran upward and International Journal of Case Re- medially crossing the anterior surface of the kidney to reach and ports, 2019 4:86 supply the lower pole of the left suprarenal gland. The left inferior phrenic vein accompanied the artery taking a similar course. It received numerous tributaries passing via the posterior parare- nal space, drained the inferior suprarenal vein, and opened into the left renal vein.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • 3-Major Veins of the Body
    Color Code Important Major Veins of the Body Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the student should be able to: ü Define veins and understand the general principle of venous system. ü Describe the superior & inferior Vena Cava: formation and their tributaries ü List major veins and their tributaries in: • head & neck • thorax & abdomen • upper & lower limbs ü Describe the Portal Vein: formation & tributaries. ü Describe the Portocaval Anastomosis: formation, sites and importance Veins o Veins are blood vessels that bring blood back to the heart. o All veins carry deoxygenated blood except: o Pulmonary veins1. o Umbilical veins2. o There are two types of veins*: 1. Superficial veins: close to the surface of the body NO corresponding arteries *Note: 2. Deep veins: found deeper in the body Vein can be classified in 2 With corresponding arteries (venae comitantes) ways based on: o Veins of the systemic circulation: (1) Their location Superior and inferior vena cava with their tributaries (superficial/deep) o Veins of the portal circulation: (2) The circulation (systemic/portal) Portal vein 1: are large veins that receive oxygenated blood from the lung and drain into the left atrium. 2: The umbilical vein is a vein present during fetal development that carries oxygenated blood from the placenta into the growing fetus. Only on the boys’ slides The Histology Of Blood Vessels o The arteries and veins have three layers, but the middle layer is thicker in the arteries than it is in the veins: 1.
    [Show full text]
  • Abdominal Cavity the Abdominal Cavity Is Enclosed by the Abdominal Walls and Is Completely Filled by the Abdominal Viscera
    Abdominal Cavity The abdominal cavity is enclosed by the abdominal walls and is completely filled by the abdominal viscera. These are the stomach and intestine, their associated glands (liver and pancreas and their associated ducts), blood and lymph vessels, the spleen, kidneys, and suprarenal glands. The kidneys, ureters, and suprarenal glands lie on the posterior abdominal wall enclosed in the fascial lining of the abdominal cavity. The other structures lie anterior to this and are surrounded to a great or lesser extent by the peritoneal cavity. The peritoneum is a thin serous membrane that lines the walls of the abdominal and pelvic cavities and clothes the viscera. The peritoneum can be regarded as a balloon against which organs are pressed from outside. The parietal peritoneum lines the walls of the abdominal and pelvic cavities, and the visceral peritoneum covers the organs. The potential space between the parietal and visceral layers, which is in effect the inside space of the balloon, is called the peritoneal cavity. In males, this is a closed cavity, but in females, there is communication with the exterior through the uterine tubes, the uterus, and the vagina. Between the parietal peritoneum and the fascial lining of the abdominal and pelvic walls is a layer of connective tissue called the extraperitoneal tissue; in the area of the kidneys this tissue contains a large amount of fat, which supports the kidneys. The peritoneal cavity is the largest cavity in the body and is divided into two parts: the greater sac and the lesser sac. The greater sac is the main compartment and extends from the diaphragm down into the pelvis.
    [Show full text]
  • A Review of the Distribution of the Arterial and Venous Vasculature of the Diaphragm and Its Clinical Relevance
    Folia Morphol. Vol. 67, No. 3, pp. 159–165 Copyright © 2008 Via Medica R E V I E W A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl A review of the distribution of the arterial and venous vasculature of the diaphragm and its clinical relevance M. Loukas1, El-Z. Diala1, R.S. Tubbs2, L. Zhan1, P. Rhizek1, A. Monsekis1, M. Akiyama1 1Department of Anatomical Sciences, School of Medicine, St. George’s University, Grenada, West Indies 2Section of Pediatric Neurosurgery, Children’s Hospital, Birmingham, AL, USA [Received 14 January 2008; Accepted 25 April 2008] The diaphragm is the major respiratory muscle of the body. As it plays such a vital role, a continuous arterial and venous blood supply is of the utmost importance. It is therefore not surprising to find described in the literature a complex system of anastomoses that contributes to the maintenance of this muscle’s life-preserving contraction. Understanding the anatomy of the dia- phragm and any divergence in its vasculature is literally vital to humanity. In the light of this, we review the literature on the blood supply to the diaphragm, with specific emphasis on the recent description of the inferior phrenic vessels and the superior phrenic artery, summarize the clinical significance of the dia- phragmatic vasculature and suggest future avenues of study to further expand on this current body of knowledge. (Folia Morphol 2008; 67: 159–165) Key words: diaphragm, hepatocellular carcinoma, inferior phrenic artery, superior phrenic artery INTRODUCTION aneurysm, transcatheter arterial embolism, and di- In view of the diaphragm’s current standing as gestive pathologies.
    [Show full text]
  • Renal Collar)
    Cerrahpaşa Medical Journal CASE REPORT / OLGU SUNUMU Double Left Renal Vein Encircling the Aorta (Renal Collar) Pelin İsmailoglu1 , Ercan Tanyeli2 , Mehmet Üzel2 , Ali İhsan Soyluoğlu2 , Güler Kahraman Yıldırım2 1Department of Anatomy, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey 2Department of Anatomy, İstanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, İstanbul, Turkey Cite this article as: İsmailoğlu P, Tanyeli E, Üzel M, Soyluoğlu Aİ, Kahraman Yıldırım G. Double Left Renal Vein Encircling the Aorta (Renal Collar). Cerrahpasa Med J 2020; DOI: 10.5152/cjm.2020.19022. Abstract A double left renal vein is a rare venous anomaly. During our routine gross anatomy course dissections, we found a double left renal vein encircling the aorta (renal collar) in a 72-year-old male cadaver. In our case, both these veins were draining into the inferior vena cava at different levels. The left suprarenal vein was draining into the anterior vein, and the left testicular vein was draining into the posterior vein. We searched the literature and discussed the clinical importance of this variation. Keywords: Renal vein, variation, suprarenal vein, circumaortic Aortu Çevreleyen Çift Sol Renal Ven Olgusu Öz Çift sol renal ven nadir görülen bir venöz anomalidir. Rutin anatomi diseksiyonları sırasında 72 yaşında bir erkek kadavrada aortu çev- releyen çift sol renal ven bulundu. Sol tarafta bu şekilde çift olan renal venin aorta abdominalis’i ön yüzden ve arka yüzden sardığı ve sonrasında vena cava inferior’a drene olduğu gözlemlendi. Olgudaki bu damarların her ikisinin de farklı düzeylerde inferior vena kava içerisine drene olduğu farkedilip buradan uzunluk ve genişlik ölçümü yapıldı.
    [Show full text]
  • DOPPLER VELOCITY ASSESSMENT of VENOUS RETURN in the HUMAN FETUS Met Dank Aan Hitachi Nederland B.V
    DOPPLER VELOCITY ASSESSMENT OF VENOUS RETURN IN THE HUMAN FETUS Met dank aan Hitachi Nederland b.v. en Schering Nederland b.v. voor hun financi81e bijdrage aan de drukkosten. The work presented in this thesis was periormed in the Department of Obstetrics and Gynae­ cology. University Hospital Dijkzigt. Erasmus University, Rotterdam, The Netherlands and supported by the Dutch Foundation for Medical Research MEDIGON (grant nr. 900-568-215). No part of this book may be reproduced in any form, by print, photoprint, microfilm or any other means without written permission from the publisher. Niets uit deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm of op welke andere wijze oak zonder voorafgaande schriftelijke toestemming van de uitgever. © T.W.A. Huisman ISBN 90-9006484-2 Printed by Pasmans Offsetdrukkerij b.v., The Hague DOPPLER VELOCITY ASSESSMENT OF VENOUS RETURN IN THE HUMAN FETUS Evaluatie van de veneuze return in de humane foetus met behulp van Doppler bloedsnelheidsmetingen PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE ERASMUS UNIVERSITEIT ROTTERDAM OP GEZAG VAN DE RECTOR MAGNIFICUS PROF.DR. P.W.C. AKKERMANS M.Lit. EN VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN. DE OPENBARE VERDEDIGING ZAL PLAATSVINDEN OP WOENSDAG 15 SEPTEMBER 1993 OM 15.45 UUR DOOR T JEERD WILL EM ALEXANDER HUISMAN GEBOREN TE AMSTERDAM PROMOTIE-COMMISSIE PROMOTOR: Prof.Jhr.Dr. J.W. Wladimiroff OVERIGE LEDEN Prof. S.H. Eik-Nes M.D., Ph.D. Prof.Dr. AC. Gittenberger-de Groot Prof.Or. J. Hess "Some who do not know~ and especially those who have experience~ are more practical than others who know".
    [Show full text]
  • Pictorial Essay: Multimodality Imaging of the Portal Venous System S Akbar, V Narra, B Madrazo, S Jafri, R Salem, K Bis
    The Internet Journal of Radiology ISPUB.COM Volume 7 Number 1 Pictorial Essay: Multimodality Imaging of the Portal Venous System S Akbar, V Narra, B Madrazo, S Jafri, R Salem, K Bis Citation S Akbar, V Narra, B Madrazo, S Jafri, R Salem, K Bis. Pictorial Essay: Multimodality Imaging of the Portal Venous System. The Internet Journal of Radiology. 2006 Volume 7 Number 1. Abstract Evaluation of the portal venous system is required in several clinical circumstances. Multiple imaging modalities may be employed for evaluation of the portal venous system. To facilitate a definitive diagnosis the normal anatomy of the portal venous system as well as congenital and acquired abnormalities must be understood. This pictorial essay will review the various imaging appearances of the portal venous system. NORMAL ANATOMY AND VARIANTS Figure 1 The portal venous system is composed of three main Figure 1a: Power Doppler images demonstrate anomalous origin of the left portal vein (arrow) from the right portal tributaries, the splenic, superior mesenteric and inferior vein. mesenteric veins as well as several smaller tributaries. The left gastric or coronary vein is the most important of the smaller tributaries and joins the portal vein near its junction with the splenic vein. The normal portal vein divides into left and right lobar veins. Congenital absence or duplication of the portal vein is rarely seen. (Fig. 1). FIGURE 1: ANOMALOUS ORIGIN OF THE LEFT PORTAL VEIN 1 of 14 Pictorial Essay: Multimodality Imaging of the Portal Venous System Figure 2 portacaval shunts due to elevated blood levels of ammonia Figure 1b: Contrast enhanced (CECT) images confirms the (Fig.
    [Show full text]
  • Double Left Renal Vein Encircling the Aorta (Renal Collar)
    Cerrahpaşa Medical Journal 2020; 44(2): 112-114 CASE REPORT / OLGU SUNUMU Double Left Renal Vein Encircling the Aorta (Renal Collar) Pelin İsmailoglu1 , Ercan Tanyeli2 , Mehmet Üzel2 , Ali İhsan Soyluoğlu2 , Güler Kahraman Yıldırım2 1Department of Anatomy, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey 2Department of Anatomy, İstanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, İstanbul, Turkey Cite this article as: İsmailoğlu P, Tanyeli E, Üzel M, Soyluoğlu Aİ, Kahraman Yıldırım G. Double Left Renal Vein Encircling the Aorta (Renal Collar). Cerrahpaşa Medical Journal 2020; 44(2): 112-114. Abstract A double left renal vein is a rare venous anomaly. During our routine gross anatomy course dissections, we found a double left renal vein encircling the aorta (renal collar) in a 72-year-old male cadaver. In our case, both these veins were draining into the inferior vena cava at different levels. The left suprarenal vein was draining into the anterior vein, and the left testicular vein was draining into the posterior vein. We searched the literature and discussed the clinical importance of this variation. Keywords: Renal vein, variation, suprarenal vein, circumaortic Aortu Çevreleyen Çift Sol Renal Ven Olgusu Öz Çift sol renal ven nadir görülen bir venöz anomalidir. Rutin anatomi diseksiyonları sırasında 72 yaşında bir erkek kadavrada aortu çev- releyen çift sol renal ven bulundu. Sol tarafta bu şekilde çift olan renal venin aorta abdominalis’i ön yüzden ve arka yüzden sardığı ve sonrasında vena cava inferior’a drene olduğu gözlemlendi. Olgudaki bu damarların her ikisinin de farklı düzeylerde inferior vena kava içerisine drene olduğu farkedilip buradan uzunluk ve genişlik ölçümü yapıldı.
    [Show full text]