Veins of the Abdomen

Total Page:16

File Type:pdf, Size:1020Kb

Veins of the Abdomen Veins of the Abdomen Blood from the abdominal walls and abdominal (and pelvic) organs returns to the heart via the inferior vena cava. Blood from the digestive organs empties into veins that drain into the hepatic portal vein. This common vessel carries the venous blood into the liver. The hepatic veins then carry the blood from the liver to the vena cava. This hepatic portal system includes two sets of capillary beds located between the arterial supply and the ultimate venous drainage. Capillary beds in the stomach and intestines empty into tributaries of the hepatic portal vein, which carries the blood to the capillary bed in the liver. The hepatic portal system also includes a variety of tributary vessels from the stomach and pancreas, including the superior and inferior mesenteric veins and the splenic vein. The superior mesenteric vein collects blood from all of the small intestine, the ascending and transverse colons of the large intestine, and the stomach. The splenic vein drains the spleen and portions of the pancreas and stomach. This vein unites with the superior mesenteric vein to create the hepatic portal vein. Blood from the distal parts of the large intestine and rectum drains into the inferior mesenteric vein, which unites with the splenic vein immediately prior to its merger with the superior mesenteric vein to form the hepatic portal vein. Major Veins of the Abdomen Vein Area Drained Description Inferior vena Abdomen, lower limbs, Formed by the merger of the two common iliac veins cava pelvis External iliac Abdominal wall, lower Companions of the internal iliac arteries; Continuations of the veins limbs, cremaster muscle in femoral veins; End by merging with the internal iliac veins to males form the common iliac veins Lumbar Posterior abdominal wall Usually four lumbar veins on each side; Some drain directly veins (both sides), vertebral into the inferior vena cava and others into the ascending canal, spinal cord, lumbar veins of the thoracic azygos system meninges Gonadal Testes in males; ovaries in Gonadal veins are called testicular veins in males veins females andovarian veins in females; Left testicular and left ovarian veins drain into the left renal veins; Right testicular and right ovarian veins empty into the inferior vena cava Renal veins Kidneys The right renal vein is shorter than the left; The left renal vein collects blood from the left ovarian/testicular, left inferior phrenic, and left suprarenal veins; The right renal vein drains into the inferior vena cava Suprarenal Adrenal glands The left suprarenal vein drains into the left renal vein; The veins right suprarenal vein drains into the inferior vena cava Inferior Diaphragm Typically, the left inferior phrenic vein has tributaries to the phrenic left suprarenal vein (which drains into the left renal vein) and veins to the inferior vena cava; The right inferior phrenic vein drains into the inferior vena cava Hepatic Liver Right and left hepatic veins empty into the inferior vena cava veins .
Recommended publications
  • Venous and Lymphatic Vessels. ANATOM.UA PART 1
    Lection: Venous and lymphatic vessels. ANATOM.UA PART 1 https://fipat.library.dal.ca/ta2/ Ch. 1 Anatomia generalis PART 2 – SYSTEMATA MUSCULOSKELETALIA Ch. 2 Ossa Ch. 3 Juncturae Ch. 4 Musculi PART 3 – SYSTEMATA VISCERALIA Ch. 5 Systema digestorium Ch. 6 Systema respiratorium Ch. 7 Cavitas thoracis Ch. 8 Systema urinarium Ch. 9 Systemata genitalia Ch. 10 Cavitas abdominopelvica PART 4 – SYSTEMATA INTEGRANTIA I Ch. 11 Glandulae endocrinae Ch. 12 Systema cardiovasculare Ch. 13 Organa lymphoidea PART 5 – SYSTEMATA INTEGRANTIA II Ch. 14 Systema nervosum Ch. 15 Organa sensuum Ch. 16 Integumentum commune ANATOM.UA ANATOM.UA Cardiovascular system (systema cardiovasculare) consists of the heart and the tubes, that are used for transporting the liquid with special functions – the blood or lymph, that are necessary for supplying the cells with nutritional substances and the oxygen. ANATOM.UA 5 Veins Veins are blood vessels that bring blood back to theheart. All veins carry deoxygenatedblood with the exception of thepulmonary veins and umbilical veins There are two types of veins: Superficial veins: close to the surface of thebody NO corresponding arteries Deep veins: found deeper in the body With corresponding arteries Veins of the systemiccirculation: Superior and inferior vena cava with their tributaries Veins of the portal circulation: Portal vein ANATOM.UA Superior Vena Cava Formed by the union of the right and left Brachiocephalic veins. Brachiocephalic veins are formed by the union of internal jugular and subclavianveins. Drains venous blood from: Head &neck Thoracic wall Upper limbs It Passes downward and enter the rightatrium. Receives azygos vein on the posterior aspect just before it enters theheart.
    [Show full text]
  • Split Azygos Vein: a Case Report
    Open Access Case Report DOI: 10.7759/cureus.13362 Split Azygos Vein: A Case Report Stefan Lachkar 1 , Joe Iwanaga 2 , Emma Newton 2 , Aaron S. Dumont 2 , R. Shane Tubbs 2 1. Anatomy, Seattle Chirdren's, Seattle, USA 2. Neurosurgery, Tulane University School of Medicine, New Orleans, USA Corresponding author: Joe Iwanaga, [email protected] Abstract The azygos venous system, which comprises the azygos, hemiazygos, and accessory hemiazygos veins, assists in blood drainage into the superior vena cava (SVC) from the thoracic cage and portions of the posterior mediastinum. Routine dissection of a fresh-frozen cadaveric specimen revealed a split azygos vein. The azygos vein branched off the inferior vena cava (IVC) at the level of the second lumbar vertebra as a single trunk and then split into two tributaries after forming a venous plexus. The right side of this system drained into the SVC and, inferiorly, the collective system drained into the IVC. Variant forms in the venous system, especially the vena cavae, are prone to dilation and tortuosity, leading to an increased likelihood of injury. Knowledge of the anatomical variations of the azygos vein is important for surgeons who use an anterior approach to the spine for diverse procedures. Categories: Anatomy Keywords: inferior vena cava, embryology, azygos vein, variation, anatomy, cadaver Introduction The inferior vena cava (IVC) is the largest vein in the human body. Its principal function is to return venous blood from the abdomen and lower extremities to the right atrium of the heart [1]. Developmental patterning of the IVC consists of three paired embryonic veins: subcardinal, supracardinal, and postcardinal.
    [Show full text]
  • Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies
    ORIGINAL ARTICLE Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies Anouk Scholten, MD; Robin M. Cisco, MD; Menno R. Vriens, MD, PhD; Wen T. Shen, MD; Quan-Yang Duh, MD Importance: Knowing the types and frequency of ad- Results: Variant venous anatomy was encountered in renal vein variants would help surgeons identify and con- 70 of 546 adrenalectomies (13%). Variants included no trol the adrenal vein during laparoscopic adrenalec- main adrenal vein identifiable (n=18), 1 main adrenal tomy. vein with additional small veins (n=11), 2 adrenal veins (n=20), more than 2 adrenal veins (n=14), and vari- Objectives: To establish the surgical anatomy of the main ants of the adrenal vein drainage to the inferior vena cava vein and its variants for laparoscopic adrenalectomy and and hepatic vein or of the inferior phrenic vein (n=7). to analyze the relationship between variant adrenal ve- Variants occurred more often on the right side than on nous anatomy and tumor size, pathologic diagnosis, and the left side (42 of 250 glands [17%] vs 28 of 296 glands operative outcomes. [9%], respectively; P=.02). Patients with variant anatomy compared with those with normal anatomy had larger Design, Setting, and Patients: In a retrospective re- tumors (mean, 5.1 vs 3.3 cm, respectively; PϽ.001), more view of patients at a tertiary referral hospital, 506 patients pheochromocytomas (24 of 70 [35%] vs 100 of 476 [21%], underwent 546 consecutive laparoscopic adrenalecto- respectively; P=.02), and more estimated blood loss mies between April 22, 1993, and October 21, 2011. Pa- (mean, 134 vs 67 mL, respectively; P=.01).
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Double Inferior Vena Cava Associated with Double Suprarenal and Testicular Venous Anomalies: a Rare Case Report
    THIEME Brief Communication 221 Double Inferior Vena Cava Associated with Double Suprarenal and Testicular Venous Anomalies: A Rare Case Report Kimaporn Khamanarong1 Jarupon Mahiphot1 Sitthichai Iamsaard1,2 1 Department of Anatomy, Faculty of Medicine of Khon Kaen Address for correspondence Sitthichai Iamsaard, PhD, Department University, Khon Kaen, Thailand of Anatomy, Faculty of Medicine of Khon Kaen University, Khon Kaen, 2 Center for Research and Development of Herbal Health Products, Thailand, 40002 (e-mail: [email protected]). Faculty of Pharmaceutical Sciences of Khon Kaen University, Khon Kaen, Thailand J Morphol Sci 2018;35:221–224. Abstract Introduction The variant courses of blood vessels are very important in considera- tions for retroperitoneal surgeries or interventional radiology. The present study attempted to describe a very rare case of double inferior vena cava (IVC) associated with double left suprarenal veins (LSRVs) and double right testicular veins (RTVs) in a Thai male embalmed cadaver. Material and Methods A 70-year-old Thai male cadaver was systemically dissected and observed for the vascular distributions during gross anatomy teaching for medical students at the anatomy department of the faculty of medicine of the Khon Kaen University. Keywords Results We found that the double IVCs were connected with the transverse interiliac ► double inferior vena vein. While the upper LSRV is a tributary of the IVC, the lower LSRV is a tributary of the cava left renal vein. The RTV bifurcates at about the height of the iliac cristae to form the ► double suprarenal medial and lateral RTVs, which drain into the right IVC at different heights. veins Conclusion All these duplications and associated anomalies are assumed to occur ► double right during the embryological development.
    [Show full text]
  • Blood Vessels
    Exercise 21 – Anatomy of blood vessels 1. Fig 21.1 – pay attention to structure of arteries, capillaries and veins. 2. Major arteries In Fig 21.2 – read and remember organs supplied by these arteries 3. aorta left and right coronary artery 4. aortic arch 1 brachiocephalic 2 left common carotid 3 left subclavian 5. Brachiocephalic 1 right subclavian 2 right common carotid 6. Thoracic aorta esophagus, inter costal muscles and diaphragm 7. Abdominal aorta 1 celiac trunk 2 superior and inferior mesenteric arteries 3 suprarenals 4 gonadial 8. Abdominal aorta divides into 2 common iliacs that supply blood to pelvis and leg of its side. 9. Main veins – fig 21.6 – External jugular from head and neck, axillary from the arm, both join to form subclavian veins. 10. Subclavians open into Brachicephalic veins that also receive vertebral and internal jugular veins. 11. 2 brachiocephalic veins form Superior Vena cava that receive Azygos system – collects blood from chest. Superior vena cava opens into right atrium. 12. Femoral and other veins of leg form Common Iliac vein on each side. 13. Common Iliac veins join to form Inferior vena cava. 14. Inferior vena cava receives blood from 4 veins. 1. suprarenal veins adrenal gland 2. gonadial from ovary or testis 3. renal veins from kidney on each side 4. hepatic veins from liver. 15. Hepatic Portal System : Note that Inferior vena cava does not receive blood from any digestive organs other than liver. Hepatic Portal Vein is formed of 2 main veins, Superior Mesenteric and Splenic vein. 1. Superior Mesenteric collects blood from small intestine, and parts of colon and stomach.
    [Show full text]
  • Aberrant Inferior Suprarenal Vessels Crossing Posterior Pararenal Space: a Case Report
    Maryna Kornieieva et al., IJCR, 2019 4:86 Case Report IJCR (2019) 4:86 International Journal of Case Reports (ISSN:2572-8776) Aberrant inferior suprarenal vessels crossing posterior pararenal space: a case report Maryna Kornieieva, Andrew Vierra, Abdul Razzaq American University of Caribbean School of Medicine, Lowlands, Sint Maarten ABSTRACT During routine educational dissection of a cadaver (63-year-old, *Correspondence to Author: male, USA), an atypical course of the left inferior suprarenal ves- Maryna Kornieieva sels via the posterior pararenal space was discovered. American University of Caribbean Detailed analysis of the abdominal vascular pattern showed that School of Medicine, Lowlands, Sint the atypical inferior suprarenal artery represented a terminal Maarten branch of the left inferior phrenic artery. The last one branched off from the very beginning of the left renal artery, ascended between the fibers of the left crus of the diaphragm, then ran How to cite this article: laterally giving off muscular branches and, finally, descended Maryna Kornieieva, Andrew Vierra, along the costal part of the diaphragm to the left posterior para- Abdul Razzaq. Aberrant inferior renal space. The terminal branch of the inferior phrenic artery suprarenal vessels crossing poste- pierced the retrorenal fascia and entered the perirenal space rior pararenal space: a case report. as an atypical left inferior suprarenal artery. It ran upward and International Journal of Case Re- medially crossing the anterior surface of the kidney to reach and ports, 2019 4:86 supply the lower pole of the left suprarenal gland. The left inferior phrenic vein accompanied the artery taking a similar course. It received numerous tributaries passing via the posterior parare- nal space, drained the inferior suprarenal vein, and opened into the left renal vein.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • 3-Major Veins of the Body
    Color Code Important Major Veins of the Body Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the student should be able to: ü Define veins and understand the general principle of venous system. ü Describe the superior & inferior Vena Cava: formation and their tributaries ü List major veins and their tributaries in: • head & neck • thorax & abdomen • upper & lower limbs ü Describe the Portal Vein: formation & tributaries. ü Describe the Portocaval Anastomosis: formation, sites and importance Veins o Veins are blood vessels that bring blood back to the heart. o All veins carry deoxygenated blood except: o Pulmonary veins1. o Umbilical veins2. o There are two types of veins*: 1. Superficial veins: close to the surface of the body NO corresponding arteries *Note: 2. Deep veins: found deeper in the body Vein can be classified in 2 With corresponding arteries (venae comitantes) ways based on: o Veins of the systemic circulation: (1) Their location Superior and inferior vena cava with their tributaries (superficial/deep) o Veins of the portal circulation: (2) The circulation (systemic/portal) Portal vein 1: are large veins that receive oxygenated blood from the lung and drain into the left atrium. 2: The umbilical vein is a vein present during fetal development that carries oxygenated blood from the placenta into the growing fetus. Only on the boys’ slides The Histology Of Blood Vessels o The arteries and veins have three layers, but the middle layer is thicker in the arteries than it is in the veins: 1.
    [Show full text]
  • A Case of the Bilateral Superior Venae Cavae with Some Other Anomalous Veins
    Okaiimas Fol. anat. jap., 48: 413-426, 1972 A Case of the Bilateral Superior Venae Cavae With Some Other Anomalous Veins By Yasumichi Fujimoto, Hitoshi Okuda and Mihoko Yamamoto Department of Anatomy, Osaka Dental University, Osaka (Director : Prof. Y. Ohta) With 8 Figures in 2 Plates and 2 Tables -Received for Publication, July 24, 1971- A case of the so-called bilateral superior venae cavae after the persistence of the left superior vena cava has appeared relatively frequent. The present authors would like to make a report on such a persistence of the left superior vena cava, which was found in a routine dissection cadaver of their school. This case is accompanied by other anomalies on the venous system ; a complete pair of the azygos veins, the double subclavian veins of the right side and the ring-formation in the left external iliac vein. Findings Cadaver : Mediiim nourished male (Japanese), about 157 cm in stature. No other anomaly in the heart as well as in the great arteries is recognized. The extracted heart is about 350 gm in weight and about 380 ml in volume. A. Bilateral superior venae cavae 1) Right superior vena cava (figs. 1, 2, 4) It measures about 23 mm in width at origin, about 25 mm at the pericardiac end, and about 31 mm at the opening to the right atrium ; about 55 mm in length up to the pericardium and about 80 mm to the opening. The vein is formed in the usual way by the union of the right This report was announced at the forty-sixth meeting of Kinki-district of the Japanese Association of Anatomists, February, 1971,Kyoto.
    [Show full text]
  • Abdominal Cavity the Abdominal Cavity Is Enclosed by the Abdominal Walls and Is Completely Filled by the Abdominal Viscera
    Abdominal Cavity The abdominal cavity is enclosed by the abdominal walls and is completely filled by the abdominal viscera. These are the stomach and intestine, their associated glands (liver and pancreas and their associated ducts), blood and lymph vessels, the spleen, kidneys, and suprarenal glands. The kidneys, ureters, and suprarenal glands lie on the posterior abdominal wall enclosed in the fascial lining of the abdominal cavity. The other structures lie anterior to this and are surrounded to a great or lesser extent by the peritoneal cavity. The peritoneum is a thin serous membrane that lines the walls of the abdominal and pelvic cavities and clothes the viscera. The peritoneum can be regarded as a balloon against which organs are pressed from outside. The parietal peritoneum lines the walls of the abdominal and pelvic cavities, and the visceral peritoneum covers the organs. The potential space between the parietal and visceral layers, which is in effect the inside space of the balloon, is called the peritoneal cavity. In males, this is a closed cavity, but in females, there is communication with the exterior through the uterine tubes, the uterus, and the vagina. Between the parietal peritoneum and the fascial lining of the abdominal and pelvic walls is a layer of connective tissue called the extraperitoneal tissue; in the area of the kidneys this tissue contains a large amount of fat, which supports the kidneys. The peritoneal cavity is the largest cavity in the body and is divided into two parts: the greater sac and the lesser sac. The greater sac is the main compartment and extends from the diaphragm down into the pelvis.
    [Show full text]
  • A Retroaortic Left Renal Vein in a Female Cadaver
    This is “Advance Publication Article” Kurume Medical Journal, 64, 103-107, 2017 Case Report A Retroaortic Left Renal Vein in a Female Cadaver YOSHIKO FUJISHIMA, KOICHI WATANABE*, YOKO TABIRA*, JOE IWANAGA*,**, †, YUI ODO, TSUYOSHI SAGA*, R. SHANE TUBBS**, ‡ AND KOH-ICHI YAMAKI* Medical student, Kurume University School of Medicine, *Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011 Japan, **Seattle Science Foundation, Seattle, 98122 United States, †Dental and Oral Medical Center, Kurume University School of Medicine, Kurume 830-0011, Japan, ‡Department of Anatomical Sciences, St. George’s University, St. George’s, Grenada. Received 4 October 2017, accepted 23 November 2017 J-STAGE advance publication 21 May 2018 Edited by TOSHI ABE Summary: We encountered a case of retroaortic left renal vein (RLRV) during an anatomical dissection course at our medical school in 2017. The case was a female cadaver who was 88 years old at death. Six roots of the left renal vein (RV) arose from the hilus of the kidney and joined to form one left renal vein, crossed dorsal to the abdominal aorta (AA) at the level of the second lumbar vertebra, and then drained into the inferior vena cava (IVC). Two roots joined at the right renal hilus to become the right RV to then drain into the IVC at the level of the first lumbar vertebral body. The reported frequency of RLRV is approximately 2%. Embryologically, the normal anastomosis of the left and right sub-cardinal veins results in the left RV traveling on the ventral surface of the AA. However, in the case presented here, the left RV traveled on the dorsal side of the AA due to the anastomosis of the left and right supra-cardinal veins and regression of the anastomosis between the left and right sub-cardinal veins.
    [Show full text]