TORSO MODEL #2 MASTER KEY A. Muscular System 100. Frontalis 101

Total Page:16

File Type:pdf, Size:1020Kb

TORSO MODEL #2 MASTER KEY A. Muscular System 100. Frontalis 101 TORSO MODEL #2 MASTER KEY A. Muscular System 100. Frontalis 136. Lateral rectus 101. Orbicularis oculi 137. Medial rectus 102. Procerus 138. Superior rectus 103. Nasalis 139. Inferior rectus 104. Levator labii superioris (nasal portion) 140. Inferior oblique 105. Levator labii superioris 141. Superior oblique 106. Zygomaticus minor 142. Levator palpebrae superioris 107. Zygomaticus major 143. Anterior scalene 108. Orbicularis oris 144. Middle scalene 109. Mentalis 145. Posterior scalene 110. Depressor anguli oris 146. Omohyoid, inferior belly 111. Platysma 147. Semispinalis capitis 112. Buccinator 148. Supraspinatus 113. Risorius 149. Deltoid 114. Masseter 150. Infraspinatus 115. Auricularis anterior 151. Teres minor 116. Auricularis superior 152. Teres major 117. Auricularis posterior 153. Triceps brachii 118. Occipitalis 154. Biceps brachii 119. Trapezius 155. Coracobrachialis 120. Splenius capitis 156. Pectoralis minor 121. Sternocleidomastoid 157. Subscapularis 122. Levator scapulae 158. Serratus anterior 123. Omohyoid, superior belly 159. External intercostals 124. Sternohyoid 160. Internal intercostals 125. Sternothyroid 161. Transversus abdominis 126. Thyrohyoid 162. Rectus abdominis 127. Cricothyroid 163. Linea alba 128. Genioglossus 164. External oblique 129. Geniohyoid 165. Pectoralis major 130. Stylopharyngeus 166. Transversus thoracis 131. Stylohyoid 167. Internal oblique 132. Styloglossus 168. Psoas major 133. Digastric, anterior belly 169. Iliacus 134. Mylohyoid 170. Sartorius 135. Temporalis 171. Tensor fasciae latae TORSO MODEL #2 MASTER KEY 172. Vastus lateralis B. Cardiovascular System 173. Rectus femoris 200. Right auricle 174. Pectineus 201. Right atrium 175. Gracilis 202. Superior vena cava 176. Adductor longus 203. Inferior vena cava 177. Vastus medialis 204. Left auricle 178. Vastus lateralis 205. Left atrium 179. Latissimus dorsi 206. Left ventricle 180. Gluteus maximus 207. Right ventricle 181. Biceps femoris 208. Interventricular septum 182. Semitendinosus 209. Interatrial septum 183. Sphincter ani externus 210. Tricuspid valve 184. Gluteus medius 211. Chordae tendineae 185. Sacrotuberous ligament 212. Papillary muscles 186. Piriformis 213. Pulmonary valve 187. Superior gemellus 214. Pulmonary artery 188. Obturator internus 215. Right pulmonary artery 189. Inferior gemellus 216. Left pulmonary artery 190. Quadratus femoris 217. Right pulmonary veins 191. Adductor minimus 218. Left pulmonary veins 192. Semimembranosus 219. Bicuspid (mitral) valve 193. Adductor magnus 220. Aortic valve 194. Levatores costarum 221. Ascending aorta 195. Rotatores 222. Origins of right and left coronary arteries 196. Bulbospongiosus 223. Right coronary artery 197. Internal anal sphincter 224. Posterior interventricular artery 225. Anterior interventricular artery 226. Circumflex artery 227. Great cardiac vein 228. Middle cardiac vein 229. Small cardiac vein 230. Coronary sinus 231. Anterior cardiac vein 232. Pericardial fat 233. Superficial layer of cardiac muscle 234. Deep layer of cardiac muscle TORSO MODEL #2 MASTER KEY 235. Apex of heart 270. Left external jugular vein 236. Brachiocephalic (innominate) artery 271. Left internal jugular vein 237. Right subclavian artery 272. Left subclavian artery 238. Basilic vein 273. Internal thoracic artery 239. Axillary vein 274. Intercostal branch of internal thoracic a. 240. Right subclavian vein 275. Intercostal branch of internal thoracic v. 241. Right common carotid artery 276. Superior epigastric artery 242. Inferior alveolar artery, vein, and nerve 277. Superior epigastric vein 243. Mental branches of inferior alveolar artery 278. Internal thoracic vein and vein 279. Cephalic vein 244. Superior alveolar artery, vein, and nerve 280. Left suclavian vein 245. Infraorbital branches of maxillary artery 281. Left brachiocephalic (innominate) vein 246. Right internal carotid artery 282. Arch of aorta 247. Right internal jugular vein 283. Thoracic aorta 248. Right brachiocephalic vein 284. Intercostal artery 249. Left common carotid artery 285. Intercostal vein 250. Left internal carotid artery 286. Hemiazygos vein 251. Anterior cerebral artery 287. Abdominal aorta 252. Middle cerebral artery 288. Inferior phrenic artery 253. Posterior communicating artery 289. Inferior phrenic vein 254. Left vertebral artery 290. Right suprarenal artery 255. Left vertebral artery 291. Celiac trunk 256. Basilar artery 292. Origin of left gastric artery 257. Anterior inferior cerebellar artery 293. Origin of splenic artery 258. Labyrinthine artery 294. Splenic artery 259. Superior cerebellar artery 295. Splenic vein 260. Facial artery 296. Origin of common hepatic artery 261. Lateral nasal artery 297. Common hepatic artery 262. Frontal artery 298. Hepatic artery proper 263. Supraorbital artery 299. Right hepatic artery 264. Facial vein 300. Hepatic portal vein 265. Transverse facial artery 301. Gastroduodenal artery 266. Superficial temporal vein 302. Right gastroepiploic artery 267. Posterior auricular vein 303. Superior pancreaticoduodenal artery 268. Posterior auricular vein 304. Superior mesenteric artery 269. Occipital artery 305. Intestinal arteries 306. Middle colic artery TORSO MODEL #2 MASTER KEY 307. Middle colic artery, left branch 344. Superior vesical artery 308. Middle colic artery, right branch 345. Obturator artery 309. Inferior pancreaticoduodenal artery 346. Internal iliac vein 310. Right colic artery 347. Right common iliac vein 311. Right colic artery, ascending branch 348. Left common iliac artery 312. Right colic artery, descending branch 349. Left external iliac artery 313. Ileocolic artery, superior branch 350. Inferior epigastic artery 314. Superior mesenteric vein 351. Inferior epigastric vein 315. Inferior mesenteric artery 352. Left femoral artery 316. Left colic artery 353. Great saphenous vein 317. Sigmoid artery 354. Medial circumflex femoral vein 318. Superior rectal artery 355. Lateral circumflex femoral vein 319. Rectal plexus of veins 356. Superficial epigastric vein 320. Inferior mesenteric vein 357. Thoracoepigastric vein 321. Right renal artery 322. Right renal vein C. Lymphatic System 323. Left inferior suprarenal artery 375. Superficial cervical lymph node 324. Left suprarenal vein 376. Lymphatic vessel 325. Left renal artery 377. Submandibular lymph node 326. Left renal vein 378. Axillary lymph node 327. Testicular/ovarian artery 379. Superficial inguinal lymph node 328. Left testicular/ovarian vein 380. Subinguinal lymph node 329. Right testicular/ovarian vein 381. Spleen 330. Right common iliac artery 382. Thoracic duct 331. Right external iliac artery 383. Lymph node in mammary gland 332. Right femoral artery 411. Lymphoid tissue of pharyngeal tonsil 333. Lateral circumflex femoral artery 412. Lymphoid tissue of palatine tonsil 334. Medial circumflex femoral artery 335. Deep femoral artery 336. Femoral vein 337. External iliac vein 338. Internal iliac artery 339. Superior gluteal artery 340. Inferior gluteal artery 341. Internal pudendal artery 342. Uterine artery 343. Umbilical artery TORSO MODEL #2 MASTER KEY D. Nervous System 600. Dura mater 636. Thalamus 601. Frontal lobe 636a. Hypothalamus 602. Parietal lobe 637. Intermediate mass 603. Temporal lobe 638. Posterior commissure 604. Occiptal lobe 639-640. Corpora quadrigemina 605. Cerebellum 641. Anterior medullary velum 606. Medulla oblongata 642. Posterior medullary velum 607. Olive 643. Arbor vitae of cerebellum 608. Pons 644. Olfactory bulb & nerve 609. Cerebral peduncles 645. Optic nerve 610. Mammillary body 646. Oculomotor nerve 611. Optic chiasma 647. Trochlear nerve 612. Lateral ventricle 648. Trigeminal nerve 613. Corpus callosum 649. Abducens nerve 614. Third ventricle 650. Facial nerve 615. Cerebral aqueduct 651. Vestibulocochlear nerve 616. Fourth ventricle 652. Glossopharyngeal nerve 617. Central canal 653. Vagus nerve 618. Superior frontal gyrus 654. Accessory nerve 619. Inferior frontal gyrus 655. Hypoglossal nerve 620. Superior temporal gyrus 656. Cervical nerve 621. Lateral sulcus 657. Semilunar ganglion 622. Precentral gyrus 658. Ophthalmic nerve 623. Postcentral gyrus 659. Lacrimal nerve 624. Central sulcus 660. Maxillary nerve 625. Genu of the corpus callosum 661. Mandibular nerve 626. Body of the corpus callosum 662. Spinal ganglion, dorsal root 627. Splenium 663. Dorsal ramus of 2nd cervical nerve 628. Pineal body 664. Superior cervical ganglion 629. Fornix 665. Gray ramus communicans 630. Caudate nucleus 666. Auditory nerve 631. Corona radiata 667. Cochlea and semicircular canals 632. Insula 668. Eyeball and lacrimal gland 633. Gray matter 669. Left vagus nerve 634. White matter 670. Cardiac plexus 635. Anterior commissure 671. Recurrent laryngeal nerve TORSO MODEL #2 MASTER KEY 672. Esophageal plexus F. Respiratory System 673. Thoracic sympathetic chain 400. Naris 674. Sympathetic ganglion 401. Floor of nasal cavity 675. Ramus communicans 402. Roof of nasal cavity 676. Intercostal nerve 403. Olfactory epithelium 677. Ilioinguinal nerve 404. Superior nasal concha 678. Lateral femoral cutaneous nerve 405. Middle nasal concha 679. Genitofemoral nerve 406. Middle nasal meatus 680. Lumboinguinal nerve 407. Inferior nasal concha 681. External spermatic nerve 408. Opening of nasolacrimal duct 682. Presacral plexus 409. Inferior nasal meatus 683. Sacral plexus 410. Pharyngeal opening of auditory tube 684. Anterior ramus of first sacral nerve 411. Pharyngeal tonsil 685. Femoral nerve 412. Palatine tonsil 686. Spinal ganglion 413. Posterior wall of pharynx 687. Spinal nerve 414. Epiglottis
Recommended publications
  • Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat
    IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 10, Issue 1 Ver. I (January. 2017), PP 46-53 www.iosrjournals.org Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat Reda Mohamed1, 2*, ZeinAdam2 and Mohamed Gad2 1Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, Trinidad and Tobago. 2Anatomy and Embryology Department, Faculty of Veterinary Medicine, Beni Suef University Egypt. Abstract: The main purpose of this study was to convey a more precise explanation of the arterial supply of the intestinal tract of the goat. Fifteen adult healthy goats were used. Immediately after slaughtering of the goat, the thoracic part of the aorta (just prior to its passage through the hiatus aorticus of the diaphragm) was injected with gum milk latex (colored red) with carmine. The results showed that the duodenum was supplied by the cranial pancreaticoduodenal and caudal duodenal arteries. The jejunum was supplied by the jejunal arteries. The ileum was supplied by the ileal; mesenteric ileal and antimesenteric ileal arteries. The cecum was supplied by the cecal artery. The ascending colon was supplied by the colic branches and right colic arteries. The transverse colon was supplied by the middle colic artery. The descending colon was supplied by the middle and left colic arteries. The sigmoid colon was supplied by the sigmoid arteries. The rectum was supplied by the cranial; middle and caudal rectal arteries. Keywords: Anatomy,Arteries, Goat, Intestine I. Introduction Goats characterized by their high fertility rate and are of great economic value; being a cheap meat, milk and some industrial substances.
    [Show full text]
  • Venous and Lymphatic Vessels. ANATOM.UA PART 1
    Lection: Venous and lymphatic vessels. ANATOM.UA PART 1 https://fipat.library.dal.ca/ta2/ Ch. 1 Anatomia generalis PART 2 – SYSTEMATA MUSCULOSKELETALIA Ch. 2 Ossa Ch. 3 Juncturae Ch. 4 Musculi PART 3 – SYSTEMATA VISCERALIA Ch. 5 Systema digestorium Ch. 6 Systema respiratorium Ch. 7 Cavitas thoracis Ch. 8 Systema urinarium Ch. 9 Systemata genitalia Ch. 10 Cavitas abdominopelvica PART 4 – SYSTEMATA INTEGRANTIA I Ch. 11 Glandulae endocrinae Ch. 12 Systema cardiovasculare Ch. 13 Organa lymphoidea PART 5 – SYSTEMATA INTEGRANTIA II Ch. 14 Systema nervosum Ch. 15 Organa sensuum Ch. 16 Integumentum commune ANATOM.UA ANATOM.UA Cardiovascular system (systema cardiovasculare) consists of the heart and the tubes, that are used for transporting the liquid with special functions – the blood or lymph, that are necessary for supplying the cells with nutritional substances and the oxygen. ANATOM.UA 5 Veins Veins are blood vessels that bring blood back to theheart. All veins carry deoxygenatedblood with the exception of thepulmonary veins and umbilical veins There are two types of veins: Superficial veins: close to the surface of thebody NO corresponding arteries Deep veins: found deeper in the body With corresponding arteries Veins of the systemiccirculation: Superior and inferior vena cava with their tributaries Veins of the portal circulation: Portal vein ANATOM.UA Superior Vena Cava Formed by the union of the right and left Brachiocephalic veins. Brachiocephalic veins are formed by the union of internal jugular and subclavianveins. Drains venous blood from: Head &neck Thoracic wall Upper limbs It Passes downward and enter the rightatrium. Receives azygos vein on the posterior aspect just before it enters theheart.
    [Show full text]
  • Studies of Human Physique and Sexual Attractiveness: Sexual Preferences of Men and Women in China
    AMERICAN JOURNAL OF HUMAN BIOLOGY 19:88–95 (2007) Original Research Article Studies of Human Physique and Sexual Attractiveness: Sexual Preferences of Men and Women in China 1 2 3 1 BARNABY J. DIXSON, ALAN F. DIXSON, * BAOGUO LI, AND M.J. ANDERSON 1Department of Conservation and Research for Endangered Species, Zoological Society of San Diego, San Diego, California 2School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 3College of Life Sciences, and Key Laboratory Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China ABSTRACT Men and women at Northwest University (n ¼ 631), Xi’an, China, were asked to rate the attractiveness of male or female figures manipulated to vary somatotype, waist-to- hip ratio (WHR), secondary sexual traits, and other features. In study 1, women rated the aver- age masculine somatotype as most attractive, followed by the mesomorphic (muscular), ecto- morphic (slim), and endomorphic (heavily built) somatotypes, in descending order of preference. In study 2, the amount and distribution of masculine trunk (chest and abdominal) hair were altered progressively in a series of front-posed figures. Women rated figures with no or little trunk hair as most attractive. Study 3 assessed the attractiveness of front-posed male figures which varied only in length of their nonerect penis. Numerical ratings for this trait were low, but moderate lengthening of the penis (22% or 33% above average) resulted in a significant increase in scores for attractiveness. In study 4, Chinese men rated the attractiveness of back- posed female images varying in waist-to-hip ratio (WHR from 0.5–1.0).
    [Show full text]
  • Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers
    ORIGINAL ARTICLE Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers Imelda A. Luna Department of Anatomy, College of Medicine, University of the Philippines Manila ABSTRACT Objectives. This is a descriptive study to determine the origin of abnormal obturator arteries, the drainage of abnormal obturator veins, and if any anastomoses exist between these abnormal vessels in Filipino cadavers. Methods. A total of 54 cadaver halves, 50 dissected by UP medical students and 4 by UP Dentistry students were included in this survey. Results. Results showed the abnormal obturator arteries arising from the inferior epigastric arteries in 7 halves (12.96%) and the abnormal communicating veins draining into the inferior epigastric or external iliac veins in 16 (29.62%). There were also arterial anastomoses in 5 (9.25%) with the inferior epigastric artery, and venous anastomoses in 16 (29.62%) with the inferior epigastric or external iliac veins. Bilateral abnormalities were noted in a total 6 cadavers, 3 with both arterial and venous, and the remaining 3 with only venous anastomoses. Conclusion. It is important to be aware of the presence of these abnormalities that if found during surgery, must first be ligated to avoid intraoperative bleeding complications. Key Words: obturator vessels, abnormal, corona mortis INtroDUCTION The main artery to the pelvic region is the internal iliac artery (IIA) with two exceptions: the ovarian/testicular artery arises directly from the aorta and the superior rectal artery from the inferior mesenteric artery (IMA). The internal iliac or hypogastric artery is one of the most variable arterial systems of the human body, its parietal branches, particularly the obturator artery (OBA) accounts for most of its variability.
    [Show full text]
  • Chapter 14. Anthropometry and Biomechanics
    Table of contents 14 Anthropometry and biomechanics........................................................................................ 14-1 14.1 General application of anthropometric and biomechanic data .....................................14-2 14.1.1 User population......................................................................................................14-2 14.1.2 Using design limits ................................................................................................14-4 14.1.3 Avoiding pitfalls in applying anthropometric data ................................................14-6 14.1.4 Solving a complex sequence of design problems ..................................................14-7 14.1.5 Use of distribution and correlation data...............................................................14-11 14.2 Anthropometric variability factors..............................................................................14-13 14.3 Anthropometric and biomechanics data......................................................................14-13 14.3.1 Data usage............................................................................................................14-13 14.3.2 Static body characteristics....................................................................................14-14 14.3.3 Dynamic (mobile) body characteristics ...............................................................14-28 14.3.3.1 Range of whole body motion........................................................................14-28
    [Show full text]
  • PERIPHERAL VASCULATURE Average Vessel Diameter
    PERIPHERAL VASCULATURE Average Vessel Diameter A Trio of Technologies. Peripheral Embolization Solutions A Single Solution. Fathom™ Steerable Guidewires Total Hypotube Tip Proximal/ UPN Length (cm) Length (cm) Length (cm) Distal O.D. Hepatic, Gastro-Intestinal and Splenic Vasculature 24 8-10 mm Common Iliac Artery 39 2-4 mm Internal Pudendal Artery M00150 900 0 140 10 10 cm .016 in 25 6-8 mm External Iliac Artery 40 2-4 mm Middle Rectal M00150 901 0 140 20 20 cm .016 in 26 4-6 mm Internal Iliac Artery 41 2-4 mm Obturator Artery M00150 910 0 180 10 10 cm .016 in 27 5-8 mm Renal Vein 42 2-4 mm Inferior Vesical Artery 28 43 M00150 911 0 180 20 20 cm .016 in 15-25 mm Vena Cava 2-4 mm Superficial Epigastric Artery 29 44 M00150 811 0 200 10 10 cm pre-shaped .014 in 6-8 mm Superior Mesenteric Artery 5-8 mm Femoral Artery 30 3-5 mm Inferior Mesenteric Artery 45 2-4 mm External Pudendal Artery M00150 810 0 200 10 10 cm .014 in 31 1-3 mm Intestinal Arteries M00150 814 0 300 10 10 cm .014 in 32 Male 2-4 mm Superior Rectal Artery A M00150 815 0 300 10 10 cm .014 in 33 1-3 mm Testicular Arteries 1-3 mm Middle Sacral Artery B 1-3 mm Testicular Veins 34 2-4 mm Inferior Epigastric Artery Direxion™ Torqueable Microcatheters 35 2-4 mm Iliolumbar Artery Female 36 2-4 mm Lateral Sacral Artery C 1-3 mm Ovarian Arteries Usable 37 D UPN Tip Shape RO Markers 3-5 mm Superior Gluteal Artery 1-3 mm Ovarian Veins Length (cm) 38 2-4 mm Inferior Gluteal Artery E 2-4 mm Uterine Artery M001195200 105 Straight 1 M001195210 130 Straight 1 M001195220 155 Straight 1 Pelvic
    [Show full text]
  • MR Imaging of Vaginal Morphology, Paravaginal Attachments and Ligaments
    MR imaging of vaginal morph:ingynious 05/06/15 10:09 Pagina 53 Original article MR imaging of vaginal morphology, paravaginal attachments and ligaments. Normal features VITTORIO PILONI Iniziativa Medica, Diagnostic Imaging Centre, Monselice (Padova), Italy Abstract: Aim: To define the MR appearance of the intact vaginal and paravaginal anatomy. Method: the pelvic MR examinations achieved with external coil of 25 nulliparous women (group A), mean age 31.3 range 28-35 years without pelvic floor dysfunctions, were compared with those of 8 women who had cesarean delivery (group B), mean age 34.1 range 31-40 years, for evidence of (a) vaginal morphology, length and axis inclination; (b) perineal body’s position with respect to the hymen plane; and (c) visibility of paravaginal attachments and lig- aments. Results: in both groups, axial MR images showed that the upper vagina had an horizontal, linear shape in over 91%; the middle vagi- na an H-shape or W-shape in 74% and 26%, respectively; and the lower vagina a U-shape in 82% of cases. Vaginal length, axis inclination and distance of perineal body to the hymen were not significantly different between the two groups (mean ± SD 77.3 ± 3.2 mm vs 74.3 ± 5.2 mm; 70.1 ± 4.8 degrees vs 74.04 ± 1.6 degrees; and +3.2 ± 2.4 mm vs + 2.4 ± 1.8 mm, in group A and B, respectively, P > 0.05). Overall, the lower third vaginal morphology was the less easily identifiable structure (visibility score, 2); the uterosacral ligaments and the parau- rethral ligaments were the most frequently depicted attachments (visibility score, 3 and 4, respectively); the distance of the perineal body to the hymen was the most consistent reference landmark (mean +3 mm, range -2 to + 5 mm, visibility score 4).
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies
    ORIGINAL ARTICLE Variant Adrenal Venous Anatomy in 546 Laparoscopic Adrenalectomies Anouk Scholten, MD; Robin M. Cisco, MD; Menno R. Vriens, MD, PhD; Wen T. Shen, MD; Quan-Yang Duh, MD Importance: Knowing the types and frequency of ad- Results: Variant venous anatomy was encountered in renal vein variants would help surgeons identify and con- 70 of 546 adrenalectomies (13%). Variants included no trol the adrenal vein during laparoscopic adrenalec- main adrenal vein identifiable (n=18), 1 main adrenal tomy. vein with additional small veins (n=11), 2 adrenal veins (n=20), more than 2 adrenal veins (n=14), and vari- Objectives: To establish the surgical anatomy of the main ants of the adrenal vein drainage to the inferior vena cava vein and its variants for laparoscopic adrenalectomy and and hepatic vein or of the inferior phrenic vein (n=7). to analyze the relationship between variant adrenal ve- Variants occurred more often on the right side than on nous anatomy and tumor size, pathologic diagnosis, and the left side (42 of 250 glands [17%] vs 28 of 296 glands operative outcomes. [9%], respectively; P=.02). Patients with variant anatomy compared with those with normal anatomy had larger Design, Setting, and Patients: In a retrospective re- tumors (mean, 5.1 vs 3.3 cm, respectively; PϽ.001), more view of patients at a tertiary referral hospital, 506 patients pheochromocytomas (24 of 70 [35%] vs 100 of 476 [21%], underwent 546 consecutive laparoscopic adrenalecto- respectively; P=.02), and more estimated blood loss mies between April 22, 1993, and October 21, 2011. Pa- (mean, 134 vs 67 mL, respectively; P=.01).
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Aberrant Inferior Suprarenal Vessels Crossing Posterior Pararenal Space: a Case Report
    Maryna Kornieieva et al., IJCR, 2019 4:86 Case Report IJCR (2019) 4:86 International Journal of Case Reports (ISSN:2572-8776) Aberrant inferior suprarenal vessels crossing posterior pararenal space: a case report Maryna Kornieieva, Andrew Vierra, Abdul Razzaq American University of Caribbean School of Medicine, Lowlands, Sint Maarten ABSTRACT During routine educational dissection of a cadaver (63-year-old, *Correspondence to Author: male, USA), an atypical course of the left inferior suprarenal ves- Maryna Kornieieva sels via the posterior pararenal space was discovered. American University of Caribbean Detailed analysis of the abdominal vascular pattern showed that School of Medicine, Lowlands, Sint the atypical inferior suprarenal artery represented a terminal Maarten branch of the left inferior phrenic artery. The last one branched off from the very beginning of the left renal artery, ascended between the fibers of the left crus of the diaphragm, then ran How to cite this article: laterally giving off muscular branches and, finally, descended Maryna Kornieieva, Andrew Vierra, along the costal part of the diaphragm to the left posterior para- Abdul Razzaq. Aberrant inferior renal space. The terminal branch of the inferior phrenic artery suprarenal vessels crossing poste- pierced the retrorenal fascia and entered the perirenal space rior pararenal space: a case report. as an atypical left inferior suprarenal artery. It ran upward and International Journal of Case Re- medially crossing the anterior surface of the kidney to reach and ports, 2019 4:86 supply the lower pole of the left suprarenal gland. The left inferior phrenic vein accompanied the artery taking a similar course. It received numerous tributaries passing via the posterior parare- nal space, drained the inferior suprarenal vein, and opened into the left renal vein.
    [Show full text]
  • Nervous and Vascular System
    NO. A100 KEY CHART FOR MODEL NERVOUS AND VASCULAR SYSTEM 神経系・循環系・門脈系 模型 MADE IN JAPAN KEY CHART FOR MODEL NO. A100 NERVOUS AND VASCULAR SYSTEM 神経系・循環系・門脈系模型 White labels BRAIN ENCEPHALON 脳 A.Frontal lobe of cerebrum A. Lobus frontalis A. 前頭葉 1. Marginal gyrus 1. Gyrus frontalis superior 1. 上前頭回 2. Middle frontal gyrus 2. Gyrus frontalis medius 2. 中前頭回 3. Inferior frontal gyrus 3. Gyrus frontalis inferior 3. 下前頭回 4. Precentral gyru 4. Gyrus precentralis 4. 中心前回 B. Parietal lobe of cerebrum B. Lobus parietalis B. 全頂葉 5. Postcentral gyrus 5. Gyrus postcentralis 5. 中心後回 6. Superior parietal lobule 6. Lobulus parietalis superior 6. 上頭頂小葉 7. Inferior parietal lobule 7. Lobulus parietalis inferior 7. 下頭頂小葉 C.Occipital lobe of cerebrum C. Lobus occipitalis C. 後頭葉 D. Temporal lobe D. Lobus temporalis D. 側頭葉 8. Superior temporal gyrus 8. Gyrus temporalis superior 8. 上側頭回 9. Middle temporal gyrus 9. Gyrus temporalis medius 9. 中側頭回 10. Inferior temporal gyrus 10. Gyrus temporalis inferior 10. 下側頭回 11. Lateral sulcus 11. Sulcus lateralis 11. 外側溝(外側大脳裂) E. Cerebellum E. Cerebellum E. 小脳 12. Biventer lobule 12. Lobulus biventer 12. 二腹小葉 13. Superior semilunar lobule 13. Lobulus semilunaris superior 13. 上半月小葉 14. Inferior lobulus semilunaris 14. Lobulus semilunaris inferior 14. 下半月小葉 15. Tonsil of cerebellum 15. Tonsilla cerebelli 15. 小脳扁桃 16. Floccule 16. Flocculus 16. 片葉 F.Pons F. Pons F. 橋 G.Medullary G. Medulla oblongata G. 延髄 SPINAL CORD MEDULLA SPINALIS 脊髄 H. Cervical enlargement H.Intumescentia cervicalis H. 頸膨大 I.Lumbosacral enlargement I. Intumescentia lumbalis I. 腰膨大 J.Cauda equina J.
    [Show full text]