The Significance of Holographic Data Storage in Cost Effective and Faster Data Transfer Rates

Total Page:16

File Type:pdf, Size:1020Kb

The Significance of Holographic Data Storage in Cost Effective and Faster Data Transfer Rates International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 7, July 2018, pp. 1956–1961, Article ID: IJCIET_09_07_208 Available online at http://iaeme.com/Home/issue/IJCIET?Volume=9&Issue=7 ISSN Print: 0976-6308 and ISSN Online: 0976-6316 © IAEME Publication Scopus Indexed THE SIGNIFICANCE OF HOLOGRAPHIC DATA STORAGE IN COST EFFECTIVE AND FASTER DATA TRANSFER RATES S. Bhavani and Saloni Chhabra School of Information Technology and Engineering, VIT, Vellore, Tamil Nadu, India ABSTRACT Since the recent decades, optical information has been the most essential methods for computerized distribution. There has been a capacity limit of such gadgets. In any case, constraints in the optics have obstructed the development of these gadgets. Now- a-days there is more interest for greater and quicker advances-hard circle drives and optical plates. There has been use of pendrives, CD’s and DVD’s and hard disk etc now a days which holds large amount of data. This paper basically focuses on how 3- D optical storage works and which different methods have been used for the retrieval of data and how long does it takes to retrieve the large amount of data and how the data has been stored. 3-D optical data storage is the method that allows more than 100 layers as compared to other optical data storage. It's an approach to give petabyte-level mass stockpiling on DVD-sized discs. Key words: Capacity limit, Optical data storage, Storage of data. Cite this Article: S. Bhavani and Saloni Chhabra, The Significance of Holographic Data Storage in Cost Effective and Faster Data Transfer Rates. International Journal of Civil Engineering and Technology, 9(7), 2018, pp. 1956-1961. http://iaeme.com/Home/issue/IJCIET?Volume=9&Issue=7 1. INTRODUCTION An optical data storage is the storage which is done on an Optically Readable Medium. The role of the optical drive is that it writes the data onto a storage disc. There is a use of laser beam in optical data storage which burns the pit into a special material on the disc. The data stream which is placed in a spiral path, the data starts at the innermost track and also works on the edge of the disc. In the year 2007 it was found out by the scientists that 27% represents the optical storage of the world’s technological capacity to store the information. Optical storage varies from other data storage techniques which make use of other methods such as semiconductors. [8] 3D optical data storage is the method or the term where the data can be recorded or can be perused with three -dimensional determination.3D optical data storage has become the most http://iaeme.com/Home/journal/IJCIET 1956 [email protected] S. Bhavani and Saloni Chhabra significant area of interest as compared to 2D storage devices which has stable data storage and is cheap. Analysts have created working 3D optical information stockpiling gadgets. [9] The current optical data storage stores the data on the internal surface of the disc. The disk can contain two or more than two of these information layers which can help to increase the storage capacity. But the number of disks is limited as the addressing laser interacts with every layer which passes on the way through to and from the addressing layer. This results in noise that is limiting this technology to only 10 layers. [1] In the year 1996 F.H. Mok, G.W. Burr, and D. Psaltis described about System Metric for Holographic Memory Systems, Optics Letters. Later in 1979 K. Blotekjaer gave the limitations on Holographic Storage Capacity of Photochromic and Photorefractive Media which shows what the disadvantages of Holographic Storage Capacity were. Furumiya, M. Hatano, K. Murakami found out about M-pixel single layer electrode CCD with a high-frame- rate skip mode were found in 1922-1928. There were Error Correction for Increasing the Usable Capacity of Photorefractive Memories by M.A. Neifeld and M. McDonald in 1994 [3]. There were Partial Response Precoding for Parallel Readout Optical Memories in the year 1994 by B.H. Olson and S.C. Esener [4]. High-Density Recording in Photopolymer-Based Holographic Three-Dimensional Disks were proposed in the year 1996 by A.Pu and D. Psaltis. The use of Shift Multiplexing with Spherical Reference Waves, Applied Optics in the year 1996 and by G.W. Burr and D. Psaltis, (1998), Holographic Data Storage in the year 1998. Three-Dimensional Optical Data Storage Using Photo chromic Materials came into track proposed by S. Kawata and Y. Kawata. In the year 2003, G.W. Burr, gave the extension of the version in Encyclopedia of Optical Engineering. In the year 2008.There were G.C. Spalding, J. Courtial, and R. Di Leonardo found out about in Structured Beams and Nanoscale Optical Forces, edited by D.L. Andrews, Elsevier Press (2008). There was 400px-3D_optical_storage_cross-section which tells about the information about the optical storage. There was New Medium for Two-Photon Volumetric Data Recording and Playback was been found out. In the year 2008 it was found out that Walker, E; Rentzepis found out about Two Photon Technology: A New Dimension [15]. 2. CONCEPTS HOW DOES IT DIFFER FROM OTHER DATA STORAGE DEVICES? The 3D optical data storage has the ability to provide petabyte-level (1024 TB) mass storage on DVD-sized disks. Current optical data storage media are the CD and DVD. They store data on an internal surface of a disc. In order to increase storage capacity, two or even more of these data layers may be added. But their number is severely limited. The laser interacts with every layer that it passes through on the way to and from the addressed layer. These interactions cause noise that limits the technology to approximately 10 layers. 3D optical data storage method solves this issue by using methods where only the specifically addressed voxel (volumetric pixel) interacts substantially with the addressing light. This requires nonlinear data reading and writing methods, in particular nonlinear optics. Here also the laser light must travel through other data points till it reaches the point where reading or recording is desired. Nonlinearity ensures that these other data points do not interfere with the addressing of the desired point. [9] http://iaeme.com/Home/journal/IJCIET 1957 [email protected] The Significance of Holographic Data Storage in Cost Effective and Faster Data Transfer Rates 3. METHODS IN PRACTICE METHODS BEING USED FOR 3-D DATA STORAGE ARE AS FOLLOW 3.1. Holographic Data Storage A 3D image is a three-dimensional structure that has been framed by the obstruction of light pillars from a laser or other particular light source. Basically, there are two ways into which light from a s existing laser is part. The shaft which spreads along the flag way spreads the data while the reference pillar is intended to be easy to copy. A light shaft that spreads without meeting, a plane wave is utilized as a typical reference pillar. Impedance design between the two shafts is recorded by overlaying the two ways on the holographic medium. A big property of this added is that when lit up by a readout pillar, the flag shaft is recreated. All things are considered since some light is diffracted from the readout shaft, a frail duplicate of the flag bar is recreated. When the hologram is recorded in a thin material, the readout beam can vary from the reference beam used for recording and the scene will still appear. [7] Figure 1 The above diagram shows how the data has been transferred from one form to the other and gets recovered by the help of the method of Holographic data. 4. 3D OPTICAL DATA STORAGE 4.1. Advantages of 3D Optical Data Storage 1. Durable:-Optical media can last for longer period of when handle with proper care. 2. Transportable:-Optical media can be used on other platforms, including the PC. 3. Random Access:-Optical media provide the capability to provide a particular piece of data stored on it, independent of the other data on the volume or in the order where the data has been stored. 4. Faster data transfer:-3D optical data storage have faster data transfer rates as compared to other data storage. 5. Cheap:-They are more cost effective than the other data storage. They are most cost effective that means they have lower cost per byte. [10] http://iaeme.com/Home/journal/IJCIET 1958 [email protected] S. Bhavani and Saloni Chhabra 4.2. Disadvantages of 3D Optical Data Storage The problem that can occur during 3D optical data storage technology is that:- As we know that 3D optical data storage is highly demand in the market but it is also facing certain problems as there it is taking more time to get developed which leads to the technical issues and financial problems in the field. When there is particularly 2-photon ingestion is used, powerful lasers might be required that can be massive, hard to chill off, and posture wellbeing concerns.[2] Destructive reading:- As in 3D optical data storage there is both reading and writing processes are being carried out with the help of laser beams there is a possibility for the reading process to write for a smaller amount. Due to this there is a repetition of the reading of the data which leads to the erase of the material for eg there has been changes made in the DVD’S where there is erasing of the data from some DVD’S.We can’t use the media once again if the data has been read.
Recommended publications
  • Is Storage Hierarchy Dead?
    Is Storage Hierarchy Dead? Co-located Compute-Storage NVRAM-based Architectures for Data-Centric Workloads David Roberts, Jichuan Chang, Parthasarathy Ranganathan, Trevor N. Mudge HP Laboratories HPL-2010-119 Abstract: The increasing gap between the speed of the processor and the time to access the data in the disk has historically been offset with deeper and larger memory hierarchies with multiple levels of SRAM, DRAM, and more recently, Flash layers for caching. However, recent trends that point to a potential slowdown of DRAM growth and the emergence of alternate resistive non-volatile memory technologies and properties of emerging data-centric workloads offer the opportunity to rethink future solutions. Specifically, in this paper, we examine an approach that leverages both the memory-like and disk-like attributes of emerging non-volatile memory technologies. We propose a new architectural building block - called nanostores - that co-locates computation with a single-level data store in a flat hierarchy, and enables large-scale distributed systems for future data-centric workloads. We present a new evaluation methodology to reason about these new architectures, including benchmarks designed to systematically study emerging data-centric workloads. Our evaluation results demonstrate significant potential for performance benefits from our approach (often orders of magnitude) with better energy efficiency. External Posting Date: November 8, 2010 [Fulltext] Approved for External Publication Internal Posting Date: November 8, 2010 [Fulltext] Copyright 2010 Hewlett-Packard Development Company, L.P. Is Storage Hierarchy Dead? Co-located Compute-Storage NVRAM-based Architectures for Data-Centric Workloads The increasing gap between the speed of the processor and the time to access the data in the disk has historically been offset with deeper and larger memory hierarchies with multiple levels of SRAM, DRAM, and more recently, Flash layers for caching.
    [Show full text]
  • 3D Optical Data Storage
    INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689 Issue 171, Volume 71, Number 01, May 2020 3D Optical Data Storage 1 2 3 4 K. Shanthan Reddy , Shanthanu Gopishetty , Mahith Kumar , Dr. Shruti Bhargava Choubey 1, 2Department of Electronics and Communication Engineering, 3,4Associate Professor 1,2,3,4Department of Electronics and Comm. Engineering, Sreenidhi Institute of Science and Technology, 501301, Telangana, India Abstract— Storage and retrieval of long data in a relatively recorded interference pattern and will be collected on a smaller space is a challenging task for communication laser detector array that encompasses the entire surface of engineer. Now a day’s CD’s, DVD’s, pen derives and hard disk the holographic medium. Many holograms can be recorded are usually used for this purpose which are not capable holding in the same space by changing the angle or the wavelength large amount of data and also retrieval of data takes relatively of the incident light. An entire page of data is accessed in last time . This study is a small effort to review the storage of data in 3D optical medium which will hold the large amount of this way. data and will make retrieval easier. II. OVERVIEW Keywords— Optical Storage, optical memory, 3D optics, holographics. I. INTRODUCTION Optical data storage is an alternative to magnetic disk data storage. Currently data access times are extremely slow for magnetic disks when compared to the speed of execution of CPUs so that any improvement in data access speeds will greatly increase the capabilities of computers, especially with large data and multimedia files.
    [Show full text]
  • Print This Article
    International Journal of Research (IJR) e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 4, April 2015 Available at http://internationaljournalofresearch.org Study of 3d Optical Data Storage Shashikala Khandey1; Ankit Naik2& Purushottam Patel3 Student,CSE, Kirodimal Institute of Technology, Raigarh,India1 Lecturer CSE, Kirodimal Institute of Technology, Raigarh,India2 HOD CSE, Kirodimal Institute of Technology, Raigarh,India3 Abstract: High (-1Tb/cm3) capacity 3Doptical data storage systems based on two photon excitation were evaluated. Previously proposed systems were shown to suffer from low I/O bandwidth rates. We propose a new serially addressed system based on hick storage layer optical disc format and acousto-optic addressing that can combine1TB/disc capacity wit100Mb/s1/0 band widths. For replacement of the Fig 2. Detail View of Written Data on Medium bulky Ti: Sapphire laser considered before a compact fiber laser is recommended as light source. Optical A wide range of physical phenomena for data Data Storage refers to store and retrieval of data in reading and recording have been investigated, large optical manner. Large volume of data is stored with numbers of chemical systems for the medium have some pattern and retrieves the same by focusing light been developed and evaluated, and extensive work or laser on the transmitted medium. A twist to this has been carried out in solving the problems concept is “3D Optical Data Storage” associated with the optical systems required for the reading and recording of data 3D optical data storage Keywords: uses technology that allows more than100 layers to be Volume holographic data storage; read-write written on a disc that looks like a traditional DVD.
    [Show full text]
  • Nanoparticle-Based Multi-Dimensional Optical Data Storage
    Nanoparticle-based multi-dimensional optical data storage A thesis submitted for the degree of Doctor of Philosophy by Xiangping Li Centre for Micro-Photonics Faculty of Engineering and Industrial Sciences Swinburne University of Technology Melbourne, Australia For my beloved family. Declaration I, Xiangping Li, declare that this thesis entitled: “Nanoparticle-based multi-dimensional optical data storage" is my own work and has not been submitted previously, in whole or in part, in respect of any other academic award. Xiangping Li Centre for Micro-Photonics Faculty of Engineering and Industrial Sciences Swinburne University of Technology Australia Dated this day, February 27, 2009 Abstract The ever increasing demand for high data storage capacity compels the two-photon (2P) excitation based three-dimensional (3D) bit by bit optical data storage system, where the information is recorded as a localised physical or chemical change inside the volume of recording media. Due to the highly confined property 2P induced optical data storage has higher spatial resolution compared to single-photon induced recording. In addition, less scattering loss allows the information to be recorded deep into the volume of the medium, therefore greatly expanding the storage capacity. In the past decade, the 2P excitation technique has been demonstrated in a variety of materials for the feasibility of high density optical memory. 2P excitation builds up the platform for 3D optical data storage; however, several challenges have limited the development of 2P based optical data storage. First, a high 2P sensitivity and a large 2P absorption cross-section are required to produce a highly efficient recording system.
    [Show full text]
  • Two-Photon 3D Optical Data Storage Via Fluorescence Modulation of Fluorene Dyes by Photochromic Diarylethenes
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2007 Two-photon 3d Optical Data Storage Via Fluorescence Modulation Of Fluorene Dyes By Photochromic Diarylethenes Claudia Corredor University of Central Florida Part of the Chemistry Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Corredor, Claudia, "Two-photon 3d Optical Data Storage Via Fluorescence Modulation Of Fluorene Dyes By Photochromic Diarylethenes" (2007). Electronic Theses and Dissertations, 2004-2019. 3122. https://stars.library.ucf.edu/etd/3122 TWO-PHOTON 3D OPTICAL DATA STORAGE VIA FLUORESCENCE MODULATION OF FLUORENE DYES BY PHOTOCHROMIC DIARYLETHENES by CLAUDIA C. CORREDOR B.S. Universidad Nacional de Colombia, 1994 M. S. University of Central Florida, 2003 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the College of Sciences at the University of Central Florida Orlando, Florida Spring Term 2007 Major Advisor: Kevin D. Belfield © 2007 Claudia C. Corredor ii ABSTRACT Three-dimensional (3D) optical data storage based on two-photon processes provides highly confined excitation in a recording medium and a mechanism for writing and reading data with less cross talk between multiple memory layers, due to the quadratic dependence of two- photon absorption (2PA) on the incident light intensity.
    [Show full text]
  • A Review Paper on 3D Optical Data Storage
    International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 - 5161 ® ©2014 INPRESSCO , All Rights Reserved Available at http://inpressco.com/category/ijcet Review Article A Review Paper on 3D Optical Data Storage Ishan GoradiaȦ*, Jheel DoshiȦ and Khushali DeulkarȦ ȦComputer Department, DJSCOE, Vile Parle (W), Mumbai – 400056, India Accepted 15 August 2014, Available online 25 Aug 2014, Vol.4, No.4 (Aug 2014) Abstract Since the past couple of decades, optical data storage has been the most primary means of digital circulation. To accommodate new demands and applications, there has been an improvement in the storage capacity of such devices. However, limitations in the optics have hindered the growth of these devices. The demand for bigger, faster memories has led to significant improvements in conventional memory technologies—hard disk drives & optical disks. But there is strong proof that these two-dimensional storage technologies are approaching fundamental limits- as the wavelength of light and the thermal stability of stored bits. Such limitations may be difficult to surmount. Storing data in three dimensions is a suitable approach to overcome these limitations and to also increase the storage level by a large amount. Keywords: Optical Storage, Holographic Storage, Hologram, Shift Multiplexing, Angle Multiplexing 1. Introduction commercial disks store information on a thin aluminium film that is housed within a transparent plastic disk. 1 Optical storage is the storage of data on an optically Information is stored on such a device during the readable medium. Data is recorded by making marks in a fabrication process as the aluminium films are stamped pattern that can be read back with the aid of light, usually with a pattern.
    [Show full text]
  • 3-D Optical Storage Technology
    © 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162) 3-D OPTICAL STORAGE TECHNOLOGY 1Muthu Dayalan 1Senior Software Developer & Researcher 1Chennai & TamilNadu Abstract - 3-D optical data storage technology is one of the modern methods of storing large volumes of data. This paper, discusses in details the fundamentals of 3D optical data storage. This includes the features of the 3D optical data storage and the major components that make up the devices. Nonresonant Multiphoton, Sequential multiphoton absorption, microholography and data recording are some of the writing methods used in the 3D optical data storage. The major challenges that are facing these devices as discussed in the paper are; media sensitivity, Thermodynamic stability and destructive reading. Index Terms--: 3-Dimensional, technology, data, storage, media, optical (key words) I. INTRODUCTION The best medium for data storage has been a main concern over the past decades. The main digital circulation has been the optical data storage which has been being improved to accommodate new changes in technology and applications. With time, optical data storage has had various limitations such as space and speed have demanded more improvements leading two-dimensional storage devices. These, however, have their limitations which that have demanded more improvement resulting in the three dimension data storage which overcomes all the other limitations due to speed and accommodation of a large amount of data. Optical data storage involves storage of data in an optically readable medium such as storage discs where a device referred to as optical drive uses laser beams to burn bumps of data in writing data on the optically readable medium [14].
    [Show full text]
  • Referaat E.J. Keulemans IDM 2008-2009
    Optische illusie? Een onderzoek naar voorwaarden voor- en eisen van het bewaarbeleid van optische schijven Erasmus Universiteit, Informatie- en Documentmanagement (IDM) 2008-2009 Referaat, Eric-Jan Keulemans, 4 september 2009. Begeleider ir. A. (Ad) C. van der Kolk, tweede lezer dr. O.(Otto) W. Hoogerhuis. Optische illusie? Samenvatting......................................................................................................3 1 Onderzoeksvraag en onderzoeksmethodieken........................................4 Inleiding ................................................................................................................................. 4 Situatieschets ......................................................................................................................... 4 Onderzoeksvraag ................................................................................................................... 4 Doel van het onderzoek ........................................................................................................ 4 Onderzoeksmethodieken ...................................................................................................... 5 Opbouw ................................................................................................................................. 5 Doelgroep .............................................................................................................................. 5 2 Oorsprong optische schijf.............................................................................6
    [Show full text]
  • Optical 3D-Storage in Sol-Gel Materials with a Reading by Optical Coherence Tomography-Technique
    Revised version of Manuscript Number DA 5839. 1/19 Optical 3D-storage in sol-gel materials with a reading by Optical Coherence Tomography-technique. Jorge-Alejandro Reyes-Esquedaa,1, Laurent Vabreb,2, Romain Lecaqueb, François Ramazb, Benoît C. Forgetb, Arnaud Duboisb, Bernard Briatb, Claude Boccarab, Gisèle Rogera, Michael Canvaa, Yves Lévya, Frédéric Chaputc, Jean-Pierre Boilotc. a Groupe d’Optique Non-linéaire, Laboratoire Charles Fabry de l’Institut d'Optique Théorique et Appliquée, CNRS UMR 8501, Ecole Supérieure d’Optique, Bât 503,Université Paris Sud, 91403, Orsay Cedex, France. b Laboratoire d’Optique Physique, CNRS UPR A0005, UPMC, Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France. c Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, CNRS UMR 7643, Ecole Polytechnique, 91128 Palaiseau Cedex, France. Abstract We report on the recording of 3D optical memories in sol-gel materials by using a non-linear absorption effect. This effect induces a local change of the optical properties of the material which is read and quantified with a high resolution full-field Optical Coherence Tomography setup. It is the first time that this technique is used for this purpose. Data recording was performed by focused picosecond (ps) single- pulse irradiation at 1064 nm with energy densities of 10 and 33 J/cm2 per pulse. PACS: 42.70.M; 42.30.W; 42.70.L; 42.65. Key words: Non-linear Materials; Sol-gel; Optical Coherence Tomography; Optical Data Storage; Non-linear Absorption; Two Photon Absorption. 1 Supported by Conacyt (Mexico) and the Ministère de la Recherche (France).
    [Show full text]
  • Secondary Storage
    Memory More commonly known as RAM, memory is a location where information is stored that is currently being being utilized by the operating system, software program, hardware device, and/or the user. There are two types of memory, volatile memory and non-volatile memory. Volatile memory is memory that loses its contents when the computer or hardware device loses power. Computer RAM is a good example of a volatile memory. Non-volatile memory, sometimes abbreviated as NVRAM, is memory that keeps its contents even if the power is lost. CMOS is a good example of a non-volatile memory. Below is an example picture of computer memory. It is very common for users to confuse what memory is exactly. For example, a computer hard drive is sometimes thought of as memory. A hard drive is a type of storage but not memory. As mentioned above, memory is more commonly known as RAM. CMOS Picture of CMOS lithium battery on motherboardAlso known as a Real Time Clock (RTC), Non-Volatile RAM (NVRAM) or CMOS RAM, CMOS is short for Complementary Metal-Oxide Semiconductor. CMOS is an on-board semiconductor chip powered by a CMOS battery inside computers that stores information such as the system time and system settings for your computer. A CMOS is similar to the Apple Macintosh computer's PRAM. To the right is an image of a CMOS battery on a computers motherboard and the most common CMOS battery you're likely to encounter with your computer. To the right is some examples of other types of batteries that may be used in a computers to power the CMOS memory.
    [Show full text]
  • A Guide to Standard and High-Definition Digital Video Measurements
    Primer A Guide to Standard and High-Definition Digital Video Measurements 3G, Dual Link and ANC Data Information A Guide to Standard and High-Definition Digital Video Measurements Primer Table of Contents In The Beginning . .1 Ancillary data . .55 Traditional television . .1 Video Measurements . .61 The “New” Digital Television . .2 Monitoring and measuring tools . .61 Monitoring digital and analog signal . .62 Numbers describing an analog world . .2 Assessment of video signal degradation . .62 Component digital video . .2 Video amplitude . .62 Moving Forward from Analog to Digital . .3 Signal amplitude . .63 The RGB component signal . .3 Frequency response . .65 Gamma correction . .4 Group delay . .65 Gamma correction is more than correction for Non-linear effects . .66 CRT response . .5 Differential gain . .67 Conversion of R'G'B' into luma and color difference . .5 Differential phase . .67 The Digital Video Interface . .7 Digital System Testing . .67 601 sampling . .9 Stress testing . .67 The parallel digital interface . .11 Cable-length stress testing . .67 The serial digital interface (SDI) . .12 SDI check field . .68 High-definition video builds on standard In-service testing . .68 definition principles . .14 Eye-pattern testing . .70 Jitter testing . .72 Timing and Synchronization . .17 SDI status display . .76 Analog video timing . .17 Cable-length measurements . .76 Horizontal timing . .18 Timing between video sources . .77 Vertical timing . .20 Intrachannel timing of component signals . .78 Analog high-definition component video parameters . .24 Waveform method . .78 Timing using the Tektronix Lightning display . .78 Digital Studio Scanning Formats . .25 Bowtie method . .79 Segmented frame production formats . .25 Operating a Digital Television System . .81 Digital Studio Synchronization and Timing .
    [Show full text]
  • Three Dimensional Optical Data Storage in Polymeric Systems
    THREE DIMENSIONAL OPTICAL DATA STORAGE IN POLYMERIC SYSTEMS By CHRISTOPHER J. RYAN Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Jie Shan Department of Physics CASE WESTERN RESERVE UNIVERSITY May, 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Christopher James Ryan candidate for the Doctorate of Philosophy degree Dr. Jie Shan Dr. Kenneth Singer Dr. Rolfe Petschek Dr. Lei Zhu January 20, 2012 Table Of Contents List of Tables 4 List of Figures 5 Acknowledgements 7 Abstract 8 Chapter 1 Introduction to Optical Data Storage 9 1.1 Motivation 9 1.2 Features of Optical Data Storage 9 1.3 A Brief History of Optical Data Storage 12 1.4 New Techniques for Optical Data Storage 15 1.5 3D Optical Data Storage 19 1.6 Multilayered Films as Storage Media 22 1.7 Coextruded Polymeric Films 23 1.8 Chapter Content 24 Chapter 2 Two‐Photon Induced Aggregate Switching of Excimer‐Forming Dyes 25 2.1 Introduction 25 2.2 Materials 27 2.3 TPA of C‐18 RG Dye 30 2.4 Experiment 31 2.5 Results and Analysis 32 2.6 Chapter Conclusion 34 Chapter 3 High Density Optical Data Storage in Multilayer Polymer Films 36 3.1 Introduction 36 3.2 Sample Fabrication 39 1 3.3 Film Properties 41 3.4 Optical Patterning and Reading 42 3.5 Determination of the Crosstalk 47 3.6 Modeling of the Layer Crosstalk 48 3.7 Comparison to Crosstalk Model 50 3.8 Chapter Conclusion 52 Chapter 4 The effect of Multilayering on the Contrast of 3D Data Storage Media 53
    [Show full text]