Secondary Storage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
<Title of the Industry White Paper>
Capture, Indexing & Auto-Categorization Intelligent methods for the acquisition and retrieval of information stored in digital archives AIIM Industry White Paper on Records, Document and Enterprise Content Management for the Public Sector © AIIM International Europe 2002 © DLM-Forum 2002 © PROJECT CONSULT 2002 All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means – graphic, electronic or mechanical, including photocopying, recording, taping, or information storage and retrieval systems – without the written permission from the publisher. Trademark Acknowledgements All trademarks which are mentioned in this book that are known to be trademarks or service marks may or may not have been appropriately capitalized. The publisher cannot attest to the accuracy of this information. Use of a term of this book should not be regarded as affecting the validity of any trademark or service mark. Warning and disclaimer Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book. First Edition 2002 ISBN 3-936534-00-4 (Industry White Paper Series) ISBN 3-936534-01-2 (Industry White Paper 1) Price (excl. VAT): 10 € Die Deutsche Bibliothek – CIP-Einheitsaufnahme Printed in United Kingdom by Stephens & George Print Group Capture, Indexing & Auto-Categorization Intelligent methods for the acquisition and retrieval of information stored in digital archives AIIM Industry White Paper on Records, Document and Enterprise Content Management for the Public Sector AIIM International Europe Chappell House The Green, Datchet Berkshire SL3 9EH - UK Tel: +44 (0)1753 592 769 Fax: +44 (0)1753 592 770 [email protected] DLM-Forum Electronic Records Scientific Committee Secretariat European Commission SG.B.3 Office JECL 3/36, Rue de la Loi 200, B-1049 Brussels - Belgium Tel. -
DRAM EMAIL GIM Teams!!!/Teaming Issues •Memories in Verilog •Memories on the FPGA
Memories & More •Overview of Memories •External Memories •SRAM (async, sync) •Flash •DRAM EMAIL GIM teams!!!/teaming Issues •Memories in Verilog •Memories on the FPGA 10/18/18 6.111 Fall 2018 1 Memories: a practical primer • The good news: huge selection of technologies • Small & faster vs. large & slower • Every year capacities go up and prices go down • Almost cost competitive with hard disks: high density, fast flash memories • Non-volatile, read/write, no moving parts! (robust, efficient) • The bad news: perennial system bottleneck • Latencies (access time) haven’t kept pace with cycle times • Separate technology from logic, so must communicate between silicon, so physical limitations (# of pins, R’s and C’s and L’s) limit bandwidths • New hopes: capacitive interconnect, 3D IC’s • Likely the limiting factor in cost & performance of many digital systems: designers spend a lot of time figuring out how to keep memories running at peak bandwidth • “It’s the memory - just add more faster memory” 10/18/18 6.111 Fall 2018 2 How do we Electrically Remember Things? • We can convey/transfer information with voltages that change over time • How can we store information in an electrically accessible manner? • Store in either: • Electric Field • Magnetic Field 10/18/18 6.111 Fall 2018 3 Mostly focus on rewritable • Punched Cards have existed as electromechanical program storage since ~1800s • We’re mostly concerned with rewritable storage mechanisms today (cards were true Computer program in punched card format ROMs) https://en.wiKipedia.org/wiKi/Computer_programming_in_the_ -
Nanotechnology ? Nram (Nano Random Access
International Journal Of Engineering Research and Technology (IJERT) IFET-2014 Conference Proceedings INTERFACE ECE T14 INTRACT – INNOVATE - INSPIRE NANOTECHNOLOGY – NRAM (NANO RANDOM ACCESS MEMORY) RANJITHA. T, SANDHYA. R GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE 13. containing elements, nanotubes, are so small, NRAM technology will Abstract— NRAM (Nano Random Access Memory), is one of achieve very high memory densities: at least 10-100 times our current the important applications of nanotechnology. This paper has best. NRAM will operate electromechanically rather than just been prepared to cull out answers for the following crucial electrically, setting it apart from other memory technologies as a questions: nonvolatile form of memory, meaning data will be retained even What is NRAM? when the power is turned off. The creators of the technology claim it What is the need of it? has the advantages of all the best memory technologies with none of How can it be made possible? the disadvantages, setting it up to be the universal medium for What is the principle and technology involved in NRAM? memory in the future. What are the advantages and features of NRAM? The world is longing for all the things it can use within its TECHNOLOGY palm. As a result nanotechnology is taking its head in the world. Nantero's technology is based on a well-known effect in carbon Much of the electronic gadgets are reduced in size and increased nanotubes where crossed nanotubes on a flat surface can either be in efficiency by the nanotechnology. The memory storage devices touching or slightly separated in the vertical direction (normal to the are somewhat large in size due to the materials used for their substrate) due to Van der Waal's interactions. -
Secondary Memory
Secondary Memory This type of memory is also known as external memory or non-volatile. It is slower than main memory. These are used for storing data/Information permanently. CPU directly does not access these memories instead they are accessed via input-output routines. Contents of secondary memories are first transferred to main memory, and then CPU can access it. For example : Hard disk, CD-ROM, DVD etc. Electronic data is a sequence of bits. This data can either reside in : • Primary storage - main memory (RAM), relatively small, fast access, expensive (cost per MB), volatile (go away when power goes off) • Secondary storage - disks, tape, large amounts of data, slower access, cheap (cost per MB), persistent (remain even when power is off) Data storage has expanded from text and numeric files to include digital music files, photographic files, video files, and much more. These new types of files require secondary storage devices with much greater capacity than floppy disks. 1 Primary storage ( or main memory or internal memory) , often referred to simply as memory , is the only directly accessible to the CPU. Primary memory can be divided into volatile and nonvolatile memories. Primary storage (Main Memory ) has three main functions: 1-It stored all or part of the program that being executed. 2-It also holds data that are being used by the program. 3-It also stored the operating system programs that manage the operation of the computer. Limitation of Primary storage 1. Limited capacity- because the cost per bit of storage is high. 2. Volatile – data stored in it is lost when the electric power is turned off Or interrupted. -
Computer Organization and Architecture Designing for Performance Ninth Edition
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America. -
AXP Internal 2-Apr-20 1
2-Apr-20 AXP Internal 1 2-Apr-20 AXP Internal 2 2-Apr-20 AXP Internal 3 2-Apr-20 AXP Internal 4 2-Apr-20 AXP Internal 5 2-Apr-20 AXP Internal 6 Class 6 Subject: Computer Science Title of the Book: IT Planet Petabyte Chapter 2: Computer Memory GENERAL INSTRUCTIONS: • Exercises to be written in the book. • Assignment questions to be done in ruled sheets. • You Tube link is for the explanation of Primary and Secondary Memory. YouTube Link: ➢ https://youtu.be/aOgvgHiazQA INTRODUCTION: ➢ Computer can store a large amount of data safely in their memory for future use. ➢ A computer’s memory is measured either in Bits or Bytes. ➢ The memory of a computer is divided into two categories: Primary Memory, Secondary Memory. ➢ There are two types of Primary Memory: ROM and RAM. ➢ Cache Memory is used to store program and instructions that are frequently used. EXPLANATION: Computer Memory: Memory plays a very important role in a computer. It is the basic unit where data and instructions are stored temporarily. Memory usually consists of one or more chips on the mother board, or you can say it consists of electronic components that store instructions waiting to be executed by the processor, data needed by those instructions, and the results of processing the data. Memory Units: Computer memory is measured in bits and bytes. A bit is the smallest unit of information that a computer can process and store. A group of 4 bits is known as nibble, and a group of 8 bits is called byte. -
Is Storage Hierarchy Dead?
Is Storage Hierarchy Dead? Co-located Compute-Storage NVRAM-based Architectures for Data-Centric Workloads David Roberts, Jichuan Chang, Parthasarathy Ranganathan, Trevor N. Mudge HP Laboratories HPL-2010-119 Abstract: The increasing gap between the speed of the processor and the time to access the data in the disk has historically been offset with deeper and larger memory hierarchies with multiple levels of SRAM, DRAM, and more recently, Flash layers for caching. However, recent trends that point to a potential slowdown of DRAM growth and the emergence of alternate resistive non-volatile memory technologies and properties of emerging data-centric workloads offer the opportunity to rethink future solutions. Specifically, in this paper, we examine an approach that leverages both the memory-like and disk-like attributes of emerging non-volatile memory technologies. We propose a new architectural building block - called nanostores - that co-locates computation with a single-level data store in a flat hierarchy, and enables large-scale distributed systems for future data-centric workloads. We present a new evaluation methodology to reason about these new architectures, including benchmarks designed to systematically study emerging data-centric workloads. Our evaluation results demonstrate significant potential for performance benefits from our approach (often orders of magnitude) with better energy efficiency. External Posting Date: November 8, 2010 [Fulltext] Approved for External Publication Internal Posting Date: November 8, 2010 [Fulltext] Copyright 2010 Hewlett-Packard Development Company, L.P. Is Storage Hierarchy Dead? Co-located Compute-Storage NVRAM-based Architectures for Data-Centric Workloads The increasing gap between the speed of the processor and the time to access the data in the disk has historically been offset with deeper and larger memory hierarchies with multiple levels of SRAM, DRAM, and more recently, Flash layers for caching. -
Metal Ultrasonic Delay Lines
Research Paper 2453 rOOmOI of R~eo"h of The NO tiO ~;;:if ~;=asoni;l~~i~;~~~:: Russell W . Mebs, John H. Darr, and John D. Grimsley A study was made of the applicability of a number of metals and a lloys for therm all y stable ultrasonic delay lin es. A preliminary iavestigation was made of different types of pressure holders and ad hesi ves for use in crystal t ransducer attachments and of the iafluence of specimen length on attenuation for valious m etals and alloy. The effect of cold-work, annealing, and specimen cross section on attenuation was a lso determined for a representati ve isoelastic alloy. Measurements of temperature variation of signal attenuation, distort ion, a nd delay t im e on a number of assembled delay lines indicated t hat an isoelastic a lloy employing over cured epoxy-resin crystal attachments gave best over-all t ransmission characteristics. No correlation was obtainable between strength and SOLl nd-transmission characteristics with varioLls cemented joints. 1. Introduction variations in pulse attenuation and distortion with acceleration or change of temperature. The ultrasonic delay line has come into wide use Only a general survey will be given of the basic in recent years with the development of radar, com theory of ultrasonic transmission as related to delay ~uters , and other electronic devices [1 , 2, 3, 4V It lines of 50 tLsec or less. More comprehensive 's a means for delaying a signal for a predetermined treatments have been given elsewhere [2, 4, and 5]. ~hort period to be accurately reproduced for use at _tn appropriate later instant. -
3D Optical Data Storage
INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR) ISSN: 2349-4689 Issue 171, Volume 71, Number 01, May 2020 3D Optical Data Storage 1 2 3 4 K. Shanthan Reddy , Shanthanu Gopishetty , Mahith Kumar , Dr. Shruti Bhargava Choubey 1, 2Department of Electronics and Communication Engineering, 3,4Associate Professor 1,2,3,4Department of Electronics and Comm. Engineering, Sreenidhi Institute of Science and Technology, 501301, Telangana, India Abstract— Storage and retrieval of long data in a relatively recorded interference pattern and will be collected on a smaller space is a challenging task for communication laser detector array that encompasses the entire surface of engineer. Now a day’s CD’s, DVD’s, pen derives and hard disk the holographic medium. Many holograms can be recorded are usually used for this purpose which are not capable holding in the same space by changing the angle or the wavelength large amount of data and also retrieval of data takes relatively of the incident light. An entire page of data is accessed in last time . This study is a small effort to review the storage of data in 3D optical medium which will hold the large amount of this way. data and will make retrieval easier. II. OVERVIEW Keywords— Optical Storage, optical memory, 3D optics, holographics. I. INTRODUCTION Optical data storage is an alternative to magnetic disk data storage. Currently data access times are extremely slow for magnetic disks when compared to the speed of execution of CPUs so that any improvement in data access speeds will greatly increase the capabilities of computers, especially with large data and multimedia files. -
Apollo Guidance Computer Wikipedia
Apollo Guidance Computer Wikipedia Vertical Zolly cyclostyle trailingly and gummy, she sent her briny encased inadvisably. Deteriorating Henderson sometimes preserves any colloquialist reeks illegally. Kingsley usually faradise sexennially or imputes sheepishly when polytechnic Jeffrey subtitle trustworthily and psychically. Sometimes that the lower slopes of the usa by impact crater and apollo guidance computer to meet it would use this determination is complete cash on a magnetostrictive delay line Sorry, a few numbers, Stands Next To The Code She Wrote By Hand. You are about apollo guidance computer wikipedia page? Note the large boulders in background which are south of Geophone Rock. You mean like one hampshire in apollo guidance computer wikipedia by! Apollo program Wikipedia. Saturn ib is essential to the apollo guidance computer wikipedia page. The countdown became automated at three minutes and twenty seconds before night time. Virtual AGC Assembly-Language Manual Ibiblio. What programming languages were used to go stomp the beef Stack. However, this order he be automatically cancelled. During his EVA Command Module pilot Evans retrieved film cassettes from its Lunar Sounder, NASA hired skilled women although the local textile industry as well as talking the Waltham Watch so, it seems to leave something to do wield a checksum value? Gene has swung to the south for a moment. Apollo guidance computer wikipedia sans institute summit archives news amp. In with storage and her standing wave pattern is apollo guidance computer display one end device. Your Mobile Phone vs Apollo 11's Guidance Computer. The wikipedia by software engineering like this work around it is located at work she seems like if yes, apollo guidance computer wikipedia article? First of lead series often took the north climb the LM. -
Midwinter 2005 ISSN 1534-0937 Walt Crawford
Cites & Insights Crawford at Large Libraries • Policy • Technology • Media Sponsored by YBP Library Services Volume 5, Number 2: Midwinter 2005 ISSN 1534-0937 Walt Crawford $20-$25 of 256MB for $40-$50 may be more Trends & Quick Takes typical. With XP computers typically having front-mounted USB slots, the primary setup The Hazy Crystal Ball requirement is security. It’s that time of year—time for pundits and gurus to ¾ Wireless Access: “Providing wireless access tell us what’s to come and for a few of them to spin frees up your public access computing termi- last year’s projections. nals for those who truly need them, and I was going to include snarky comments (or cred- makes your library the neighborhood ‘hot- its, when applicable) about last year’s forecasts—but I spot’ for information access.” see that last year got so confusing that I never ran a ¾ Thin Clients::: “Thin-client technology en- set of forecasts. Neither did I make one: That should ables you to extend the life of your existing be no surprise. computers, lower costs on expanding the number of patron terminals, and simplify WebJunction’s Emerging technologies maintenance procedures.” for small libraries ¾ Upgrading Your Operating Systems: “Tech- You could think of this as a counterpart to the LITA Soup Stock offers upgrades to Windows XP Top Technology Trends group, but with fewer partici- for $8 (libraries are eligible)…” The text calls pants (eight in the October 4 posting) and a small- Windows 2000 and 95 “antiquated.” library bent. The committee develops a quarterly “list of five technologies they think are worth considering Inside This Issue for your library.” I like the guidelines: “The committee Bibs & Blather.................................................................... -
United States Patent (19) 11 Patent Number: 5,761,485 Munyan (45) Date of Patent: Jun
USOO5761485A United States Patent (19) 11 Patent Number: 5,761,485 Munyan (45) Date of Patent: Jun. 2, 1998 54 PERSONAL ELECTRONIC BOOKSYSTEM Miyazawa et al. ("An Electronic Book: APTBook". Human-Computer Interaction-Interact '90. Proceedings of 76) Inventor: Daniel E. Munyan, 805 Mt. Gretna the IFIPTC 13 Third International Conference, 1 Jan. 1990, Rd., Elizabethtown, Pa. 17022 pp. 513-519). 21 Appl. No.: 565,915 (List continued on next page.) 22 Filed: Dec. 1, 1995 (51) Int. Cl. ............................ G06F 15/02; G06F 17/40: Primary Examiner Emanuel Todd Voeltz G09G 1/02 Assistant Examiner-Phalaka Kik 52 U.S. Cl. .............................. 395/500; 345/901; 326/8: Attorney, Agent, or Firm-Earl F. Clifford; Clifford & 395/187.01; 455/411 Clifford Law Firm 58) Field of Search .................................... 395/2.69, 500, 395/145. 2.82, 186, 187.01, 188.01, 200.09. 57 ABSTRACT 650; 455/89; 379/98. 368, 58: 348/134: The Personal Electronic Book System invention replaces a 382/14, 56; 345/192, 127, 130,901: 434/317: standard handheld book with an electronic equivalent. The 326/8; 364/286.4, 286.5, 949.81 260: 365/185.04; invention is sized and configured to be book size and to open 462/903: 463/29: 902/4 like a book for use. When opened, the user sees two facing page-like touch-sensitive, display screens with black print 56) References Cited on white background. Icons represent the electronically U.S. PATENT DOCUMENTS stored material. "artwork, audio clips, books, E-mail, faxes, 3,718,906 2/1973 Lighter.