Solving for the Analytic Piecewise Extension of Tetration and the Super-Logarithm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Grade 7/8 Math Circles the Scale of Numbers IntroductionFaculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7/8 Math Circles November 21/22/23, 2017 The Scale of Numbers Introduction Last week we quickly took a look at scientific notation, which is one way we can write down really big numbers. We can also use scientific notation to write very small numbers. 1 × 103 = 1; 000 1 × 102 = 100 1 × 101 = 10 1 × 100 = 1 1 × 10−1 = 0:1 1 × 10−2 = 0:01 1 × 10−3 = 0:001 As you can see above, every time the value of the exponent decreases, the number gets smaller by a factor of 10. This pattern continues even into negative exponent values! Another way of picturing negative exponents is as a division by a positive exponent. 1 10−6 = = 0:000001 106 In this lesson we will be looking at some famous, interesting, or important small numbers, and begin slowly working our way up to the biggest numbers ever used in mathematics! Obviously we can come up with any arbitrary number that is either extremely small or extremely large, but the purpose of this lesson is to only look at numbers with some kind of mathematical or scientific significance. 1 Extremely Small Numbers 1. Zero • Zero or `0' is the number that represents nothingness. It is the number with the smallest magnitude. • Zero only began being used as a number around the year 500. Before this, ancient mathematicians struggled with the concept of `nothing' being `something'. 2. Planck's Constant This is the smallest number that we will be looking at today other than zero.
- 
												  Power Towers and the Tetration of NumbersPOWER TOWERS AND THE TETRATION OF NUMBERS Several years ago while constructing our newly found hexagonal integer spiral graph for prime numbers we came across the sequence- i S {i,i i ,i i ,...}, Plotting the points of this converging sequence out to the infinite term produces the interesting three prong spiral converging toward a single point in the complex plane as shown in the following graph- An inspection of the terms indicate that they are generated by the iteration- z[n 1] i z[n] subject to z[0] 0 As n gets very large we have z[]=Z=+i, where =exp(-/2)cos(/2) and =exp(-/2)sin(/2). Solving we find – Z=z[]=0.4382829366 + i 0.3605924718 It is the purpose of the present article to generalize the above result to any complex number z=a+ib by looking at the general iterative form- z[n+1]=(a+ib)z[n] subject to z[0]=1 Here N=a+ib with a and b being real numbers which are not necessarily integers. Such an iteration represents essentially a tetration of the number N. That is, its value up through the nth iteration, produces the power tower- Z Z n Z Z Z with n-1 zs in the exponents Thus- 22 4 2 22 216 65536 Note that the evaluation of the powers is from the top down and so is not equivalent to the bottom up operation 44=256. Also it is clear that the sequence {1 2,2 2,3 2,4 2,...}diverges very rapidly unlike the earlier case {1i,2 i,3i,4i,...} which clearly converges.
- 
												  Attributes of InfinityInternational Journal of Applied Physics and Mathematics Attributes of Infinity Kiamran Radjabli* Utilicast, La Jolla, California, USA. * Corresponding author. Email: [email protected] Manuscript submitted May 15, 2016; accepted October 14, 2016. doi: 10.17706/ijapm.2017.7.1.42-48 Abstract: The concept of infinity is analyzed with an objective to establish different infinity levels. It is proposed to distinguish layers of infinity using the diverging functions and series, which transform finite numbers to infinite domain. Hyper-operations of iterated exponentiation establish major orders of infinity. It is proposed to characterize the infinity by three attributes: order, class, and analytic value. In the first order of infinity, the infinity class is assessed based on the “analytic convergence” of the Riemann zeta function. Arithmetic operations in infinity are introduced and the results of the operations are associated with the infinity attributes. Key words: Infinity, class, order, surreal numbers, divergence, zeta function, hyperpower function, tetration, pentation. 1. Introduction Traditionally, the abstract concept of infinity has been used to generically designate any extremely large result that cannot be measured or determined. However, modern mathematics attempts to introduce new concepts to address the properties of infinite numbers and operations with infinities. The system of hyperreal numbers [1], [2] is one of the approaches to define infinite and infinitesimal quantities. The hyperreals (a.k.a. nonstandard reals) *R, are an extension of the real numbers R that contains numbers greater than anything of the form 1 + 1 + … + 1, which is infinite number, and its reciprocal is infinitesimal. Also, the set theory expands the concept of infinity with introduction of various orders of infinity using ordinal numbers.
- 
												  The Notion Of" Unimaginable Numbers" in Computational Number TheoryBeyond Knuth’s notation for “Unimaginable Numbers” within computational number theory Antonino Leonardis1 - Gianfranco d’Atri2 - Fabio Caldarola3 1 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy e-mail: [email protected] 2 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy 3 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy e-mail: [email protected] Abstract Literature considers under the name unimaginable numbers any positive in- teger going beyond any physical application, with this being more of a vague description of what we are talking about rather than an actual mathemati- cal definition (it is indeed used in many sources without a proper definition). This simply means that research in this topic must always consider shortened representations, usually involving recursion, to even being able to describe such numbers. One of the most known methodologies to conceive such numbers is using hyper-operations, that is a sequence of binary functions defined recursively starting from the usual chain: addition - multiplication - exponentiation. arXiv:1901.05372v2 [cs.LO] 12 Mar 2019 The most important notations to represent such hyper-operations have been considered by Knuth, Goodstein, Ackermann and Conway as described in this work’s introduction. Within this work we will give an axiomatic setup for this topic, and then try to find on one hand other ways to represent unimaginable numbers, as well as on the other hand applications to computer science, where the algorith- mic nature of representations and the increased computation capabilities of 1 computers give the perfect field to develop further the topic, exploring some possibilities to effectively operate with such big numbers.
- 
												  Hyperoperations and Nopt StructuresHyperoperations and Nopt Structures Alister Wilson Abstract (Beta version) The concept of formal power towers by analogy to formal power series is introduced. Bracketing patterns for combining hyperoperations are pictured. Nopt structures are introduced by reference to Nept structures. Briefly speaking, Nept structures are a notation that help picturing the seed(m)-Ackermann number sequence by reference to exponential function and multitudinous nestings thereof. A systematic structure is observed and described. Keywords: Large numbers, formal power towers, Nopt structures. 1 Contents i Acknowledgements 3 ii List of Figures and Tables 3 I Introduction 4 II Philosophical Considerations 5 III Bracketing patterns and hyperoperations 8 3.1 Some Examples 8 3.2 Top-down versus bottom-up 9 3.3 Bracketing patterns and binary operations 10 3.4 Bracketing patterns with exponentiation and tetration 12 3.5 Bracketing and 4 consecutive hyperoperations 15 3.6 A quick look at the start of the Grzegorczyk hierarchy 17 3.7 Reconsidering top-down and bottom-up 18 IV Nopt Structures 20 4.1 Introduction to Nept and Nopt structures 20 4.2 Defining Nopts from Nepts 21 4.3 Seed Values: “n” and “theta ) n” 24 4.4 A method for generating Nopt structures 25 4.5 Magnitude inequalities inside Nopt structures 32 V Applying Nopt Structures 33 5.1 The gi-sequence and g-subscript towers 33 5.2 Nopt structures and Conway chained arrows 35 VI Glossary 39 VII Further Reading and Weblinks 42 2 i Acknowledgements I’d like to express my gratitude to Wikipedia for supplying an enormous range of high quality mathematics articles.
- 
												  An Introduction to Ramsey Theory Fast Functions, Infinity, and MetamathematicsSTUDENT MATHEMATICAL LIBRARY Volume 87 An Introduction to Ramsey Theory Fast Functions, Infinity, and Metamathematics Matthew Katz Jan Reimann Mathematics Advanced Study Semesters 10.1090/stml/087 An Introduction to Ramsey Theory STUDENT MATHEMATICAL LIBRARY Volume 87 An Introduction to Ramsey Theory Fast Functions, Infinity, and Metamathematics Matthew Katz Jan Reimann Mathematics Advanced Study Semesters Editorial Board Satyan L. Devadoss John Stillwell (Chair) Rosa Orellana Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 05D10, 03-01, 03E10, 03B10, 03B25, 03D20, 03H15. Jan Reimann was partially supported by NSF Grant DMS-1201263. For additional information and updates on this book, visit www.ams.org/bookpages/stml-87 Library of Congress Cataloging-in-Publication Data Names: Katz, Matthew, 1986– author. | Reimann, Jan, 1971– author. | Pennsylvania State University. Mathematics Advanced Study Semesters. Title: An introduction to Ramsey theory: Fast functions, infinity, and metamathemat- ics / Matthew Katz, Jan Reimann. Description: Providence, Rhode Island: American Mathematical Society, [2018] | Series: Student mathematical library; 87 | “Mathematics Advanced Study Semesters.” | Includes bibliographical references and index. Identifiers: LCCN 2018024651 | ISBN 9781470442903 (alk. paper) Subjects: LCSH: Ramsey theory. | Combinatorial analysis. | AMS: Combinatorics – Extremal combinatorics – Ramsey theory. msc | Mathematical logic and foundations – Instructional exposition (textbooks, tutorial papers, etc.). msc | Mathematical
- 
												  A Survey of Recursive Analysis and Moore's Notion of Real ComputationA Survey of Recursive Analysis and Moore’s Notion of Real Computation Walid Gomaa INRIA Nancy Grand-Est Research Centre, France, Faculty of Engineering, Alexandria University, Egypt [email protected] Abstract The theory of analog computation aims at modeling computational systems that evolve in a continuous manner. Unlike the situation with the discrete setting there is no unified theory of analog computation. There are several proposed theories, some of them seem quite orthogonal. Some theories can be considered as generalizations of the Turing machine theory and classical recursion theory. Among such are recursive analysis and Moore’s class of recursive real functions. Recursive analysis was introduced by A. Turing [1936], A. Grzegorczyk [1955], and D. Lacombe [1955]. Real computation in this context is viewed as effective (in the sense of Turing machine theory) convergence of sequences of rational numbers. In 1996 Moore introduced a function algebra that captures his notion of real computation; it consists of some basic functions and their closure under composition, integration and zero- finding. Though this class is inherently unphysical, much work have been directed at stratifying, restricting, and comparing it with other theories of real computation such as recursive analysis and the GPAC. In this article we give a detailed exposition of recursive analysis and Moore’s class and the relationships between them. 1 Introduction Analog computation is a computational paradigm that attempts to model systems whose internal states are continuous rather than discrete. Unlike the case of discrete computation, which has enjoyed a kind of uniformity and conceptual universality, there have been several approaches to analog computations some of which are not even comparable.
- 
												  0.1 Axt, Loop Program, and Grzegorczyk Hier- Archies1 0.1 Axt, Loop Program, and Grzegorczyk Hier- archies Computable functions can have some quite complex definitions. For example, a loop programmable function might be given via a loop program that has depth of nesting of the loop-end pair, say, equal to 200. Now this is complex! Or a function might be given via an arbitrarily complex sequence of primitive recursions, with the restriction that the computed function is majorized by some known function, for all values of the input (for the concept of majorization see Subsection on the Ackermann function.). But does such definitional|and therefore, \static"|complexity have any bearing on the computational|dynamic|complexity of the function? We will see that it does, and we will connect definitional and computational complexities quantitatively. Our study will be restricted to the class PR that we will subdivide into an infinite sequence of increasingly more inclusive subclasses, Si. A so-called hierarchy of classes of functions. 0.1.0.1 Definition. A sequence (Si)i≥0 of subsets of PR is a primitive recur- sive hierarchy provided all of the following hold: (1) Si ⊆ Si+1, for all i ≥ 0 S (2) PR = i≥0 Si. The hierarchy is proper or nontrivial iff Si 6= Si+1, for all but finitely many i. If f 2 Si then we say that its level in the hierarchy is ≤ i. If f 2 Si+1 − Si, then its level is equal to i + 1. The first hierarchy that we will define is due to Axt and Heinermann [[5] and [1]].
- 
												  Hierarchies of Recursive FunctionsLeibniz Universitat¨ Hannover Institut f¨urtheoretische Informatik Bachelor Thesis Hierarchies of recursive functions Maurice Chandoo February 21, 2013 Erkl¨arung Hiermit versichere ich, dass ich diese Arbeit selbst¨andigverfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. i Dedicated to my dear grandmother Anna-Maria Kniejska ii Contents 1 Preface 1 2 Class of primitve recursive functions PR 2 2.1 Primitive Recursion class PR ..................2 2.2 Course-of-value Recursion class PRcov .............4 2.3 Nested Recursion class PRnes ..................5 2.4 Recursive Depth . .6 2.5 Recursive Relations . .6 2.6 Equivalence of PR and PRcov .................. 10 2.7 Equivalence of PR and PRnes .................. 12 2.8 Loop programs . 14 2.9 Grzegorczyk Hierarchy . 19 2.10 Recursive depth Hierarchy . 22 2.11 Turing Machine Simulation . 24 3 Multiple and µ-recursion 27 3.1 Multiple Recursion class MR .................. 27 3.2 µ-Recursion class µR ....................... 32 3.3 Synopsis . 34 List of literature 35 iii 1 Preface I would like to give a more or less exhaustive overview on different kinds of recursive functions and hierarchies which characterize these functions by their computational power. For instance, it will become apparent that primitve recursion is more than sufficiently powerful for expressing algorithms for the majority of known decidable ”real world” problems. This comes along with the hunch that it is quite difficult to come up with a suitable problem of which the characteristic function is not primitive recursive therefore being a possible candidate for exploiting the more powerful multiple recursion. At the end the Turing complete µ-recursion is introduced.
- 
												  Mathematical Constants and SequencesMathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) ..
- 
												  Reihenalgebra: What Comes Beyond Exponentiation? MReihenalgebra: What comes beyond exponentiation? M. M¨uller, [email protected] Abstract Addition, multiplication and exponentiation are classical oper- ations, successively defined by iteration. Continuing the iteration process, one gets an infinite hierarchy of higher-order operations, the first one sometimes called tetration a... aa a b = a b terms , ↑ o followed by pentation, hexation, etc. This paper gives a survey on some ideas, definitions and methods that the author has developed as a young pupil for the German Jugend forscht science fair. It is meant to be a collection of ideas, rather than a serious formal paper. In particular, a definition for negative integer exponents b is given for all higher-order operations, and a method is proposed that gives a very natural (but non-trivial) interpolation to real (and even complex) integers b for pentation and hexation and many other operations. It is an open question if this method can also be applied to tetration. 1 Introduction Multiplication of natural numbers is nothing but repeated addition, a + a + a + ... + a = a b . (1) · b terms | {z } Iterating multiplication, one gets another operation, namely exponentiation: b a a a ... a = a =: aˆb . (2) · · · · b terms | {z } Classically, this is it, and one stops here. But what if one continues the iteration process? One could define something like aˆaˆaˆ ... ˆa = a b . ↑ b terms | {z } But, wait a minute, in contrast to eq. (1) and (6), this definition will depend on the way we set brackets, i.e. on the order of exponentiation! Thus, we have to distinguish between the two canonical possibilities aaa..
- 
												  The Strange Properties of the Infinite Power Tower Arxiv:1908.05559V1The strange properties of the infinite power tower An \investigative math" approach for young students Luca Moroni∗ (August 2019) Nevertheless, the fact is that there is nothing as dreamy and poetic, nothing as radical, subversive, and psychedelic, as mathematics. Paul Lockhart { \A Mathematician's Lament" Abstract In this article we investigate some "unexpected" properties of the \Infinite Power Tower 1" function (or \Tetration with infinite height"): . .. xx y = f(x) = xx where the \tower" of exponentiations has an infinite height. Apart from following an initial personal curiosity, the material collected here is also intended as a potential guide for teachers of high-school/undergraduate students interested in planning an activity of \investigative mathematics in the classroom", where the knowledge is gained through the active, creative and cooperative use of diversified mathematical tools (and some ingenuity). The activity should possibly be carried on with a laboratorial style, with no preclusions on the paths chosen and undertaken by the students and with little or no information imparted from the teacher's desk. The teacher should then act just as a guide and a facilitator. The infinite power tower proves to be particularly well suited to this kind of learning activity, as the student will have to face a challenging function defined through a rather uncommon infinite recursive process. They'll then have to find the right strategies to get around the trickiness of this function and achieve some concrete results, without the help of pre-defined procedures. The mathematical requisites to follow this path are: functions, properties of exponentials and logarithms, sequences, limits and derivatives.