Freezing Resistance in High Arctic Plant Species of Svalbard in Mid-Summer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Vegetation and Flora of Auyuittuq National Park Reserve, Baffin Island
THE VEGETATION AND FLORA OF AUYUITTOQ NATIONAL PARK RESERVE, BAFFIN ISLAND ;JAMES E. HINES AND STEVE MOORE DEPARTMENT OF RENEWABLE RESOURCES GOVERNMENT OF THE NORTHWEST TERRITORIES YELLOWKNIFE I NORTHWEST TERRITORIES I XlA 2L9 1988 A project completed under contract to Environment Canada, Canadian Parks Service, Prairie and Northern Region, Winnipeg, Manitoba. 0 ~tona Renewable Resources File Report No. 74 Renewabl• R•sources ~ Government of tha N p .0. Box l 310 Ya\lowknif e, NT XlA 2L9 ii! ABSTRACT The purposes of this investigation were to describe the flora and major types of plant communities present in Auyuittuq National Park Reserve, Baffin Island, and to evaluate factors influencing the distribution of the local vegetation. Six major types of plant communities were recognized based on detailed descriptions of the physical environment, flora, and ground cover of shrubs, herbs, bryophytes, ·and lichens at 100 sites. Three highly interrelated variables (elevation, soil moisture, and texture of surficial deposits) seemed to be important in determining the distribution and abundance of plant communities. Continuous vegetation developed mainly at low elevations on mesic to wet, fine-textured deposits. Wet tundra, characterized by abundant cover of shrubs, grasses, sedges, and forbs, occurred most frequently on wet, fine-textured marine and fluvial sediments. Dwarf shrub-qram.inoid comm.unities were comprised of abundant shrubs, grasses, sedges and forbs and were found most frequently below elevations of 400 m on mesic till or colluvial deposits. Dwarf shrub comm.unities were characterized by abundant dwarf shrub and lichen cover. They developed at similar elevations and on similar types of surficial deposits as dwarf-shrub graminoid communities. -
Northern Hemisphere Biogeography of Cerastium (Caryophyllaceae): Insights from Phylogenetic Analysis of Noncoding Plastid Nucleotide Sequences1
American Journal of Botany 91(6): 943±952. 2004. NORTHERN HEMISPHERE BIOGEOGRAPHY OF CERASTIUM (CARYOPHYLLACEAE): INSIGHTS FROM PHYLOGENETIC ANALYSIS OF NONCODING PLASTID NUCLEOTIDE SEQUENCES1 ANNE-CATHRINE SCHEEN,2,6 CHRISTIAN BROCHMANN,3 ANNE K. BRYSTING,3 REIDAR ELVEN,3 ASHLEY MORRIS,4 DOUGLAS E. SOLTIS,4 PAMELA S. SOLTIS,5 AND VICTOR A. ALBERT2 2Botanical Garden, Natural History Museums and Botanical Garden, University of Oslo, P.O. Box 1172 Blindern, N-0318 Oslo, Norway; 3National Centre for Biosystematics, Natural History Museums and Botanical Garden, University of Oslo, P.O. Box 1172 Blindern, N-0318 Oslo, Norway; 4Department of Botany, University of Florida, P.O. Box 118526, Gainesville, Florida 32611-5826 USA; and 5Florida Museum of Natural History, P.O. Box 117800, University of Florida, Gainesville, Florida 32611-7800 USA Phylogenetic relationships and biogeography of the genus Cerastium were studied using sequences of three noncoding plastid DNA regions (trnL intron, trnL-trnF spacer, and psbA-trnH spacer). A total of 57 Cerastium taxa was analyzed using two species of the putative sister genus Stellaria as outgroups. Maximum parsimony analyses identi®ed four clades that largely corresponded to previously recognized infrageneric groups. The results suggest an Old World origin and at least two migration events into North America from the Old World. The ®rst event possibly took place across the Bering land bridge during the Miocene. Subsequent colonization of South America occurred after the North and South American continents joined during the Pliocene. A more recent migration event into North America probably across the northern Atlantic took place during the Quaternary, resulting in the current circumpolar distribution of the Arctic species. -
The Flora of Jan Mayen
NORSK POLARINSTITUTT SKRIFTER NR. 130 JOHANNES LID THE FLORA OF JAN MAYEN IlJustrated by DAGNY TANDE LID or1(f t ett} NORSK POLARINSTITUTT OSLO 1964 DET KONGELIGE DEPARTEMENT FOR INDUSTRI OG HÅNDVERK NORSK POLARINSTITUTT Observatoriegt. l, Oslo, Norway Short account of the publications of Norsk Polarinstitutt The two series, Norsk Polarinstitutt - SKRIFTER and Norsk Polarinstitutt - MEDDELELSER, were taken over from the institution Norges Svalbard- og Ishavs undersøkelser (NSIU), which was incorporated in Norsk Polarinstitutt when this was founded in 1948. A third series, Norsk Polarinstitutt - ÅRBOK, is published with one volum(� per year. SKRIFTER includes scientific papers, published in English, French or German. MEDDELELSER comprises shortcr papers, often being reprillts from other publi cations. They generally have a more popular form and are mostly published in Norwegian. SKRIFTER has previously been published under various tides: Nos. 1-11. Resultater av De norske statsunderstuttede Spitsbergen-ekspe. ditioner. No 12. Skrifter om Svalbard og Nordishavet. Nos. 13-81. Skrifter om Svalbard og Ishavet. 82-89. Norges Svalbard- og Ishavs-undersøkelser. Skrifter. 90- • Norsk Polarinstitutt Skrifter. In addition a special series is published: NORWEGIAN-BRITISH-SWEDISH ANTARCTIC EXPEDITION, 1949-52. SCIENTIFIC RESULTS. This series will comprise six volumes, four of which are now completed. Hydrographic and topographic surveys make an important part of the work carried out by Norsk Polarinstitutt. A list of the published charts and maps is printed on p. 3 and 4 of this cover. A complete list of publications, charts and maps is obtainable on request. ÅRBØKER Årbok 1960. 1962. Kr.lS.00. Årbok 1961. 1962. Kr. 24.00. -
Mohn (Papaver Somniferum
Mohn (Papaver somniferum L.) Synonyme (Namen dieser Pflanze in allen 76 Sprachen anzeigen) pharmazeutisch Semen Papaveris Albanisch Lulëkuqe Μήκων Altgriechisch Mekon ፓፓ Amharisch Papi , Arabisch , Khashkhash, Abu an-num, Abu al-num, Abu an-noom, Abu al-noom Մեկոն, Մեկոնի Կուտ Armenisch Mekon, Megon; Mekoni Kut, Megoni Good (Samen) Assamesisch Xaş-xaş Azeri Хаш-хаш Baskisch Lobelarr Bengali Градински мак, Опиев мак, Маково семе Bulgarisch Gradinski mak, Opiev mak; Makovo seme (Samen) Burmesisch Chinesisch 櫻粟殼 [yìng suhk hohk] (Kantonesisch) Ying suhk hohk Chinesisch 櫻粟殼 [yīng sù qiào], 罂粟 [yīng sù] (Mandarin) Ying su qiao, Ying su Dänisch Opiumvalmue (Pflanze); Birkes, Valmue-frø (Samen) Deutsch Schlafmohn, Gartenmohn, Ölmohn, Opiummohn, , Dhivehi Afihun, Kaskasaa Englisch Poppy, Opium poppy, Garden poppy Esperanto Papavo, Papavosemo Estnisch Magun, Unimagun, Moon Farsi Khash-khash, Shagheyegh Finnisch Unikko, Oopiumiunikko Französisch Pavot des jardins, Pavot somnifère, Pavot à opium Gälisch Codalion, Paipin Galizisch Mapoula, Sementes de Mapoula, Adormideira, Durmideira ყაყაჩო, ყაყაჩოს თესლი, ხოშხოში Georgisch Khoshkhoshi, Q’aq’acho, Xoshxoshi, Qaqacho; Q’aq’achos tesli, Qaqachos tesli (Samen) Παπαρούνα, Αθιόνι Griechisch Paparouna, Afioni Gujarati Hebräisch Pereg Hindi Irisch Poipín Isländisch Valmúafræ, Birki Italienisch Papavero, Papavero sonnifero 芥子, 罌粟 けし Japanisch ケシ, ポピー Keshi, Papi , Jiddisch Mondl, Mon Kannada Көкнәр Kasachisch Köknär Kashmiri Khash-khash Katalanisch Cascall, Herba dormidora 아편, 포피, 양귀비 Koreanisch Apyeon, Apyon, -
Literaturverzeichnis
Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings. -
TAXON:Cerastium Fontanum SCORE:11.5 RATING
TAXON: Cerastium fontanum SCORE: 11.5 RATING: High Risk Taxon: Cerastium fontanum Family: Caryophyllaceae Common Name(s): common mouse-ear Synonym(s): Cerastium caespitosum Gilib. ex Asch. common mouse-ear chickweed Cerastium fontanum subsp. triviale (Spenn.) Jalas mouse-ear chickweed Cerastium holosteoides Fr. Cerastium triviale Link Cerastium vulgare Hartm. Assessor: Chuck Chimera Status: Assessor Approved End Date: 6 Nov 2015 WRA Score: 11.5 Designation: H(HPWRA) Rating: High Risk Keywords: Herbaceous Weed, Temperate, Widely Naturalized, Mat-Forming, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) Low tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed 304 Environmental weed 305 Congeneric -
The Phylogenetics of Succession Can Guide Restoration: an Example from Abandoned Mine Sites in the Subarctic
Journal of Applied Ecology 2015, 52, 1509–1517 doi: 10.1111/1365-2664.12517 The phylogenetics of succession can guide restoration: an example from abandoned mine sites in the subarctic Stephanie Shooner1,2*, Chelsea Chisholm1,3 and T. Jonathan Davies1,4 1Department of Biology, McGill University, 1205 Docteur Penfield, Montreal, Quebec H3A 1B1, Canada; 2Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, Quebec H4B 1R6, Canada; 3Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen Ø, Denmark; and 4African Centre for DNA Barcoding, University of Johannesburg, APK Campus, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa Summary 1. Phylogenetic tools have increasingly been used in community ecology to describe the evo- lutionary relationships among co-occurring species. In studies of succession, such tools may allow us to identify the evolutionary lineages most suited for particular stages of succession and habitat rehabilitation. However, to date, these two applications have been largely sepa- rate. Here, we suggest that information on phylogenetic community structure might help to inform community restoration strategies following major disturbance. 2. Our study examined phylogenetic patterns of succession based on a chronosequence of three abandoned subarctic mine spoil heaps (waste piles) dating from the early 1970s, mid-1970s and early 1980s. The vegetation at each mine site was compared to the surrounding vegetation, and community structure on mines was explored assuming species pools at nested spatial scales. 3. We found that the adjacent vegetation was more phylogenetically clustered than the vege- tation on the mines, with mines demonstrating weaker phylogenetic community structure. -
Endemik Papaver Pilosum Sibth. & Sm Subsp. Pilosum
ENDEMİK PAPAVER PILOSUM SIBTH. & SM SUBSP. PILOSUM (PAPAVERACEAE) TAKSONUNUN TOHUM ÇİMLENMESİ ÜZERİNDE ARAŞTIRMALAR Figen İŞERİ T.C. BURSA ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDEMİK PAPAVER PILOSUM SIBTH. & SM SUBSP. PILOSUM (PAPAVERACEAE) TAKSONUNUN TOHUM ÇİMLENMESİ ÜZERİNDE ARAŞTIRMALAR Figen İŞERİ 0000-0003-2640-6108 Prof. Dr. Gürcan GÜLERYÜZ (Danışman) YÜKSEK LİSANS TEZİ BİYOLOJİ ANABİLİM DALI BURSA – 2020 Her Hakkı Saklıdır TEZ ONAYI Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında; − tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi, − görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu, − başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu, − atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi, − kullanılan verilerde herhangi bir tahrifat yapmadığımı, − ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı beyan ederim. …/…/……… Figen İŞERİ ÖZET Yüksek Lisans Tezi ENDEMİK PAPAVER PILOSUM SIBTH. & SM SUBSP. PILOSUM (PAPAVERACEAE) TAKSONUNUN TOHUM ÇİMLENMESİ ÜZERİNDE ARAŞTIRMALAR Figen İŞERİ Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Danışman: Prof. Dr. Gürcan GÜLERYÜZ Endemik Papaver pilosum Sibth. & Sm subsp pilosum (Papaveraceae) Uludağ ve Çankırı’da yayılım gösteren Türkiye endemiği bir takson olmasının yanısıra önemli tıbbi ve aromatik madde içeriğine sahiptir. Bu çalışmada, Uludağ’ın alpin kuşağından toplanan Papaver pilosum tohumlarının çimlenmesi üzerinde nemli soğuk uygulama (2 ve 4 ay), kuru depolama (6, 12, 24 ay), hormon uygulaması (150, 250, 500 ppm GA3) ve farklı sıcaklık rejimleri (20/10, 25/10, 20 0C) ve ışık (ışık/ karanlık) koşullarının etkileri incelenmiştir. Çalışmadan elde edilen veriler tohumların dormant olmadığını, türün ideal çimlenme sıcaklığının 20/10 0C olduğunu ve tohumların çimlenmek için ışığa ihtiyaç duymadığını göstermektedir. -
General Ecology and Vascular Plants of the Hazencamp Area* D
GENERAL ECOLOGY AND VASCULAR PLANTS OF THE HAZENCAMP AREA* D. B. 0. Savile General description AZEN CAMP,at 81”49’N., 71”18W., lies on a small sandy point on the H northwest shore of Lake Hazen, in northeast Ellesmere Island. Lake Hazen stands at 158 m. above sea-level, extends 78 km. ENE to WSW, and has a maximum width of 11 km. It lies at the northern edge of a plateau bounded on the south by the Victoria and Albert Mountains and on the north by the United States Range. The Garfield Range, a southern outlier of the United States Range, extends to within 4 km. of Hazen Camp. The high mountain ranges and icefields, with extensive areas over 2000 m., and smaller hills effectively protect the land about Lake Hazen from incursions of unmodified cold air, and induce a summer climate that is very exceptional for this latitude. On the other hand the lake itself is large enough to keep air temperatures adjacent to the shore appreciably below those prevailing a few kilometres away. The geologyof northeasternEllesmere Island has recently been described by Christie (1962). The lowlands at Hazen Camp are underlain by Mesozoic and Permian sediments, mainly sandstone and shale. These sediments outcrop conspicuously on Blister Hill (altitude 400 m.), 1.5 to 2.7 km. west of the camp; andon a seriesof small but steep foothills running southwest to northeast along a fault and passing 2.5 to 3 kn. northwest of the camp. These rocks weather rapidly. Consequently sand and clay in varying proportions are plentiful in the camp area. -
Variability of Polar Scurvygrass Cochlearia Groenlandica Individual Traits Along a Seabird Influenced Gradient Across Spitsbergen Tundra
Polar Biol (2013) 36:1659–1669 DOI 10.1007/s00300-013-1385-6 ORIGINAL PAPER Variability of polar scurvygrass Cochlearia groenlandica individual traits along a seabird influenced gradient across Spitsbergen tundra Katarzyna Zmudczyn´ska-Skarbek • Mateusz Barcikowski • Adrian Zwolicki • Lech Iliszko • Lech Stempniewicz Received: 3 January 2013 / Revised: 2 August 2013 / Accepted: 9 August 2013 / Published online: 29 August 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract In the resource-limited Arctic environment, Introduction vegetation developing near seabird colonies is exception- ally luxuriant. Nevertheless, there are very few detailed Environmental conditions in Arctic terrestrial ecosystems quantitative studies of any specific plant species responses are severe, even during summer, through factors including to ornithogenic manuring. Therefore, we studied variability low nutrient and water availability, short growing season, of polar scurvygrass Cochlearia groenlandica individual unstable weather conditions and permafrost. Vegetation biomass and leaf width along a seabird influenced gradient consists mainly of lichens, mosses and vascular plants of determining environmental conditions for vegetation in low stature and low productivity (Callaghan 2001; Thomas south-west Spitsbergen. We found seabird colony effect et al. 2008). At the same time, the adjacent marine envi- being a paramount factor responsible for augmented ronment is highly productive due to vertical mixing of growth of C. groenlandica. The species predominated close water masses and the high levels of activity of photosyn- to the colony and reached the highest mean values of thetic diatoms (Cocks et al. 1998; Stempniewicz 2005; individual biomass (1.4 g) and leaf width (26.6 mm) 10 m Stempniewicz et al. -
CONSERVATION of ARCTIC FLORA and FAUNA (CAFF) FLORA GROUP Acknowledgements I
CAFF Technical Report No. 15 September 2008 PROCEEDINGS OF THE FOURTH INTERNATIONAL WORKSHOP CONSERVATION OF ARCTIC FLORA AND FAUNA (CAFF) FLORA GROUP Acknowledgements i CAFF Designated Agencies: • Environment Canada, Ottawa, Canada • Finnish Ministry of the Environment, Helsinki, Finland • Ministry of the Environment and Nature, Greenland Homerule, Greenland (Kingdom of Denmark) • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) • Icelandic Institute of Natural History, Reykjavik, Iceland • Directorate for Nature Management, Trondheim, Norway • Russian Federation Ministry of Natural Resources, Moscow, Russia • Swedish Environmental Protection Agency, Stockholm, Sweden • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska This publication should be cited as: Talbot, S.S., ed. (2008): Proceedings of the Fourth International Conservation of Arctic Flora and Fauna (CAFF) Flora Group Workshop, 15-18 May 2007, Tórshavn, Faroe Islands. CAFF Technical Report No. 15. Akureyri, Iceland. Cover photo: View from Villingadalsfjall (elevation 844m) looking south to Malinsfjall (750m) on the island of Vidoy, Faroe Islands. In the Palaeogene the island was geographically close (100-120 km) to East Greenland. Photo by Anna Maria Fosaa. For more information please contact: CAFF International Secretariat Borgir, Nordurslod 600 Akureyri, Iceland Phone: +354 462-3350 Fax: +354 462-3390 Email: [email protected] Internet: http://www.caff.is ___ CAFF Designated Area Editing: Tammy Charron Design & Layout: Tom Barry Proceedings of the Fourth International Conservation of Arctic Flora and Fauna (CAFF) Flora Group Workshop May 15-18, 2007 Tórshavn, Faroe Islands CAFF Technical Report No. 15 September 2008 Table of Contents 1 Preliminaries Welcome—H. Poulsen . .1 Introduction—S. S. -
Association of Ploidy Level, Growth Form and Ecology in the High Arctic Saxifraga Oppositifolia L
RESEARCH/REVIEW ARTICLE Tetraploids do not form cushions: association of ploidy level, growth form and ecology in the High Arctic Saxifraga oppositifolia L. s. lat. (Saxifragaceae) in Svalbard Pernille Bronken Eidesen,1 Eike Mu¨ ller,1 Christian Lettner,2 Inger Greve Alsos,3 Morgan Bender,4 Martin Kristiansen,5 Bart Peeters,6 Froukje Postma7 & Koen Frans Verweij8 1 Arctic Biology Department, University Centre in Svalbard, P.O. Box 156, NO-9171 Longyearbyen, Svalbard, Norway 2 Department of Conservation Biology, Vegetation Ecology and Landscape Ecology, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, AT-1030 Vienna, Austria 3 Department of Natural Sciences, Tromsø University Museum, NO-9037 Tromsø, Norway 4 School of Fisheries and Ocean Sciences, Institute of Arctic Biology, University of Alaska Fairbanks, P.O. Box 757500, AK 99775 Fairbanks, USA 5 Faculty of Biosciences, Fisheries and Economics, University of Tromsø, NO-9001 Tromsø, Norway 6 Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway 7 Department of Plant Ecology and Evolution, Faculty of Biology, Uppsala University, Norbyva¨ gen 18 D, SE-752 36 Uppsala, Sweden 8 Community and Conservation Ecology Group, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands Keywords Abstract Autopolyploidy; flow cytometry; morphotypes; habitat segregation; Saxifraga oppositifolia L. is a common circumpolar plant species that displays purple saxifrage. considerable morphological and genetic variation throughout its range. It is mainly diploid, but tetraploids are reported from several regions. The growth Correspondence form varies from prostate to cushion-shaped, and the plant thrives in wet snow Pernille Bronken Eidesen, Arctic Biology beds as well as on dry ridges.