<<

Summary Experiment

R.-D. Herzberg Ch.E. Düllmann Discovery of a new element is as fascinating to the public as landing on the moon (or Mars)

M. Stoyer

“The question weʼre trying to answer is, ʻDoes the come to an end, and if so, where does it end?ʼ ” Kenton Moody -- LLNL Yu. Oganessian Electronic structure Nuclear theory Atomic Physics of SHE-atoms Search for new shells protons→ Chemical properties of the SHE 120 Chemistry SHE Nuclear structure and decay SHE -7 properties of the SHN 110 Search for SHE

-6 -5 in -4 Astrophysics 100 -5 No -3

-4 -3 -2 U 90 -4 Th -2

Bi Pb -14 neutrons → 80 Oganessian 2012 Yu. 120 130 140 150 160 170 180 190

Yuri Oganessian. “Synthesis of SH-nuclei” FUSHE 2012, May14, 2012, Weilrod, Germany Scienfic Quesons • What is the heaviest element we can make?

• What is the heaviest nucleus we can make and what are the best methods to do so?

• What is the nuclear structure in the heaviest nuclei?

• What are the chemical and atomic properes of the heaviest elements and is chemical periodicity altered as relavisc effects become more important?

• Are there astrophysical scenarios in which SHEs are produced or does fission limit the producon of SHEs? Do the heaviest elements exist in nature?

• (How) Can we produce weighable quanes on earth? What is the heaviest element?

• Where is the ?

• What are the best methods to create them?

• What determines their survival and stability?

• What are their properes? Yu. Oganessian 130 We are here! Need to get here! β-stability 287Fl 277Cn 291Lv

Island of stability of SHE

200 210

Yuri Oganessian. “Synthesis of SH-nuclei” FUSHE 2012, May14, 2012, Weilrod, Germany Modern Periodic Table of Elements

Should we pick up U+U studies again? In a fixed-target or in a collider experiment?

? Z=173

V. Pershina New Elements / Isotopes

Observed are mainly integral quanes:

• The atom itself! • Decay mode • Half-life • Q-value or TKE

A rich and growing body of data! Creaon

• Reacon mechanisms?

• Best target/beam combinaons?

• How reliably is theory predicng cross secons? Superheavies: V. Zagrebaev

1. Theoretical models of formation dynamics Experimental possiblies(the problems to be solved)

• Fusion reactions (new SH elements and isotopes) • Transfer reactions (new neutron-rich SH nuclei) • Neutron capture (SHE in nature)

2. SHE experiments (what could be really done within the next few years)

Valeriy Zagrebaev

Flerov Laboratory of Nuclear Reactions, JINR, Dubna

for “Future of Super Heavy Elements”, May 14, 2012, Weiltal, Germany 10 New element discovery has progressed steadily since the 1700’s M. Stoyer

On average, just under 20 elements have been On average, about 4 discovered every half- elements have been century discovered every decade 100000

CrossCross sectionssections

10000

1000 Yu. Oganessian 2012 Yu.

100 ?SHE

10 48Ca-induced factor ≥ 104 reactions 1

0.1 ) pb Total evaporation residues cross sections ( 0.01 100 105 110 115 120 Yu. Oganessian Atomic number Making new elements

ZBeam Beam Target Asymmetry E*@BBass E120 22 50Ti 249Cf 31.7 23 51V 249Bk 35.9 24 54Cr 248Cm 33.0 25 55Mn 243Am 34.5 26 58Fe 244Pu 33.9 27 59Co 237Np 32.9 28 64Ni 238U 27.3

Similar argumentsStrategic for E119aspect: hint at 50Ti +249BkThe as thecommunity preferred depends reaction on access to transuranium isotopes in mg quantities!

Ch.E. Düllmann – DPG Frühjahrstagung 2012 – Johannes Gutenberg-Universität Mainz – 19.-23. März 2012 Transuranium Nuclide Production Paths Advanced Production Fm254 Fm255 Fm256 Fm257 Methods for Bk-249 and 100 Fm Heavier Isotopes α α SF α, (n,f) Es253 254Es254 Es255

99 Es - C.W. Alexander (ORNL) α αEs, β ,EC β- Cf249 Cf250 251Cf251 Cf252 Cf253 Cf254 98 Cf α, (n,f) α αCf, (n,f) α, SF β-, (n,f) α, SF 249Bk249 Bk250 Bk251 97 Bk Bkβ- β- β- Cm242 Cm243 Cm244 Cm245 Cm246 Cm247 Cm248 Cm249 Cm250 248 96 Cm - α α, (n,f) α α, (n,f) α α, (n,f) Cmα, SF β- α, β ,SF Am241 Am242 Am243 Am244 Am245 Am246 95 Am - α β ,EC,(n,f) α β- β- β- collaboration meeting Pu240 Pu241 Pu242 Pu243 Pu244 Pu245 Pu246 at LaGuardia Marriott 94 Pu α β-, (n,f) α β- α β- β- Jan. 19-20, 2012, New York

Yu. Oganessian Fusion evaporation reactions H. Savajols

48 q High intense stable beams beyond Ca Fusion reactions to Z=120 50 249 295,296 Ti + Cf à 120 + 3,4n 54Cr + 248Cm à 298,299120 + 3,4n 58Fe + 242Pu à 296,297120 + 3,4n Dubna : σ< 0.4pb 64Ni +238U à 298,299120 + 3,4n GSI:σ<0.1 pb 88Sr + 208Pb à 294,295120 + 1,2n V. Zagrebaev et al.

12 Today: I ≈ 5×10 /s è σlimit≈0.1pb 14 Future: I ≈ 10 /s è σlimit≈1 fb Cross sections: current predictions from theory

Fe+Pu Ti+Cf Zagrebaev (Myers/Swiatecki) 4 Cr+Cm Ni+U Siwek-Wilczynksa (Muntian) 10 Adamian (Möller) Adamian (Liran) Liu (Möller) 3 Nasirov (Muntian) 10 Kuzmina (Kuzmina) Wang (Muntian) Exp

102 Best reaction: 50Ti+249Cf σ predicted: ~40 fb – 1 pb 101

100 cross section / fb Asymmetric (More) symmetric

Asymmetry

Ch.E. Düllmann – DPG Frühjahrstagung 2012 – Johannes Gutenberg-Universität Mainz – 19.-23. März 2012 50Ti+249Cf Excitation Function 1000 3n exit channel 4n exit channel

σ(48Ca+249Cf→E118) ~500 fb Liu + Bao ('09) A100 lesson: (Möller 1995; Möller FRDM) Möller It is REALLY necessary to add error bars! In y ANDWang in x!et al. ('11)Liu (Liu 2011; Liu WS3) Swiatecki Zagrebaev etSwiatecki al. ('08) A question: (Myers 1996; Muntian TF) / fb Muntian σ Will10 a dedicated SHE supercomputer help? Siwek-Wilczynska Möller ('10) (Muntian Möller 2003) Nasirov et al. Munitan ('11) Muntian A personal note: (Möller 1995; FRDM) Möller We are speaking about an element only 2 units ofNasirov Z heavier et al. Möller ('11) (Muntian Liran 2003) 1than the heaviest reported one! Given the differences Liran Adamian et al. ('09) among the models, how should we reliably estimate (Möller the 1995; FRDM) number260 of elements270 accessible280 290 in the next300 x years?Adamian et al. ('09) (Liran 2001) E / MeV Lab Ch.E. Düllmann – DPG Frühjahrstagung 2012 – Johannes Gutenberg-Universität Mainz – 19.-23. März 2012 50Ti+249Bk Excitation Function 1000 Agreement 1: 4n is larger than 3n 3n exit channel 4n exit channel Agreement 2:

Position100 (in E) of maximum Liu (Möller) Liu (Möller) Wang (Liu) Wang (Liu) Zagrebaev (Myers) Zagrebaev (Myers) Siwek-Wilczynska (Muntian) / fb Liu + Bao Siwek-Wilczynska (Muntian) σ 10 (Möller 1995; FRDM) Wang et al. (Liu 2011; WS3) Zagrebaev + Greiner (Myers 1996; TF) 1 Siwek-Wilczynska (Muntian 2003)

260 270 280 290 E / MeV Lab Ch.E. Düllmann – DPG Frühjahrstagung 2012 – Johannes Gutenberg-Universität Mainz – 19.-23. März 2012 The TASCA Element 119 Collaboration GSI Darmstadt (D) D. Ackermann, M. Block, F.P. Heßberger, A. Hübner, E. Jäger, B. Kindler, J. Krier, N. Kurz, B. Lommel, J. Runke, March 6: B. Schausten, J. Steiner, A. Yakushev Arrival of 249Bk in EE / Ion source / Accelerator staff Mainz Univ. Mainz (D) Ch.E. Düllmann, K. Eberhardt, S. Klein, J.V. Kratz, C. Mokry, D. Renisch, P. Thörle-Pospiech, N. Trautmann, N. Wiehl MarchHIM 23: Mainz (D) L.-L. Andersson, J. Even, J. Khuyagbaatar, V. Yakusheva ArrivalORNL of Targets / UT Knoxville at (USA) R. Grzywacz, D. Miller, J. Roberto, K. Rykaczewski GSI Vanderbilt U (USA) J.H. Hamilton LBNL / UC Berkeley (USA) N. Esker, J.M. Gates, K.E. Gregorich, H. Nitsche, G.K. Pang LLNL (USA) J.M. Gostic, R.A. Henderson, K.J. Moody, D.A. Shaughnessy April 12: Lund Univ (S) C. Fahlander, U. Forsberg, P. Golubev, D. Rudolph Mounting Targets in Univ. Liverpool (UK) D.M. Cox, R.-D. Herzberg, A. Mistry TASCA SINP Kolkata (IND) S. Lahiri, M. Maiti

JAEA Tokai (J) M. Asai, M. Schädel April 14: Univ. Oslo (N) J.P. Omtvedt, A. Semchenkov Begin Search for U Jyväskylä J. Uusitalo Element 119 PSI / Univ. Berne (CH) A. Türler, P. Steinegger U Bogota L.G. Sarmiento ITE Warsaw (PL) M. Wegrzecki

Ch.E. Düllmann – DPG Frühjahrstagung 2012 – Johannes Gutenberg-Universität Mainz – 19.-23. März 2012 (How) can we produce weighable quanes

•For potenal usefulness: T 1/2 ≥ 100 a

"Short term" soluon 1? 15 •Quanty: > Short(?) term paral µg (10 atoms) soluon: e.g., 251Cf?

Is the most interesng physics on a "strategic" meline done by adding neutrons (not protons)? Narrow pathway to the island of stability just by fusion reactions ! V. Zagrebaev

Signature in FPD: EVR-α... (unobserved ....EC-EC-EC... ) ...SHE exists for 1200 a, but nobody knows!!

Need 1: detecon system for EC 21 Need 2: non-destrucve 1 atom detecon / manipulaon method! 21 (How) can we produce weighable quanes

•For potenal usefulness: T 1/2 ≥ 100 a

•Quanty: > "Short term" soluon?µg (1015 atoms)

Fusion reacons: Next-next(-next...) generaon RIB factories?

To put this into historical perspecve: Is the most interesng Transfer reacons: physics on a "strategic" IRiS? 1950: meline done by adding Nuclear Chemistry Discovery of Cf (Z=98) based on 5'000 neutrons (not protons)? atoms Neutron capture: Next-next(-next...) generaon pulsed reactors? Unl 2012: Search in Nature (Cosmic rays) 8 g (1022 atoms) produced → Factor 1018 W. Loveland Cold fusion

New elements from RIB facilities (LOL) Detecon • Shortest halflives: – Survival through separator? – Disentangling of fast decays?

• Longest halflives: – Detecon by decay chain not opmal

• Idenficaon through: – Chemical ID – Mass measurement – X-ray fingerprinng – cross bombardment – alpha chains

L.-L. Andersson Rates?

• Factories planned: – Dubna – GSI – Others? ECOS report recommended dedicated facilies

What do we use the extra beamdose for? -> Push boundaries -> Precision studies Spherical Shells

• Where is the island of stability? – Where is the shoreline? – Where is the peak?

• Experimental body of data sll very neutron deficient alpha decay

spontaneous fission

120 spherical ▼ ▼ Z=117 ▼

▼ Oganessian 2011 Yu. Z

▼ r ▼ e

b ▼ Z=112 deformed m

u 110 n

n o t o r P Bf (MeV) 1 2 3 4 5 6 7 8 100

160 170 180 190 Yu. Oganessian Neutron number N Yuri Oganessian. “Synthesis of SH-nuclei” FUSHE 2012, May14, 2012, Weilrod, Germany Fission

• Fission barriers are key to the problem.

• Experiment: Half-life and height

• BUT: underlying structure is highly complex! M. Kowal

2 NAX(I) EAX=0.7MeV 1 A NAX(II) ENAN(II)= -0.1MeV AX 0 AX A ENAN(I)= -1.1MeV -1 A

m m m m m -2 E( , ; , a , a , , ) (MeV) β2 γ2 β4 42 44 β6 β8 (MeV) f -3 NAX(II) B 0.40 o 302 -1.5 -4 120 0.50 NAX(I) 0.35 = 60 0 γ 2 -0.50 -5 0 -1.0 o E =-5.8MeV 0.30 -2.5 NAX(I) I -0.50 E = -1.1 = 30 -6 A γ 2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.25 -1.0 -1.0

2 -5.0 PATH LENGTH

γ -3.5 0.20 0 -1.5 -2.0 -2.5 NAX(I) -4.0 -0.50 -3.5 sin 0.15 -1.5 NAX(II) 2 E = -0.1 A β -3.0 -4.0 0.10 -4.5 NAX(II) -5.0 0 0.05 -5.5 0.50 -2.0 -5.0 AX -4.5 E =-5.8 AX E =0.7 -3.0 0.00 I A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 cos β2 γ2 M. Kowal, P. Jachimowicz, and A. Sobiczewski Phys. Rev. C 82, 014303 (2010) What is the nuclear structure in SHE?

• What is the single parcle structure of SHE?

• What are the collecve properes?

• What role do isomeric states play in SHE?

Nuclear Structure

• Provide non-integral data

• Looks at lower mass systems:

”Push the Fermi level towards the major shell gaps” - Rod Clark In-beam spectroscopy

• Rotaonal bands

• Configuraons of excited states

• Potenal to provide the most detailled and complete picture of nuclear structure M. Leino A. Lopez-Martens Issues

- availability of long-lived (trans)acnide targets - maximum allowed acvity at various facilies and other security issues - count rates in the arrays due to the acvity of the target - What stascs is required to perform “meaningful” & unambiguous spectroscopy ? Decay Spectroscopy

• Provides the link between Q-values and masses

• Traces single parcle structure

• Can be used with highest beams and smallest cross secons

• Can be used with other methods (chemical, traps) Physics Motivation for Decay and Nuclear Structure Investigations in the Region of SHE

F.P. Hessberger Why Decay and Nuclear Structure 6 Bf(LQ) → 0 for Z ≈ 106

investigations ? 4 U(B ) δ f 2

B (LQ) f

à Atomic nucleus is quantum mechanical 0 liquid drop ensemble of nucleons (protons, neutrons) + shell effects -2 δU(gs)

-4 liquid drop à Properties determined by ‚fundamental‘ Potential energy / arb. units 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 interactions Deformation / arb. units - nucleon – nucleon interaction - Coulomb interaction à Nuclear stability limited by fission - spin – orbit interaction - Fission barriers in SHE determined - …. by shell structure; Bsf depends on single particle levels à Understanding decay properties and à mass excess (-> determines Q-values nuclear structure – Understanding for α- and β- decay) ‚fundamental‘ interactions à Understanding ‚basic‘ decay properties essential for understanding limits of à Superheavy nuclei (SHE) = stability ensembles of ‚extremely‘ large à Understanding nuclear structure is numbers of protons and neutrons essential for understanding properties and stability of SHE Decay spectroscopy

 α- and α - γ – spectroscopy F.P. Hessberger Q-values, shell crossings; Information on low lying Nilsson levels from energy and HF for α-decay as well as from energy, intensity and multipolarity of γ-rays.  systematic trends in odd mass – even Z nuclei along isotone line  systematic trends in odd mass – odd Z nuclei along the isotope line Comparison with theory

à Spontaneous fission Fission barriers, hindrance factors, TKE

 EC – decay Often population of higher lying levels than by α-decay with notable intensities; similar information, implantation method requires CE – K X-ray – γ- coincidences for identification

 K – Isomers Multi – quasiparticle (2q-proton, 2q-neutron, ....) configurations, typically at E* > 1 MeV; information on lower lying qp-states, Nilsson levels, level ordering, vibrational states and bands built up on them CE – γ coincidences required

What are the chemical and atomic properes of the heaviest element? • With their posion in the Periodic Table being fixed by Z, do the SHE's chemical properes conform to those of the lighter homologs?

• What is the influence of relavisc effects?

• How well are these – and their consequences – understood Superheavy Element Chemistry

1 18 1 2 H 2 13 14 15 16 17 He 3 4 5 6 7 8 9 10 High-stascs experiments Li Be B C N O F Ne 11 12 13 14 15 16 17 18 Novel techniques: Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar nd19 generaon liquid chem. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 2 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Electrochemistry 37 38 39 40 41 42 43 44 45 46 47Chemistry of New Elements 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Agwith a Few Single Atoms Cd In Sn Sb Te I Xe Novel SHE compounds 55 56 57+* 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au(isotopes ok) Hg Tl Pb Bi Po At Rn ...87 88 89+" 104 105 106 107 108 112 Fr Ra Ac Rf 104-108Db Sg Bh Hs 109 110 111 Cn 113 114 115 116 117 118 109-111Mt Ds Rg 112-116------⇒------

* 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Chemistry of New Elements with a " 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Few Single Atoms (no isotopes) For a real understanding of SHE chemistry: relevant theorecal work 104-108 109-111 112-114 115+

T1/2 direct 10 s – 1 min << 1s few s 0.1 s indirect 1 day 1 s up to 30 s 0.2 s

Cross secon 10s nb-pb "small" few pb 1 pb

Interest of SHE chemistry community High Negligible Very high to come Many techniques Anion-exchange behavior of Rf in HF/HNO3

HF ⇄ H+ + F- Y. Nagame - - Rf (on-line) (HF + F ⇄ HF2 ) Zr (off-line) + - HNO3 ⇄ H + NO3 [F-] = 3 x 10-3 M Hf (off-line) 105 104 0.01 M HNO3 Zr, Hf: slope = -2 (AIX) 4 10 2- 0.03 M HNO 3 [MF6] (M=Zr, Hf) (AIX) 103 0.1 M HNO3 -1 -1 103 (AIX)

/mLg 0.1 M HNO

/g mL 3

2 d d 10 (CIX) K K 102 101 Rf: slope = -2 0.01 M HNO3 0.015 M HNO3 2- (AIX) (AIX) [RfF6] 100 101 10-2 10-1 100 10-6 10-5 10-4 10-3 10-2 10-1 - - [F ] / M [NO3 ] / M

- n- 2- Rn-MF4+n + n⋅NO3 ⇄ n⋅R-NO3 + MF4+n Formaon of [MF6] : Zr ≈ Hf > Rf

2- n = -2 ⇒ [MF6]

A. Toyoshima et al., Radiochim. Acta 96, 125 (2008). Chemistry experiment @ high sensitivity

A. Yakushev

269Hs 270Hs 271Hs 9.7 s ~23 s ~4 s

8.95; 9.12 1 pb level 9.23 8.88 9.13; 9.30 265Sg 266Sg 267Sg 7 s 15 s ∼360 ms ∼1.5 m 8.94; 8.84; 8.76 8.69 SF 8.20; SF

261Rf 263Rf 78 s 3 s ∼8 s

8.51 SF 8.28 SF

25 decay chains from 269,270,271Hs were detected within 5 weeks Excitation function was measured @ 5 beam energies

43 FUSHE Workshop 2012, 13 -16.05.2012 , Weilrod GERMANY Chemistry of new Elements (Z=109-111)

This page intenonally le blank PSI-FLNR results Cn+114 (2006-2008) Pb Hg Cn 114 Rn ~1000°C (<<<) ~ 200°C << -25°C < -90°C < -170°C

50 gold 50 (-21°C) ice 40 (-5°C) (-7°C) (-28°C) 0 (-39°C) ΔHads (E114 on Au) = +20 -34 -3 kJ/mol (68%c.i.) 30 (-4°C) (-88°C) -50 (-90°C) 20 (-124°C) -100 ΔHads (Cn on Au) = (-93°C) +4 -52 -3 kJ/mol (68%c.i.) 10 -150

0 -200 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Detector # A. Yakushev R. Eichler Chemistry of new Elements (Z=112+)

Uuo 118-294 T1/2≥0.5 s 0.89 ms α 11.65;

118 (sf≤50%)

The Transactinide Chart of Nuclides for Heino Uus 117-293 117-294 T1/2: 50–500 ms 14 ms 78 ms

117 α 11.03 α 10.81

Uuh 116-290 116-291 116-292 116-293 7.1 ms 18 ms 18 ms 61 ms

116 α 10.84 α 10.74 α 10.66 α 10.54

Uup 115-287 115-288 115-289 115-290 32 ms 87 ms 0.22 s 16 ms

115 α 10.59 α 10.46 α 10.31 α 9.95

Uuq 114-286 114-287 114-288 114-289 Z≥115: Vacuum chemistry? 0.13 s 0.48 s 0.69 s 2.1 s

α 10.19; α α α 114 sf (50%) 10.02 9.94 9.82

Uut 113-282 113-283 113-284 113-285 113-286 73 ms 100 ms 0.48 s 5.5 s 20 s

113 α 10.63 α 10.12 α 10.00 α 9.74; 9.48 α 9.63

Cn Cn 282 Cn 283 Cn 284 Cn 285 0.82 ms 3.8 s 99 ms 29 s

α 9.52; 112 sf sf (~40%) sf α 9.15

Z=112 – Z=114: COMPACT / COLD approach  SHE Chemistry What are the most important experiments possible with present facilies? ( -> depends on your facility...)

Which excing experiments will be enabled with planned accelerator and equipment upgrades? -> experiments with "unknown" elements -> new techniques (el.chem; preseparaon; ...) -> high-stascs exps. beyond Db -> new SHE compound classes -> access to so far inaccessible observables (mass,...) -> chemical separators for nuclear physics

In which direcons should future developments proceed to maximize scienfic opportunies?

Importance of Masses for Z > 100

M. Block

• masses provide absolute nuclear binding energies • masses allow studies of the shell structure evolution • high-precision mass measurements provide anchor points to fix decay chains • benchmark nuclear models Nuclear properties from laser spectroscopy

Hyperfine structure interaction M. Block 1. Magnetic Dipole HFS µ A =I e ⇒ Nuclear magnetic moment µ IJ I 2. Electric Quadrupole HFS

B = ⇒ Spectroscopic quadrupole moment 3. Coupling rrr JF+=II ⇒ Nuclear spin

Isotope shift

A,A’ change of mean square charge radius Challenges (I)

• Create elements beyond E118.

• Fill the gap between the isotopes produced in cold and hot fusion.

• Synthesize more neutron rich isotopes.

• What role can RIBs play?

• Can we shi the reacon paradigm again? Challenges (II)

Structure: • What are the experimental uncertaines? What data can reliably be used by theorists?

• What new experimental data is needed? Is there guidance from theory in that respect?

• Can we use alternave (opcal) methods to extract reliable informaon on structure? M. Leino

P. v. Duppen Challenges (III) • Chemistry – Increase producon rate for long-lived isotopes! – Make new elements!

– New observables? – Direct display of relavisc effects: best done where? – Direct chemical speciaon

– What new experimental data is needed? Is there guidance from theory in that respect?

Training and Educaon

• Remember Walter Loveland's queson:

Where does the next generaon of SHE sciensts come from?