The Making of Moscovium Yuri Oganessian Relates the Story of the Formation and Decay of a Doubly Odd Moscovium Nucleus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spontaneous Fission of U234, Pu236, Cm240, and Cm244
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Spontaneous Fission of U234, Pu236, Cm240, and Cm244 Permalink https://escholarship.org/uc/item/0df1j1qm Authors Ghiorso, A. Higgins, G.H. Larsh, A.E. et al. Publication Date 1952-04-21 eScholarship.org Powered by the California Digital Library University of California TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545 UCRL-1772 Unclassified-Chemistry Distribution UNIVEBSITY OF CALIFCEiNIil Radiation Laboratory Contract No, ti-7405-eng-4.8 24.4 SPONTANEOUS FISSION OF' I'Zu6, ~m~~~~ AND Gm A, Ghiorso, G. H, Higgins, A. E. Larsh, Go To Seaborg, and So G, Thompson April 21, 1752 Berkeley, California A. Ghiorso, G. H. Higgins, A. E. Larsh, G. T. Seaborg, and S. Go Thompson Radiation Laboratory and Department of Chemistry Uni versity of California, Berkeley, Californf a April 21, 1952 In a recent communication commenting on the mechanism of fission we called attention to the simple exponential dependence of spontaneous fission rate on Z~/Aand to the effect of an odd nucleon in slowing the fission process.1 Since it is of interest to test further the simple correlation of the spontaneous fission rate for even-even nuclides wfth z~/A~a further number of such rates have been determined, The spontaneous fission rates were measured by pladng the chemically purified samples on one electrode of a parallel plate ionization chamber, filled with a mixture of argon and carbon dioxide, which was connected with an amplifier f ollawed by a register and a stylus recorder. -
Computing ATOMIC NUCLEI
UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL Computing ATOMIC NUCLEI Petascale computing helps disentangle the nuclear puzzle. The goal of the Universal Nuclear Energy Density Functional (UNEDF) collaboration is to provide a comprehensive description of all nuclei and their reactions based on the most accurate knowledge of the nuclear interaction, the most reliable theoretical approaches, and the massive use of computer power. Science of Nuclei the Hamiltonian matrix. Coupled cluster (CC) Nuclei comprise 99.9% of all baryonic matter in techniques, which were formulated by nuclear sci- the Universe and are the fuel that burns in stars. entists in the 1950s, are essential techniques in The rather complex nature of the nuclear forces chemistry today and have recently been resurgent among protons and neutrons generates a broad in nuclear structure. Quantum Monte Carlo tech- range and diversity in the nuclear phenomena that niques dominate studies of phase transitions in can be observed. As shown during the last decade, spin systems and nuclei. These methods are used developing a comprehensive description of all to understand both the nuclear and electronic nuclei and their reactions requires theoretical and equations of state in condensed systems, and they experimental investigations of rare isotopes with are used to investigate the excitation spectra in unusual neutron-to-proton ratios. These nuclei nuclei, atoms, and molecules. are labeled exotic, or rare, because they are not When applied to systems with many active par- typically found on Earth. They are difficult to pro- ticles, ab initio and configuration interaction duce experimentally because they usually have methods present computational challenges as the extremely short lifetimes. -
Spontaneous Fission Half-Lives of Heavy and Superheavy Nuclei Within a Generalized Liquid Drop Model
Spontaneous fission half-lives of heavy and superheavy nuclei within a generalized liquid drop model Xiaojun Bao1, Hongfei Zhang1,∗ G. Royer2, Junqing Li1,3 June 4, 2018 1. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China 2. Laboratoire Subatech, UMR: IN2P3/CNRS-Universit´e-Ecole des Mines, 4 rue A. Kastler, 44 Nantes, France 3. Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China Abstract We systematically calculate the spontaneous fission half-lives for heavy and superheavy arXiv:1302.7117v1 [nucl-th] 28 Feb 2013 nuclei between U and Fl isotopes. The spontaneous fission process is studied within the semi-empirical WKB approximation. The potential barrier is obtained using a generalized liquid drop model, taking into account the nuclear proximity, the mass asymmetry, the phenomenological pairing correction, and the microscopic shell cor- rection. Macroscopic inertial-mass function has been employed for the calculation of the fission half-life. The results reproduce rather well the experimental data. Rela- tively long half-lives are predicted for many unknown nuclei, sufficient to detect them if synthesized in a laboratory. Keywords: heavy and superheavy nuclei; half-lives; spontaneous fission ∗Corresponding author. Tel.: +86 931 8622306. E-mail address: [email protected] 1 1 Introduction Spontaneous fission of heavy nuclei was first predicted by Bohr and Wheeler in 1939 [1]. Their fission theory was based on the liquid drop model. Interestingly, their work also con- tained an estimate of a lifetime for fission from the ground state. Soon afterwards, Flerov and Petrzak [2] presented the first experimental evidence for spontaneous fission. -
The Oganesson Odyssey Kit Chapman Explores the Voyage to the Discovery of Element 118, the Pioneer Chemist It Is Named After, and False Claims Made Along the Way
in your element The oganesson odyssey Kit Chapman explores the voyage to the discovery of element 118, the pioneer chemist it is named after, and false claims made along the way. aving an element named after you Ninov had been dismissed from Berkeley for is incredibly rare. In fact, to be scientific misconduct in May5, and had filed Hhonoured in this manner during a grievance procedure6. your lifetime has only happened to Today, the discovery of the last element two scientists — Glenn Seaborg and of the periodic table as we know it is Yuri Oganessian. Yet, on meeting Oganessian undisputed, but its structure and properties it seems fitting. A colleague of his once remain a mystery. No chemistry has been told me that when he first arrived in the performed on this radioactive giant: 294Og halls of Oganessian’s programme at the has a half-life of less than a millisecond Joint Institute for Nuclear Research (JINR) before it succumbs to α -decay. in Dubna, Russia, it was unlike anything Theoretical models however suggest it he’d ever experienced. Forget the 2,000 ton may not conform to the periodic trends. As magnets, the beam lines and the brand new a noble gas, you would expect oganesson cyclotron being installed designed to hunt to have closed valence shells, ending with for elements 119 and 120, the difference a filled 7s27p6 configuration. But in 2017, a was Oganessian: “When you come to work US–New Zealand collaboration predicted for Yuri, it’s not like a lab,” he explained. that isn’t the case7. -
Photofission Cross Sections of 238U and 235U from 5.0 Mev to 8.0 Mev Robert Andrew Anderl Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV Robert Andrew Anderl Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons, and the Oil, Gas, and Energy Commons Recommended Citation Anderl, Robert Andrew, "Photofission cross sections of 238U and 235U from 5.0 MeV to 8.0 MeV " (1972). Retrospective Theses and Dissertations. 4715. https://lib.dr.iastate.edu/rtd/4715 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction, 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity, 2. -
1 PROF. CHHANDA SAMANTA, Phd PAPERS in PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, Bonding A
PROF. CHHANDA SAMANTA, PhD PAPERS IN PEER REVIEWED INTERNATIONAL JOURNALS: 1. C. Samanta, T. A. Schmitt, “Binding, bonding and charge symmetry breaking in Λ- hypernuclei”, arXiv:1710.08036v2 [nucl-th] (to be published) 2. T. A. Schmitt, C. Samanta, “A-dependence of -bond and charge symmetry energies”, EPJ Web Conf. 182, 03012 (2018) 3. Chhanda Samanta, Superheavy Nuclei to Hypernuclei: A Tribute to Walter Greiner, EPJ Web Conf. 182, 02107 (2018) 4. C. Samanta with X Qiu, L Tang, C Chen, et al., “Direct measurements of the lifetime of medium-heavy hypernuclei”, Nucl. Phys. A973, 116 (2018); arXiv:1212.1133 [nucl-ex] 5. C. Samanta with with S. Mukhopadhyay, D. Atta, K. Imam, D. N. Basu, “Static and rotating hadronic stars mixed with self-interacting fermionic Asymmetric Dark Matter”, The European Physical Journal C.77:440 (2017); arXiv:1612.07093v1 6. C. Samanta with R. Honda, M. Agnello, J. K. Ahn et al, “Missing-mass spectroscopy with 6 − + 6 the Li(π ,K )X reaction to search for ΛH”, Phys. Rev. C 96, 014005 (2017); arXiv:1703.00623v2 [nucl-ex] 7. C. Samanta with T. Gogami, C. Chen, D. Kawama et al., “Spectroscopy of the neutron-rich 7 hypernucleus He from electron scattering”, Phys. Rev. C94, 021302(R) (2016); arXiv:1606.09157 8. C. Samanta with T. Gogami, C. Chen, D. Kawama,et al., ”High Resolution Spectroscopic 10 Study of ΛBe”, Phys. Rev. C93, 034314(2016); arXiv:1511.04801v1[nucl-ex] 9. C. Samanta with L. Tang, C. Chen, T. Gogami et al., “The experiments with the High 12 Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of ΛB hypernuclei, Phys. -
Current Status of Equation of State in Nuclear Matter and Neutron Stars
Open Issues in Understanding Core Collapse Supernovae June 22-24, 2004 Current Status of Equation of State in Nuclear Matter and Neutron Stars J.R.Stone1,2, J.C. Miller1,3 and W.G.Newton1 1 Oxford University, Oxford, UK 2Physics Division, ORNL, Oak Ridge, TN 3 SISSA, Trieste, Italy Outline 1. General properties of EOS in nuclear matter 2. Classification according to models of N-N interaction 3. Examples of EOS – sensitivity to the choice of N-N interaction 4. Consequences for supernova simulations 5. Constraints on EOS 6. High density nuclear matter (HDNM) 7. New developments Equation of State is derived from a known dependence of energy per particle of a system on particle number density: EA/(==En) or F/AF(n) I. E ( or Boltzman free energy F = E-TS for system at finite temperature) is constructed in a form of effective energy functional (Hamiltonian, Lagrangian, DFT/EFT functional or an empirical form) II. An equilibrium state of matter is found at each density n by minimization of E (n) or F (n) III. All other related quantities like e.g. pressure P, incompressibility K or entropy s are calculated as derivatives of E or F at equilibrium: 2 ∂E ()n ∂F ()n Pn()= n sn()=− | ∂n ∂T nY, p ∂∂P()nnEE() ∂2 ()n Kn()==9 18n +9n2 ∂∂nn∂n2 IV. Use as input for model simulations (Very) schematic sequence of equilibrium phases of nuclear matter as a function of density: <~2x10-4fm-3 ~2x10-4 fm-3 ~0.06 fm-3 Nuclei in Nuclei in Neutron electron gas + ‘Pasta phase’ Electron gas ~0.1 fm-3 0.3-0.5 fm-3 >0.5 fm-3 Nucleons + n,p,e,µ heavy baryons Quarks ??? -
Arxiv:1901.01410V3 [Astro-Ph.HE] 1 Feb 2021 Mental Information Is Available, and One Has to Rely Strongly on Theoretical Predictions for Nuclear Properties
Origin of the heaviest elements: The rapid neutron-capture process John J. Cowan∗ HLD Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019, USA Christopher Snedeny Department of Astronomy, University of Texas, 2515 Speedway, Austin, TX 78712-1205, USA James E. Lawlerz Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390, USA Ani Aprahamianx and Michael Wiescher{ Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, USA Karlheinz Langanke∗∗ GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany Gabriel Mart´ınez-Pinedoyy GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany; Institut f¨urKernphysik (Theoriezentrum), Fachbereich Physik, Technische Universit¨atDarmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany; and Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany Friedrich-Karl Thielemannzz Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland and GSI Helmholtzzentrum f¨urSchwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany (Dated: February 2, 2021) The production of about half of the heavy elements found in nature is assigned to a spe- cific astrophysical nucleosynthesis process: the rapid neutron capture process (r-process). Although this idea has been postulated more than six decades ago, the full understand- ing faces two types of uncertainties/open questions: (a) The nucleosynthesis path in the nuclear chart runs close to the neutron-drip line, where presently only limited experi- arXiv:1901.01410v3 [astro-ph.HE] 1 Feb 2021 mental information is available, and one has to rely strongly on theoretical predictions for nuclear properties. -
Structure of Exotic Nuclei: a Theoretical Review
Structure of Exotic Nuclei: A Theoretical Review Shan-Gui Zhou∗ CAS Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha, 410081, China E-mail: [email protected] The study of exotic nuclei—nuclei with the ratio of neutron number N to proton number Z de- viating much from that of those found in nature—is at the forefront of nuclear physics research because it can not only reveal novel nuclear properties and thus enrich our knowledge of atomic nuclei, but also help us to understand the origin of chemical elements in the nucleosynthesis. With the development of radioactive ion beam facilities around the world, more and more unstable nu- clei become experimentally accessible. Many exotic nuclear phenomena have been observed or predicted in nuclei far from the β-stability line, such as neutron or proton halos, the shell evo- lution and changes of nuclear magic numbers, the island of inversion, soft-dipole excitations, clustering effects, new radioactivities, giant neutron halos, the shape decoupling between core and valence nucleons in deformed halo nuclei, etc. In this contribution, I will present a review of theoretical study of exotic nuclear structure. I will first introduce characteristic features and new physics connected with exotic nuclear phenomena: the weakly-bound feature, the large-spatial extension in halo nuclei, deformation effects in halo nuclei, the shell evolution, new radioactiv- ities and clustering effects. -
Spontaneous Fission
13) Nuclear fission (1) Remind! Nuclear binding energy Nuclear binding energy per nucleon V - Sum of the masses of nucleons is bigger than the e M / nucleus of an atom n o e l - Difference: nuclear binding energy c u n r e p - Energy can be gained by fusion of light elements y g r e or fission of heavy elements n e g n i d n i B Mass number 157 13) Nuclear fission (2) Spontaneous fission - heavy nuclei are instable for spontaneous fission - according to calculations this should be valid for all nuclei with A > 46 (Pd !!!!) - practically, a high energy barrier prevents the lighter elements from fission - spontaneous fission is observed for elements heavier than actinium - partial half-lifes for 238U: 4,47 x 109 a (α-decay) 9 x 1015 a (spontaneous fission) - Sponatenous fission of uranium is practically the only natural source for technetium - contribution increases with very heavy elements (99% with 254Cf) 158 1 13) Nuclear fission (3) Potential energy of a nucleus as function of the deformation (A, B = energy barriers which represent fission barriers Saddle point - transition state of a nucleus is determined by its deformation - almost no deformation in the ground state - fission barrier is higher by 6 MeV Ground state Point of - tunneling of the barrier at spontaneous fission fission y g r e n e l a i t n e t o P 159 13) Nuclear fission (4) Artificially initiated fission - initiated by the bombardment with slow (thermal neutrons) - as chain reaction discovered in 1938 by Hahn, Meitner and Strassmann - intermediate is a strongly deformed -
Production and Properties Towards the Island of Stability
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Leino, Matti Title: Production and properties towards the island of stability Year: 2016 Version: Please cite the original version: Leino, M. (2016). Production and properties towards the island of stability. In D. Rudolph (Ed.), Nobel Symposium NS 160 - Chemistry and Physics of Heavy and Superheavy Elements (Article 01002). EDP Sciences. EPJ Web of Conferences, 131. https://doi.org/10.1051/epjconf/201613101002 All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. EPJ Web of Conferences 131, 01002 (2016) DOI: 10.1051/epjconf/201613101002 Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements Production and properties towards the island of stability Matti Leino Department of Physics, University of Jyväskylä, PO Box 35, 40014 University of Jyväskylä, Finland Abstract. The structure of the nuclei of the heaviest elements is discussed with emphasis on single-particle properties as determined by decay and in- beam spectroscopy. The basic features of production of these nuclei using fusion evaporation reactions will also be discussed. 1. Introduction In this short review, some examples of nuclear structure physics and experimental methods relevant for the study of the heaviest elements will be presented. -
No. It's Livermorium!
in your element Uuh? No. It’s livermorium! Alpha decay into flerovium? It must be Lv, saysKat Day, as she tells us how little we know about element 116. t the end of last year, the International behaviour in polonium, which we’d expect to Union of Pure and Applied Chemistry have very similar chemistry. The most stable A(IUPAC) announced the verification class of polonium compounds are polonides, of the discoveries of four new chemical for example Na2Po (ref. 8), so in theory elements, 113, 115, 117 and 118, thus Na2Lv and its analogues should be attainable, completing period 7 of the periodic table1. though they are yet to be synthesized. Though now named2 (no doubt after having Experiments carried out in 2011 showed 3 213 212m read the Sceptical Chymist blog post ), that the hydrides BiH3 and PoH2 were 9 we shall wait until the public consultation surprisingly thermally stable . LvH2 would period is over before In Your Element visits be expected to be less stable than the much these ephemeral entities. lighter polonium hydride, but its chemical In the meantime, what do we know of investigation might be possible in the gas their close neighbour, element 116? Well, after phase, if a sufficiently stable isotope can a false start4, the element was first legitimately be found. reported in 2000 by a collaborative team Despite the considerable challenges posed following experiments at the Joint Institute for by the short-lived nature of livermorium, EMMA SOFIA KARLSSON, STOCKHOLM, SWEDEN STOCKHOLM, KARLSSON, EMMA SOFIA Nuclear Research (JINR) in Dubna, Russia.