The Resolution of Depth Ambiguity in the Kinetic Depth Effect
Total Page:16
File Type:pdf, Size:1020Kb
The Resolution of Depth Ambiguity in the Kinetic Depth Effect SHANE GREGORY BLACKBURN Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy. 2006 Department of Psychology, University of Otago, Dunedin, New Zealand. Supervisor: Dr Robert P. O’Shea Acknowledgements i Acknowledgements I would like to thank three people without whom I never would have completed my thesis. Robert O’Shea, my supervisor, was always patient, supportive, and enthusiastic. Holly Fentiman helped put the finishing touches to figures and text. Carolyn Smale never lost faith that I would complete, even when I had, and produced three beloved children while she waited and waited. Abstract ii Abstract The projected two-dimensional motions of a rotating object are sufficient to enable us to perceive its three-dimensional structure—a phenomenon called the kinetic depth effect (KDE). Although the object’s local, three-dimensional (3D) shape tends to be seen correctly, its global depth organisation, along with its perceived direction of rotation, often spontaneous reverses. My thesis is that these aspects of the KDE can be resolved, disambiguated, by adding temporal or spatial context. In Experiments 2 to 4, I showed that the KDE could be disambiguated by adding temporal context. When I added the depth cues of contrast and superimposition they cooperated or competed in different ways in different individuals to disambiguate the KDE. I also discovered that the frequency of reversals and their time courses were best predicted from temporal context: the length of observation and an observer’s previous viewing history. In Experiments 5 to 10, I showed that the KDE could be affected by, and could affect, unambiguous spatial contextual stimuli. When I added unambiguous surround stimuli to an ambiguous KDE object, I observed rotational linkage and rotational contrast. Linkage occurs Abstract iii when rotating objects share their axis of rotation. Contrast occurs when objects have different axes of rotation. These surround effects vary with speed, shape, rotation speed, and proximity. When I added an unambiguous surround stimulus that overlapped the ambiguous KDE object, I observed a phenomenon I call spreading concavity. In this, an unambiguous surround that by itself would be seen as a convex shape became concave when overlapping an ambiguous KDE cylinder. The results of my experiments reveal the importance of temporal and spatial context for the KDE. Temporal context includes one’s history of viewing KDE stimuli and one’s history with different depth cues. These temporal contexts alter the frequency of reversals and can disambiguate the KDE. Spatial context has powerful effects on the KDE, disambiguating it, and, in the case of concavity spreading, supplanting alternative perceptual interpretation specified by depth cues present in the stimulus. I discuss how context effects might be realized in terms of four hypotheses: Supplemented Physiology Hypothesis (SPH), Mechanical Constraints Hypothesis (MCH), Geometric Constraints Hypothesis (GCH), and Surface Reconstruction SFM Scheme (SRS). Contents iv Contents 1. CHAPTER 1: GENERAL INTRODUCTION ..............................................................1 1.1. MOTION-BASED 3D DEPTH PERCEPTION AND THE PROBLEM OF PROJECTIVE AMBIGUITY.................................................................................................................... 1 1.2. RECOVERY OF 3D STRUCTURE FROM MOTION (SFM): THE KINETIC DEPTH EFFECT (KDE) ...........................................................................................................................4 1.3. PHENOMENAL CORRELATES OF KDE DEPTH ORGANISATION AMBIGUITY ....................6 1.4. THESIS RATIONALE: RESOLUTION OF DEPTH ORGANISATION IN THE KDE ...................7 1.5. GEOMETRIC BASIS OF THE KDE: PROJECTIVE GEOMETRY ...........................................16 1.5.1. Parallel projection ................................................................................................17 1.5.2. Polar projection ....................................................................................................19 1.6. NEURAL BASIS OF THE KDE: THE MOTION PATHWAY ................................................21 1.6.1. Lesion Studies .......................................................................................................23 1.6.2. Single-Cell Electrophysiology ...............................................................................26 1.7. THEORETICAL BASIS OF THE KDE ..............................................................................31 1.7.1. Helmholtz: Velocity and Relative Depth (motion parallax) ..................................31 1.7.2. Wallach and O’Connell: Length and Orientation Change ...................................33 1.7.3. Gibson: Perspective Transformation in the Optic Array ......................................33 1.7.4. Johansson: Perceptual Vector Analysis ................................................................34 1.7.5. Neurally-Based Models of SFM ............................................................................35 1.7.6. Computational Approaches to the KDE ................................................................39 1.7.7. Theoretical Basis of the KDE: Conclusions .........................................................47 1.8. EMPIRICAL ASPECTS OF THE KDE ..............................................................................50 1.8.1. Is Motion Necessary for the KDE? .......................................................................50 1.8.2. Is Rigid Motion Necessary for the KDE? .............................................................52 1.8.3. What are the Minimal Conditions for the KDE? ..................................................54 1.8.4. Is Euclidean Structure Recovered in the KDE? ....................................................55 1.9. DEPTH REVERSALS IN THE KDE .................................................................................55 1.10.GENERAL THEORIES OF PERCEPTUAL REVERSAL ........................................................57 1.10.1.Satiation Theory ....................................................................................................58 1.10.2.Decisional Theory .................................................................................................59 1.11.EMPIRICAL ASPECTS OF PERCEPTUAL REVERSALS...................................................... 60 1.11.1.Temporal Characteristics ......................................................................................60 1.11.2.Complexity ............................................................................................................62 1.11.3.Rotation speed ......................................................................................................63 1.11.4.Cognitive factors ...................................................................................................66 1.11.5.Individual differences ............................................................................................68 2. CHAPTER 2: THE RELATIONSHIP OF DEPTH CUES TO THE DISAMBIGUATION OF THE KDE ...........................................................................71 2.1. MOTION PERSPECTIVE .................................................................................................71 2.1.1. Full motion perspective: KDE ..............................................................................71 2.1.2. Vertical versus horizontal motion perspective ......................................................73 2.1.3. Horizontal motion perspective: KDE ....................................................................74 2.1.4. Horizontal motion perspective: Superimposed planar surfaces ...........................76 2.1.5. Horizontal motion perspective: Velocity gradients ..............................................78 2.1.6. Horizontal motion perspective: Motion parallax ..................................................82 2.1.7. Why are Velocity Gradients Unambiguous when the Head or Monitor Moves? ..84 2.1.8. Relationship between motion parallax / velocity gradient displays and the KDE 89 2.2. DYNAMIC OCCLUSION .................................................................................................93 2.3. BINOCULAR DISPARITY ...............................................................................................96 2.4. LUMINANCE CONTRAST ..............................................................................................99 3. CHAPTER 3: INDUCTION EFFECTS IN THE KDE: SPATIAL CONTEXT ...101 3.1. SPATIAL CONTEXT ....................................................................................................101 3.2. PERCEPTUAL CONSEQUENCES OF SPATIAL CONTEXT: CONTRAST AND ASSIMILATION 103 3.2.1. 2D Motion Assimilation ......................................................................................103 3.2.2. 2D Motion Contrast ............................................................................................106 3.3. RELATIONSHIP BETWEEN ASSIMILATION AND CONTRAST.......................................... 107 3.4. SPATIAL CONTEXT EFFECTS IN THE KDE ..................................................................109 3.5. EFFECT OF SPATIAL CONTEXT ON PERCEIVED KDE SHAPE:...................................... 110 3.6. EFFECT OF SPATIAL CONTEXT ON KDE REVERSALS .................................................112 Contents v 3.7. EFFECT OF CONTEXT ON KDE ORGANISATION – 3D