Geological Origin of the Baja California Peninsula and Gulf Of

Total Page:16

File Type:pdf, Size:1020Kb

Geological Origin of the Baja California Peninsula and Gulf Of A BRIEF GEOLOGIC HISTORY OF NORTHWESTERN MEXICO © Richard C. Brusca Vers. 28 April 2016 (for references, see “A Bibliography for the Gulf of California” at http://rickbrusca.com/http___www.rickbrusca.com_index.html/Research.html) NOTE: This document is periodically updated as new information becomes available (see date stamp above). Photos by the author, unless otherwise indicated. This essay constitutes the draft of a chapter for the planned book, A Natural History of the Sea of Cortez, by R. Brusca; comments on this draft chapter will be appreciated and should be sent to [email protected]. SECTIONS Geological Origin of the Baja California Peninsula and Gulf of California The Colorado River The Upper Gulf of California The Sierra Pinacate and Gran Desierto de Altar Rocks that Tell Stories Endnotes Glossary of Common Geological Terms Geological Origin of the Baja California American Plate, powered by the same Peninsula and Gulf of California spreading center and tectonic forces. But Although the Gulf of California (aka, “the plate dynamics are complicated, and the Gulf,” the Sea of Cortez) is a young sea, just North American Plate was simultaneously 7 million years old (mya), the present-day moving slowly westward driven by the topography of its basin and adjacent land opening of the Mid-Atlantic Ridge. As a masses (including the Baja California result, the East Pacific Rise itself was slowly Peninsula) evolved through a series of approaching North America, following along grand geological events that began many “behind” the Farallon Plate (see figure). millions of years ago, long before the At first, the Farallon Plate’s angle of peninsula itself formed, and that stretch subduction was moderate, about 45 across all of western North America. degrees, which is typical of submerging Beginning in the latest Paleozoic or early plates. This deep dive engendered Mesozoic, the Farallon Plate, an eastward- mountain-building uplift and volcanism along moving seafloor lithospheric plate, began the western margin of North America due to subducting under the western edge of the compresisonal forces, crumpling its surface North American Plate. The Farallon Plate into mountains like a wrinkled rug pushed was spreading eastward from an active from one edge. But evidence suggests that, seafloor spreading center called the East for a time (~70-40 mya), the subduction Pacific Rise, or East Pacific Spreading angle of the Farallon changed and the plate Ridge (Endnote 1). To the west of the East began moving under North America at a Pacific Rise, the gigantic Pacific Plate was very shallow angle. During this shallow moving westward relative to the North subduction phase (“flat-slab subduction”), 1 Mountain Building in the Southwest. © Arizona-Sonora Desert Museum. Concept development by R. Brusca and W. Moore; graphic by Linda M. Brewer. 2 the plate pushed nearly 1000 miles (1500 -building event, known as the Laramide km) under North American before switching Orogeny, extended from southern Canada back to a steeper angle of subduction. to northern Mexico, and as far east as the During this subduction process, much of the Black Hills of South Dakota, and included initial uplift of the Rocky Mountains and the Laramie Mountains of Wyoming (for Sierra Madre Occi-dental (of Mexico) took which it was originally named). place. The Rockies formed mostly by During that long period of moderate and compression and uplift; the Sierra Madre shallow subduction, the oceanic rocks of the mostly by volcanic activity. Farallon Plate were carried deep enough to Mountain building associated with the melt and create magma. Some of this Farallon subduction seems to have taken magma crystallized below the surface to place in a series of pulses and intervening form intrusive batholiths (commonly granitic quiescent periods. This great mountain- in compositon), including those that are now exposed in the Sierra Nevada and Peninsular Ranges in California and along the length of the Baja California Peninsula. Much of it, however, erupted at the surface as andesitic volcanoes, probably looking very much like present-day Mt. St. Helens in the Cascade Range. The Sierra Madre Occidental experienced massive and widespread volcanism. Today, the Rocky Mountains and Sierra Madre Occidental together comprise North America’s Western Cordillera (also known as the North American Cordillera), a 4500 mil-long mountain chain. The only gap in this long chain of mountains is in southeastern Arizona/northeastern Sonora—the so-called Cordilleran Gap, studded by ~65 isolated ranges known as Sky Islands. (Endnote 2). In addition to initiating the formation of igneous rocks by subduction, the Farallon Plate and other smaller plates moving eastward in the Pacific Basin carried on their backs numerous volcanic oceanic islands Geologic Time Table (Designed by R. Brusca and L. Brewer) and archipelagos, both submerged and 3 emergent. When these oceanic islands and west of the Basin and Range Province seamounts encountered the trench at consists of a heterogenous patchwork of America’s continental margin, they were these allochthonous terranes, accreted onto scraped off as the plates slowly dived the edge of the North American Craton (i.e., beneath North and South America. These what is left of the ancient continent of accreted allochthonous, or “exotic,” terranes Laurentia) from the Paleozoic to as recently whose origins were long a geological as Late Miocene. However, many of these mystery, stretch from Alaska to South terranes are hidden beneath yougner America. They not only augmented and deposited or erupted rocks. Although no built-out the continental landmass of the allochthonous terranes have been positively Americas, they also created many of the identified in Arizona or Sonora, much of the coastal mountain sections that we recognize Baja California Peninsula and western today. In fact, nearly all of North America The Colorado Plateau, Mogollon Rim, Lower Colorado River Basin, and the Upper Gulf of California (NASA) 4 Mexico probably consist of these ancient California was still attached to western North relocated land masses. America. The subduction of the Farallon Plate beneath the North American Plate generated volcanism in the Sierra Madre Occidental, notably in two episodes,100-45 mya and 34-23 mya, and in what is now eastern Baja California and westernmost Sonora from 24 to 10 or 8 mya. As the Farallon Plate steadily subducted and Barrancas del Cobre (Copper Canyon), Sierra Madre Occidental (Photo by Jim Welden) Tectonic map of the Gulf of California. Basins correspond to spreading centers bounded by active disappeared beneath North America, the transform faults forming the San Andreas-Gulf of California Fault System. (From Suarez-Vidal et al., final phase of subduction resulted in a in Dauphin & Simoneit eds, 1991, The Gulf and continental volcanic arc forming ~24-15 Peninsular Province of the Californias. AAPG Mem. 47) mya. The rocks generated from this From the Mesozoic to the late Oligocne, volcanic arc now constitute some of the the west coast of North America was uplifted mountains of the easternmost Baja bordered by an unbroken subduction zone— California Peninsula (e.g., much of the the Farallon Trench—with an associted Sierra La Giganta in Baja California Sur), but volcnic arc (similar to the Andes in its are best seen in the mountain ranges in nature). Also prior to the late Miocene, Baja southwestern Sonora. The granitic 5 batholiths of the modern Sierra Nevada ~27 mya, the southern California section range (California) also represent the eroded between 13 and 22 mya, and the Gulf of core of this ancient cordillera, whereas the California segment about 11 mya. Today, chaotic coastal San Franciscan formations the Mendocino Triple Junction marks the are the remains of various islands, northern limit of the San Andreas Fault seamonts, sediments and metamorphic system, and the Rivera Triple Junction rocks accreted to the North American Plate marks the southern limit. as the Farallon Plate was subducted. This first contact of the East Pacific Rise Throughout the Cretaceous and into the with the North American Plate divided the Cenozoic, the Farallon Plate grew narrower Farallon Plate into northern and southern as it was consumed by the trench. By the parts. The remnant microplates of the Cretaceous, a wedge, or segment of the Farallon Plate, to the north and south, Pacific Plate and East Pacific Rise had continue to move slowly against and under begun pushing eastward into the heart of the the North American Plate today. The Farallon Plate, sliding along the Mendocino northern remnants of the Farallon Plate are and Murray Fracture Zones in the north and the Juan de Fuca, Explorer, and Gorda south. This section of the Pacific Plate (and Plates (currently subducting beneath its leading segment of East Pacific Rise) northern California, Canada, and Alaska). was moving eastward faster than the The southern fragments are the Rivera Plate Farallon Plate was, thus forming a (a microplate along the coast of Nayarit and prominent eastward projection and slowly Jalisco), Cocos Plate (currently subducting dividing the Farallon in half. Several under southern Mexico and Central microplates calved off the Farallon Plate as America), and the Nazca Plate (currently the leading edge of the Pacific Plate forced subducting under South America). its way through it, and as the Farallon itself As the East Pacific Rise subducted moved toward the subducting trench. Some beneath western Mexico, portions of North of these smaller calved plate pieces still America’s crust gradually became attached exist, and others were subducted long ago. to the Pacific Plate. The attachment began The central region of the Farallon Plate ~12 mya in northwestern Mexico and was disappeared as the leading segment of East probably fully completed ~7 mya. The Pacific Rise met the North American Plate, attachment of a small fragment of crust from ~25-30 mya in central California, and ~11-15 one plate (in this case, the North American mya in northern Mexico.
Recommended publications
  • Extension Del Campo De Cerro Prieto Y Futuras Zonas Con Probabilidades Geotermicas En El Valle De Mexicali H
    EXTENSION DEL CAMPO DE CERRO PRIETO Y FUTURAS ZONAS CON PROBABILIDADES GEOTERMICAS EN EL VALLE DE MEXICALI H. L. Fonseca L., A. de la Pena 1., 1. Puente c., y E. Diaz C. Comisi6n Federal de Electricidad Coordinadora Ejecutiva de Cerro Prieto Mexicali, Baja California, Mexico RESUMEN instalar una capacidad de generaci6n geotermoel~ctrica del orden de 1000 W~ en e1 Valle de 1:1exicali. En una evaluacion de las condi'eiones" geoliigico-estructurales" dentro de sumarco Con el afan de contribuir al desarrollo de las tectonico regional, y con la integracion de los obTas geotermicas de esta regi-on, en e1 presente trabaj os geologicos y geoU.sicos realizados en el traoajo se e:xponen algunas condiciones geologico­ Campo de Cerro Prieto, se intenta estaolecer la es"tTucturales proprcias para la e:xistencia de posible extension del mismo, asi como otras zonas amoientes geotermicos y la relacion de ciertas que podrian tener probaoilidades de desarrollo anomalJ1as geofisicas con zonas que podrlan tener geotermico dentro del Valle de Mexicali, probabilidades de desarrollo incluyendo la posible extensron del Campo de Cerro Prieto. Este trabajo tiene como antecedente la informacion ootenida de los pozos cons·tru:Cdos· a 1a Cabe mencionar que algunas areas interpretadas fecha, y la informacion geologica y geof5!sica como prospectos geotermicos, han sido senaladas disponible con 10 cual se esta contriDuyendo a la tomando en cuenta la posicion formacion del modelo geologico que en forma informacion respecto a los generalizada establece la geometrta de 10 que Valle Im~erial y, 1a podria constituir el yacimiento geot~rmico del de encontrarse en maximos campo de Cerro Prieto.
    [Show full text]
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
    Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone.
    [Show full text]
  • Safe Boating Through the St. Lucie Inlet
    Information: Florida Fish & Wildlife Commission 850-488-4676 SAFE BOATING US Coast Guard - Ft. Pierce 772-461-7606 THROUGH THE ST. LUCIE INLET US Coast Guard Auxiliary 772-465-8128 US Army Corps of Engineers 772-221-3349 St. Lucie Inlet Coastal 772-225-2300 Weather Station HERE ARE SOME THINGS TO REMEMBER: • Listen to the most recent weather forecast for the times you plan to go out AND come back in the inlet. • Look in the Tide Tables or local newspapers for the times St. Lucie Inlet of predicted high and low tides for the day you plan to go out. Remember the outgoing (ebb) tital current at low Newcomers tide is the worst time to make a passage through the St. Lucie Inlet. If you are a boater new to this area, it is highly • Safe boating practices are even more important in inlets. recommended that you make your first passage of Check your boat before you head out. Life preservers the St. Lucie Inlet as an observer. An experienced should be worn when going through inlets. boater with local knowledge at the helm can point • Expect the unexpected. Watch the clouds to anticipate out various hazards and conditions to avoid. This is severe weather such as thunderstorms. Be on the lookout for shifting shoals and changing channels. especially important if you have no prior experience • Engine failure is common in small boats in rough seas. with any ocean inlets. The extra roughness agitates gasoline and settled dirt or water in the fuel system, which can cause engine failure Notes on Navigation at Night at a crtical time.
    [Show full text]
  • Why Did the Southern Gulf of California Rupture So Rapidly?—Oblique Divergence Across Hot, Weak Lithosphere Along a Tectonically Active Margin
    Why did the Southern Gulf of California rupture so rapidly?—Oblique divergence across hot, weak lithosphere along a tectonically active margin breakup, is mainly dependent on the thermal structure, crust- Paul J. Umhoefer, Geology Program, School of Earth Sciences & Environmental Sustainability, Northern Arizona University, al thickness, and crustal strength of the lithosphere when Flagstaff, Arizona 86011, USA; [email protected] rifting begins (e.g., Buck, 2007), as well as forces at the base of the lithosphere and far-field plate interactions (Ziegler and Cloetingh, 2004). ABSTRACT Continental rupture at its two extremes creates either large Rifts in the interior of continents that evolve to form large ocean basins or small and narrow marginal seas depending oceans typically last for 30 to 80 m.y. and longer before com- largely on the tectonic setting of the rift. Rupture of a conti- plete rupture of the continent and onset of sea-floor spreading. nent that creates large oceans most commonly initiates as A distinct style of rifts form along the active tectonic margins of rifts in old, cold continental lithosphere or within former continents, and these rifts more commonly form marginal seas large collisional belts in the interior of large continents, part and terranes or continental blocks or slivers that are ruptured of the process known as the Wilson Cycle (Wilson, 1966). away from their home continent. The Gulf of California and the Rupture to create narrow marginal seas commonly occurs in Baja California microplate make up one of the best examples active continental margins and results in the formation of of the latter setting and processes.
    [Show full text]
  • Patricia Persaud
    A bottom-driven mechanism for distributed faulting in the Gulf of California Rift Patricia Persaud1, Eh Tan2, Juan Contreras3 and Luc Lavier4 2017 GeoPRISMS Theoretical and Experimental Institute on Rift Initiation and Evolution [email protected], Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803; 2 Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan; 3 Centro de Investigación Científca y de Educación Superior de Ensenada, Ensenada, BC, Mexico; 4 University of Texas Austin, Institute for Geophysics, Austin, TX 78712 Introduction Modeling strain partitioning and distribution of deformation in Application to the Northern Gulf Observations in the continent-ocean transition of the Gulf • Our model with an obliquity of 0.7, and linear basal velocity of California (GOC) show multiple oblique-slip faults oblique rifts boundary conditions reveals a delocalized fault pattern of distributed in a 200x70 km2 area (Fig. 4). In contrast, north contemporaneously active faults, multiple rift basins and and south of this broad pull-apart structure, major transform variable fault dips representative of faulting in the N. Gulf. faults accommodate plate motion. We propose that the FIG. 9 • The r=0.7 model is able to predict the broad geometrical mechanism for distributed faulting results from the boundary arrangement of the two Upper Delfn, Lower Delfn and conditions present in the GOC, where basal shear is Wagner basins as segmented basins with tilted fault blocks, distributed between the southernmost fault of the San and multiple oblique-slip bounding faults characteristic of Andreas system and the Ballenas Transform fault. FIG. 8 incomplete strain-partitioning. We also confrm with our We hypothesize that in oblique-extensional settings numerical results that numerous oblique-slip faults whether deformation is partitioned in a few dip-slip and accommodate slip in the study area instead of throughgoing strike-slip faults, or in numerous oblique-slip faults may large-offset transform faults.
    [Show full text]
  • Lithospheric Rupture in the Gulf of California – Salton Trough Region
    Lithospheric Rupture in the Gulf of California – Salton Trough Region MARGINS-RCL Workshop Ensenada, Mexico, 9-13 January, 2006 ABSTRACTS http://www.rcl-cortez.wustl.edu Contents An Author Index is located in the back Seismic imaging of the transition from continental rifting to seafloor spreading, Woodlark Rift system, Papua New Guinea ………………………………………6 Rift-to-rift Drift Transition in the Gulf of California …………………………………….7 Low-angle normal faults in the northern Gulf of California extensional province: summary and implications for fault mechanics and strain partitioning ………….8 Volcanism along the eastern margin of the Salton Trough: Constraints on the kinematics of initiation of the southern San Andreas transform fault system ………………10 Numerical models of extending and rifting thickened continental crust….……………..11 Gravity Modeling and Crustal Structure of northern eastern Baja California and the western Salton Trough …………………………………………………………..12 Constraining Upper Mantle Flow Using Seismic Anisotropy & Geodynamic Modeling.13 Crustal Structure of the Southern Gulf of California, the East Pacific Rise to the Jalisco Block …………………………………………………………………………….14 Why It Is Hard to Make a Core Complex ………………………………………………15 Exotic vs. Fringing Arc Models For the Growth Of Continents: Evidence From Mesozoic Arc-Related Basins of Baja California and Western Mexico……………………16 An overview of the petrology of oceanic basement in the southern Gulf of California ...17 Seismotectonics and Upper Mantle Deformation at the Southern Basin and Range Province in Sonora,
    [Show full text]
  • 1 the Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration
    1 The Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration 2 of Soft Cliff Coastlines 3 4 Sally Brown1*, Max Barton1, Robert J Nicholls1 5 6 1. Faculty of Engineering and the Environment, University of Southampton, 7 University Road, Highfield, Southampton, UK. S017 1BJ. 8 9 * Sally Brown ([email protected], Telephone: +44(0)2380 594796). 10 11 Abstract: Building defences, such as groynes, on eroding soft cliff coastlines alters the 12 sediment budget, changing the shoreline configuration adjacent to defences. On the 13 down-drift side, the coastline is set-back. This is often believed to be caused by increased 14 erosion via the ‘terminal groyne effect’, resulting in rapid land loss. This paper examines 15 whether the terminal groyne effect always occurs down-drift post defence construction 16 (i.e. whether or not the retreat rate increases down-drift) through case study analysis. 17 18 Nine cases were analysed at Holderness and Christchurch Bay, England. Seven out of 19 nine sites experienced an increase in down-drift retreat rates. For the two remaining sites, 20 retreat rates remained constant after construction, probably as a sediment deficit already 21 existed prior to construction or as sediment movement was restricted further down-drift. 22 For these two sites, a set-back still evolved, leading to the erroneous perception that a 23 terminal groyne effect had developed. Additionally, seven of the nine sites developed a 24 set back up-drift of the initial groyne, leading to the defended sections of coast acting as 1 25 a hard headland, inhabiting long-shore drift.
    [Show full text]
  • Assembly of a Large Earthquake from a Complex Fault System: Surface Rupture Kinematics of the 4 April 2010
    Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake John M. Fletcher1,*, Orlando J. Teran1, Thomas K. Rockwell2, Michael E. Oskin3, Kenneth W. Hudnut4, Karl J. Mueller5, Ronald M. Spelz6, Sinan O. Akciz7, Eulalia Masana8, Geoff Faneros2, Eric J. Fielding9, Sébastien Leprince10, Alexander E. Morelan3, Joann Stock10, David K. Lynch4, Austin J. Elliott3, Peter Gold3, Jing Liu-Zeng11, Alejandro González-Ortega1, Alejandro Hinojosa-Corona1, and Javier González-García1 1Departamento de Geologia, Centro de Investigacion Cientifi ca y de Educacion Superior de Ensenada, Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California, C.P. 22860, México 2Department of Geological Sciences, San Diego State University, San Diego, California 92182, USA 3Department of Earth and Planetary Sciences, University of California Davis, One Shields Avenue, Davis, California 95616-8605, USA 4U.S. Geological Survey, 525 & 535 S. Wilson Street, Pasadena, California 91106-3212, USA 5Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, USA 6Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada No. 3917, Zona Playitas, Ensenada, Baja California, C.P. 22860, México 7Department of Earth, Planetary and Space Sciences, University of California Los Angeles, 595 Charles Young Drive East, Los Angeles, California 90095, USA 8Departament de Geodinàmica i Geofísica, Universitat de Barcelona, Zona Universitària de Pedralbes, Barcelona 08028, Spain 9Jet Propulsion Laboratory, California Institute of Technology, M/S 300-233, 4800 Oak Grove Drive, Pasadena, California 91109, USA 10Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 11State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, A1# Huayanli, Dewai Avenue, Chaoyang District, P.O.
    [Show full text]
  • A Nonlinear Relationship Between Marsh Size and Sediment Trapping Capacity Compromises Salt Marshes’ Stability Carmine Donatelli1*, Xiaohe Zhang2*, Neil K
    https://doi.org/10.1130/G47131.1 Manuscript received 22 October 2019 Revised manuscript received 9 March 2020 Manuscript accepted 26 April 2020 © 2020 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 10 June 2020 A nonlinear relationship between marsh size and sediment trapping capacity compromises salt marshes’ stability Carmine Donatelli1*, Xiaohe Zhang2*, Neil K. Ganju3, Alfredo L. Aretxabaleta3, Sergio Fagherazzi2† and Nicoletta Leonardi1† 1 Department of Geography and Planning, School of Environmental Sciences, Faculty of Science and Engineering, University of Liverpool, Roxby Building, Chatham Street, Liverpool L69 7ZT, UK 2 Department of Earth Sciences, Boston University, 675 Commonwealth Avenue, Boston, Massachusetts 02215, USA 3 Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, Massachusetts 02543, USA ABSTRACT tidal flats to keep pace with sea-level rise (Mari- Global assessments predict the impact of sea-level rise on salt marshes with present-day otti and Fagherazzi, 2010). levels of sediment supply from rivers and the coastal ocean. However, these assessments do Regional effects are crucial when evaluating not consider that variations in marsh extent and the related reconfiguration of intertidal area coastal interventions under the management of affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. multiple agencies. Though many studies have We conducted a meta-analysis of six bays along the United States East Coast to show that focused on local marsh dynamics, less atten- a reduction in the current salt marsh area decreases the sediment availability in estuarine tion has been paid to how changes in marsh systems through changes in regional-scale hydrodynamics.
    [Show full text]
  • Eocene–Early Miocene Paleotopography of the Sierra Nevada–Great Basin–Nevadaplano Based on Widespread Ash-Flow Tuffs and P
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Eocene–Early Miocene paleotopography of the Sierra Nevada–Great Basin–Nevadaplano based on widespread ash-fl ow tuffs and paleovalleys Christopher D. Henry1, Nicholas H. Hinz1, James E. Faulds1, Joseph P. Colgan2, David A. John2, Elwood R. Brooks3, Elizabeth J. Cassel4, Larry J. Garside1, David A. Davis1, and Steven B. Castor1 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2U.S. Geological Survey, Menlo Park, California 94025, USA 3California State University, Hayward, California 94542, USA 4Department of Earth and Environment, Franklin & Marshall College, Lancaster, Pennsylvania 17604, USA ABSTRACT the great volume of erupted tuff and its erup- eruption fl owed similar distances as the mid- tion after ~3 Ma of nearly continuous, major Cenozoic tuffs at average gradients of ~2.5–8 The distribution of Cenozoic ash-fl ow tuffs pyroclastic eruptions near its caldera that m/km. Extrapolated 200–300 km (pre-exten- in the Great Basin and the Sierra Nevada of probably fi lled in nearby topography. sion) from the Pacifi c Ocean to the central eastern California (United States) demon- Distribution of the tuff of Campbell Creek Nevada caldera belt, the lower gradient strates that the region, commonly referred and other ash-fl ow tuffs and continuity of would require elevations of only 0.5 km for to as the Nevadaplano, was an erosional paleovalleys demonstrates that (1) the Basin valley fl oors and 1.5 km for interfl uves. The highland that was drained by major west- and Range–Sierra Nevada structural and great eastward, upvalley fl ow is consistent and east-trending rivers, with a north-south topographic boundary did not exist before with recent stable isotope data that indicate paleodivide through eastern Nevada.
    [Show full text]
  • Field Trip Log Gulf of California Rift System: Laguna Salda-Valles Chico-San Feli- Pe, Baja California, México
    Geos, Vol. 28, No. 1, Septiembre, 2008 FIELD TRIP LOG GULF OF CALIFORNIA RIFT SYSTEM: LAGUNA SALDA-VALLES CHICO-SAN FELI- PE, BAJA CALIFORNIA, MÉXICO Francisco Suárez-Vidal Departamento de Geologia División de Ciencias de la Tierra CICESE Oblique rifts, in which rift margins are oblique to the direction of continental separation, are reasonably common in mo- dern record, e.g. the Red Sea and Gulf of Aden, the Tanganyika-Malawi-Rukwa rifts and the Gulf of California (McKenzie et al., 1970; Rosendhal et al., 1992; Stoke and Hodges, 1989; Manighetti et al., 1998; Nagy and Stock, 2000; Persaud, P., 2003; Persaud, et al., 2003). Although, how the oblique rift evolves is not well known. Oblique rifting remain poorly understand relative to those orthogonal rifts, where the rift margins are approximately perpendicular to the extension direction, and to strike-slip system (Axen and Fletcher, 1998). The Gulf of California is perhaps the best modern example of oblique continental rifting where we can study the pro- cesses of such rifting as they lead to the interplate transfer of a continental fragment. This area presents unique op- portunities for understanding key processes at transtensional plate margins, which is important for energy and mineral exploration, as well as for interpretation of tectonics ancient continental margins (Umhoefer and Dorsey, 1997). One of the main features along the length of the gulf is the fault system which connects active basins (incipient spreading centers) from south to north (Fig 1). Two main structural regions are defined. From the mouth of the gulf to the latitude of the Tiburon and Angel de La Guardia Islands several basins bathymetrically are well expressed, among them; the Pescaderos, Farallon, Carmen, Guaymas, San Pedro Martir and Salsipudes Basins.
    [Show full text]