Assembly of a Large Earthquake from a Complex Fault System: Surface Rupture Kinematics of the 4 April 2010

Total Page:16

File Type:pdf, Size:1020Kb

Assembly of a Large Earthquake from a Complex Fault System: Surface Rupture Kinematics of the 4 April 2010 Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor–Cucapah (Mexico) Mw 7.2 earthquake John M. Fletcher1,*, Orlando J. Teran1, Thomas K. Rockwell2, Michael E. Oskin3, Kenneth W. Hudnut4, Karl J. Mueller5, Ronald M. Spelz6, Sinan O. Akciz7, Eulalia Masana8, Geoff Faneros2, Eric J. Fielding9, Sébastien Leprince10, Alexander E. Morelan3, Joann Stock10, David K. Lynch4, Austin J. Elliott3, Peter Gold3, Jing Liu-Zeng11, Alejandro González-Ortega1, Alejandro Hinojosa-Corona1, and Javier González-García1 1Departamento de Geologia, Centro de Investigacion Cientifi ca y de Educacion Superior de Ensenada, Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California, C.P. 22860, México 2Department of Geological Sciences, San Diego State University, San Diego, California 92182, USA 3Department of Earth and Planetary Sciences, University of California Davis, One Shields Avenue, Davis, California 95616-8605, USA 4U.S. Geological Survey, 525 & 535 S. Wilson Street, Pasadena, California 91106-3212, USA 5Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, USA 6Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada No. 3917, Zona Playitas, Ensenada, Baja California, C.P. 22860, México 7Department of Earth, Planetary and Space Sciences, University of California Los Angeles, 595 Charles Young Drive East, Los Angeles, California 90095, USA 8Departament de Geodinàmica i Geofísica, Universitat de Barcelona, Zona Universitària de Pedralbes, Barcelona 08028, Spain 9Jet Propulsion Laboratory, California Institute of Technology, M/S 300-233, 4800 Oak Grove Drive, Pasadena, California 91109, USA 10Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 11State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, A1# Huayanli, Dewai Avenue, Chaoyang District, P.O. Box 9803, Beijing 100029, China ABSTRACT reverses as rupture propagated through mul- with some reaching 300–400 cm, and rup- tiple strands of an imbricate stack of east- ture kinematics vary greatly along strike. The 4 April 2010 moment magnitude (Mw) dipping dextral-normal faults that extend Nonetheless, instantaneous extension direc- 7.2 El Mayor–Cucapah earthquake revealed ~55 km through the Sierra Cucapah. How- tions are consistently oriented ~085° and the existence of a previously unidentifi ed fault ever, some coseismic slip (10–30 cm) was the dominant slip direction is ~310°, which system in Mexico that extends ~120 km from partitioned onto the west-dipping Laguna is slightly (~10°) more westerly than the the northern tip of the Gulf of California to Salada fault, which extends parallel to the expected azimuth of relative plate motion, the U.S.–Mexico border. The system strikes main rupture and defi nes the western margin but considerably more oblique to other northwest and is composed of at least seven of the Sierra Cucapah. In the northernmost nearby historical ruptures such as the 1992 major faults linked by numerous smaller domain, rupture terminates on a series of Landers earthquake. Complex multifault faults, making this one of the most complex several north-northeast–striking cross-faults ruptures are common in the central portion surface ruptures ever documented along the with minor offset (<8 cm) that cut uplifted of the Pacifi c North American plate margin, Pacifi c–North America plate boundary. Rup- and folded sediments of the northern Colo- which is affected by restraining bend tecton- ture propagated bilaterally through three rado River delta in the Yuha Desert. ics, gravitational potential energy gradients, distinct kinematic and geomorphic domains. In the Sierra Cucapah, primary rupture and the inherently three-dimensional strain Southeast of the epicenter, a broad region of occurred on four major faults separated by of the transtensional and transpressional distributed fracturing, liquefaction, and dis- one fault branch and two accommodation shear regimes that operate in this region. continuous fault rupture was controlled by a zones. The accommodation zones are distrib- buried, southwest-dipping, dextral-normal uted in a left-stepping en echelon geometry, INTRODUCTION fault system that extends ~53 km across the such that rupture passed systematically to southern Colorado River delta. Northwest structurally lower faults. The structurally Large surface ruptures that cascade slip of the epicenter, the sense of vertical slip lowest fault that ruptured in this event is along multiple faults offer an opportunity to inclined as shallowly as ~20°. Net surface off- learn about mechanical relationships between *Corresponding author: jfl etche@ cicese .mx sets in the Sierra Cucapah average ~200 cm, faults, along with factors that control the state Geosphere; August 2014; v. 10; no. 4; p. 797–827; doi:10.1130/GES00933.1; 25 fi gures; 6 supplemental fi les. Received 25 March 2013 ♦ Revision received 18 March 2014 ♦ Accepted 25 April 2014 ♦ Published online 24 June 2014 For permission to copy, contact [email protected] 797 © 2014 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/10/4/797/3334074/797.pdf by guest on 29 September 2021 Fletcher et al. of stress in the seismogenic crust. The 4 April 2010, moment magnitude (Mw) 7.2 El Mayor– Cucapah (EMC) earthquake activated slip on at least 7 different faults; many were unnamed and some were not even known to exist prior to the earthquake. Most of the faults have rela- tively short total strike lengths (<30 km), none of them control topography, and Holocene paleoscarps are rare. Individually each fault could have been thought to present a low seis- mic risk, and no one suspected that they had the physical links required for them to behave as a single fault system that was capable of produc- ing a major earthquake. The fault system has strands that dip at very shallow angles (as low as 20°) and are likely to be severely misoriented relative to the inferred regional stress. Along its entire length, the complex fault system is located within 1–3 km of faults that can be considered the dominant strands of the plate margin in this area. These dominant faults include the Laguna Salada and Cerro Prieto faults, which have pro- duced many major historical earthquakes and together accommodate to 90% of relative plate motion (Anderson and Bodin, 1987; Mueller and Rockwell, 1991; Bennett et al., 1996; Gen- rich et al., 1997). Therefore, the EMC rupture signifi cantly tests our understanding of rock mechanics and failure criteria to explain why Figure 1. Tectonic map of western North America showing the main shear zones (purple plate-margin shearing bypassed optimally ori- shading) that compose the Pacifi c North American plate margin. Simplifi ed fault traces ented faults to become partitioned onto an adja- include Quaternary faults (black; simplifi ed from U.S. Geological Survey, 2006; and cent complex fault network. regional mapping in western Mexico by us, i.e., Fletcher and others) and inactive Neo- The EMC surface rupture is arguably the gene faults (gray; simplifi ed from Muehlberger, 1996). Maximum horizontal compressive most complex ever documented on the Pacifi c– stress shown by thick horizontal lines defi nes regions of transtension (white), transpression North American plate margin (Fig. 1). However, (yellow ), and extension (green) (simplifi ed from World Stress Map database; Heidbach multi fault ruptures that have complex kine matics et al., 2008). In this study the plate margin is divided into three main domains: Gulf of and occur off of the main strands of the plate California, Big Bend, and San Andreas. Transtensive relative plate motion is accommo- margin are not uncommon in the central portion dated in a narrow belt in the Gulf of California with minor slip (~5 mm/yr) occurring in of the plate margin, as is well demonstrated by the continental shelf west of Baja California (Dixon et al., 2000). In the Big Bend domain, the three most recent earthquakes in this region, plate margin shearing changes from transtensive to transpressive and bifurcates into the including the M 7.2 EMC in 2010, M 7.1 Hec- north-northwest–trending eastern California shear zone (EC) and a network of west- tor Mine in 1999, and M 7.3 Landers in 1992 northwest–striking faults that includes the Big Bend segment of the San Andreas fault. (Fig. 2). We argue that the central domain of the In the San Andreas domain, relative plate motion is partitioned into the transpressive plate margin is affected by several geodynamic San Andreas fault system (SA), transtensive Walker lane shear zone (WL), and extension processes, including regional redistribution of in the Great Basin. Minor extension is also partitioned into the Rio Grande Rift (RGR), plate margin shearing, gravitational potential which forms an isolated belt of shearing that overlaps with portions of all three domains. energy gradients emanating from the Great Black star marks epicenter of the 4 April 2010 Mw 7.2 El Mayor–Cucapah earthquake Basin, and the inherently three-dimensional located within the Big Bend domain. A—Agua Blanca fault, G—Garlock fault. strain of transtensional and transpressional shearing. We propose that these factors help explain the surprising and somewhat unpredict- when viewed from the far fi eld (S. Wei et al., surface rupture and its kinematic behavior, the able nature of
Recommended publications
  • Section 3.3 Geology Jan 09 02 ER Rev4
    3.3 Geology and Soils 3.3.1 Introduction and Summary Table 3.3-1 summarizes the geology and soils impacts for the Proposed Project and alternatives. TABLE 3.3-1 Summary of Geology and Soils Impacts1 Alternative 2: 130 KAFY Proposed Project: On-farm Irrigation Alternative 3: 300 KAFY System 230 KAFY Alternative 4: All Conservation Alternative 1: Improvements All Conservation 300 KAFY Measures No Project Only Measures Fallowing Only LOWER COLORADO RIVER No impacts. Continuation of No impacts. No impacts. No impacts. existing conditions. IID WATER SERVICE AREA AND AAC GS-1: Soil erosion Continuation of A2-GS-1: Soil A3-GS-1: Soil A4-GS-1: Soil from construction existing conditions. erosion from erosion from erosion from of conservation construction of construction of fallowing: Less measures: Less conservation conservation than significant than significant measures: Less measures: Less impact with impact. than significant than significant mitigation. impact. impact. GS-2: Soil erosion Continuation of No impact. A3-GS-2: Soil No impact. from operation of existing conditions. erosion from conservation operation of measures: Less conservation than significant measures: Less impact. than significant impact. GS-3: Reduction Continuation of A2-GS-2: A3-GS-3: No impact. of soil erosion existing conditions. Reduction of soil Reduction of soil from reduction in erosion from erosion from irrigation: reduction in reduction in Beneficial impact. irrigation: irrigation: Beneficial impact. Beneficial impact. GS-4: Ground Continuation of A2-GS-3: Ground A3-GS-4: Ground No impact. acceleration and existing conditions. acceleration and acceleration and shaking: Less than shaking: Less than shaking: Less than significant impact.
    [Show full text]
  • NASA Study Connects Southern California, Mexico Faults 10 October 2018, by Esprit Smith
    NASA study connects Southern California, Mexico faults 10 October 2018, by Esprit Smith fault zone that is still developing, where repeated earthquakes have not yet created a smoother, single fault instead of several strands. The Ocotillo section was the site of a magnitude 5.7 aftershock that ruptured on a 5-mile-long (8-kilometer-long) fault buried under the California desert two months after the 2010 El Mayor- Cucapah earthquake in Baja California, Mexico. The magnitude 7.2 earthquake caused severe damage in the Mexican city of Mexicali and was felt throughout Southern California. It and its aftershocks caused dozens of faults in the region—including many not previously identified—to move. The California desert near the connecting fault segment. Credit: Oleg/IMG_6747_8_9_tonemapped A multiyear study has uncovered evidence that a 21-mile-long (34-kilometer-long) section of a fault links known, longer faults in Southern California and northern Mexico into a much longer continuous system. The entire system is at least 217 miles (350 kilometers) long. Knowing how faults are connected helps scientists understand how stress transfers between faults. Ultimately, this helps researchers understand whether an earthquake on one section of a fault would rupture multiple fault sections, resulting in a much larger earthquake. A team led by scientist Andrea Donnellan of The approximate location of the newly mapped Ocotillo NASA's Jet Propulsion Laboratory in Pasadena, section, which ties together California's Elsinore fault and California, recognized that the south end of Mexico's Laguna Salada fault into one continuous fault system. Credit: NASA/JPL-Caltech California's Elsinore fault is linked to the north end of the Laguna Salada fault system, just north of the international border with Mexico.
    [Show full text]
  • Field Trip Log Gulf of California Rift System: Laguna Salda-Valles Chico-San Feli- Pe, Baja California, México
    Geos, Vol. 28, No. 1, Septiembre, 2008 FIELD TRIP LOG GULF OF CALIFORNIA RIFT SYSTEM: LAGUNA SALDA-VALLES CHICO-SAN FELI- PE, BAJA CALIFORNIA, MÉXICO Francisco Suárez-Vidal Departamento de Geologia División de Ciencias de la Tierra CICESE Oblique rifts, in which rift margins are oblique to the direction of continental separation, are reasonably common in mo- dern record, e.g. the Red Sea and Gulf of Aden, the Tanganyika-Malawi-Rukwa rifts and the Gulf of California (McKenzie et al., 1970; Rosendhal et al., 1992; Stoke and Hodges, 1989; Manighetti et al., 1998; Nagy and Stock, 2000; Persaud, P., 2003; Persaud, et al., 2003). Although, how the oblique rift evolves is not well known. Oblique rifting remain poorly understand relative to those orthogonal rifts, where the rift margins are approximately perpendicular to the extension direction, and to strike-slip system (Axen and Fletcher, 1998). The Gulf of California is perhaps the best modern example of oblique continental rifting where we can study the pro- cesses of such rifting as they lead to the interplate transfer of a continental fragment. This area presents unique op- portunities for understanding key processes at transtensional plate margins, which is important for energy and mineral exploration, as well as for interpretation of tectonics ancient continental margins (Umhoefer and Dorsey, 1997). One of the main features along the length of the gulf is the fault system which connects active basins (incipient spreading centers) from south to north (Fig 1). Two main structural regions are defined. From the mouth of the gulf to the latitude of the Tiburon and Angel de La Guardia Islands several basins bathymetrically are well expressed, among them; the Pescaderos, Farallon, Carmen, Guaymas, San Pedro Martir and Salsipudes Basins.
    [Show full text]
  • Bathymetry and Active Geological Structures in the Upper Gulf of California Luis G
    BOLETÍN DE LA SOCIEDAD GEOLÓ G ICA MEXICANA VOLU M EN 61, NÚ M . 1, 2009 P. 129-141 Bathymetry and active geological structures in the Upper Gulf of California Luis G. Alvarez1*, Francisco Suárez-Vidal2, Ramón Mendoza-Borunda2, Mario González-Escobar3 1 Departamento de Oceanografía Física, División de Oceanología. 2 Departamento de Geología, División de Ciencias de la Tierra. 3 Departamento de Geofísica Aplicada, División de Ciencias de la Tierra. Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California, México, 22860. * Corresponding author: E-mail: [email protected] Abstract Bathymetric surveys made between 1994 and 1998 in the Upper Gulf of California revealed that the bottom relief is dominated by narrow, up to 50 km long, tidal ridges and intervening troughs. These sedimentary linear features are oriented NW-SE, and run across the shallow shelf to the edge of Wagner Basin. Shallow tidal ridges near the Colorado River mouth are proposed to be active, while segments in deeper water are considered as either moribund or in burial stage. Superposition of seismic swarm epicenters and a seismic reflection section on bathymetric features indicate that two major ridge-troughs structures may be related to tectonic activity in the region. Off the Sonora coast the alignment and gradient of the isobaths matches the extension of the Cerro Prieto Fault into the Gulf. A similar gradient can be seen over the west margin of the Wagner Basin, where in 1970 a seismic swarm took place (Thatcher and Brune, 1971) overlapping with a prominent ridge-trough structure in the middle of the Upper Gulf.
    [Show full text]
  • Nehrp Final Technical Report
    NEHRP FINAL TECHNICAL REPORT Grant Number: G16AP00097 Term of Award: 9/2016-9/2017, extended to 12/2017 PI: Whitney Maria Behr1 Quaternary geologic slip rates along the Agua Blanca fault: implications for hazard to southern California and northern Baja California Abstract The Agua Blanca and San Miguel-Vallecitos Faults transfer ~14% of San Andreas-related Pacific-North American dextral plate motion across the Peninsular Ranges of Baja California. The Late Quaternary slip histories for the these faults are integral to mapping how strain is transferred by the southern San Andreas fault system from the Gulf of California to the western edge of the plate boundary, but have remained inadequately constrained. We present the first quantitative geologic slip rates for the Agua Blanca Fault, which of the two fault is characterized by the most prominent tectonic geomorphologic evidence of significant Late Quaternary dextral slip. Four slip rates from three sites measured using new airborne lidar and both cosmogenic 10Be exposure and optically stimulated luminescence geochronology suggest a steady along-strike rate of ~3 mm/a over 4 time frames. Specifically, the most probable Late Quaternary slip rates for the Agua Blanca Fault are 2.8 +0.8/-0.6 mm/a since ~65.1 ka, 3.0 +1.4/-0.8 mm/a since ~21.8 ka, 3.4 +0.8/-0.6 mm/a since ~11.8 ka, and 3.0 +3.0/-1.5 mm/a since ~1.6 ka, with all uncertainties reported at 95% confidence. These rates suggest that the Agua Blanca Fault accommodates at least half of plate boundary slip across northern Baja California.
    [Show full text]
  • Fault Segmentation and Controls of Rupture Initiation and Termination
    DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY PROCEEDINGS OF CONFERENCE XLV Fault Segmentation and Controls of Rupture Initiation and Termination Palm Springs, California Sponsored by U.S. GEOLOGICAL SURVEY NATIONAL EARTHQUAKE-HAZARDS REDUCTION PROGRAM Editors and Convenors David P. Schwartz Richard H. Sibson U.S. Geological Survey Department of Geological Sciences Menlo Park, California 94025 University of California Santa Barbara, California 93106 Organizing Committee John Boatwright, U.S. Geological Survey, Menlo Park, California Hiroo Kanamori, California Institute of Technology, Pasadena, California Chris H. Scholz, Lamont-Doherty Geological Observatory, Palisades, New York Open-File Report 89-315 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1989 TABLE OF CONTENTS Page Introduction and Acknowledgments i David P. Schwartz and Richard H. Sibson List of Participants v Geometric features of a fault zone related to the 1 nucleation and termination of an earthquake rupture Keitti Aki Segmentation and recent rupture history 10 of the Xianshuihe fault, southwestern China Clarence R. Alien, Luo Zhuoli, Qian Hong, Wen Xueze, Zhou Huawei, and Huang Weishi Mechanics of fault junctions 31 D J. Andrews The effect of fault interaction on the stability 47 of echelon strike-slip faults Atilla Ay din and Richard A. Schultz Effects of restraining stepovers on earthquake rupture 67 A. Aykut Barka and Katharine Kadinsky-Cade Slip distribution and oblique segments of the 80 San Andreas fault, California: observations and theory Roger Bilham and Geoffrey King Structural geology of the Ocotillo badlands 94 antidilational fault jog, southern California Norman N.
    [Show full text]
  • Genesis of the Quaternary Terraces of the Eastern Sierra El Mayor, Northern Baja California, Mexico
    GENESIS OF THE QUATERNARY TERRACES OF THE EASTERN SIERRA EL MAYOR, NORTHERN BAJA CALIFORNIA, MEXICO An Undergraduate Thesis Presented to The Faculty of California State University, Fullerton Department of Geological Sciences In Partial Fulfillment of the Requirements for the Degree Bachelor of Science in Geology By Rene Perez 2003 Phil Armstrong, Faculty Advisor Genesis of the Quaternary Terraces of the Eastern Sierra El Mayor, Northern Baja California, Mexico A Thesis Presented to the Faculty of California State University, Fullerton In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Geology By: Rene Perez, Department of Geological Sciences, California State University, Fullerton Thesis Advisor: Dr. Phil Armstrong, Department of Geological Sciences, California State University, Fullerton TABLE OF CONTENTS ABSTRACT....................................................................................................................... 1 INTRODUCTION............................................................................................................... 2 TERRACES AS INDICATORS OF GEOLOGIC ACTIVITY ................................................... 6 REGIONAL GEOLOGY..................................................................................................... 9 Geology of the Sierra Cucapa and Sierra El Mayor ............................................................................9 Faults in the Sierra Cucapa and Sierra El Mayor..............................................................................12
    [Show full text]
  • Lajoie Mines 0052E 11684.Pdf (8.185Mb)
    NEW APPROACHES TO STUDYING SHALLOW FAULT ZONE PROPERTIES WITH HIGH-RESOLUTION TOPOGRAPHY by Lia J. Lajoie c Copyright by Lia J. Lajoie, 2019 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geophysics). Golden, Colorado Date Signed: Lia J. Lajoie Signed: Dr. Edwin Karl Nissen Thesis Advisor Golden, Colorado Date Signed: Dr. John Bradford Professor and Head Department of Geophysics ii ABSTRACT Coseismic surface deformation fields provide us with information about the physical and mechanical properties of faults and fault zones. Recent advances in geodetic imaging and analysis allow us to map deformation and infer fault properties at spatial resolutions that were previously unattainable. These high-resolution, remotely-sensed datasets provide an intermediate observational scale that bridges the gap between very local field measure- ments of surficial faulting and far-field satellite geodesy which samples deeper slip, allowing previously-overlooked shallow-subsurface fault structure to be probed. In this thesis, I use new analytical techniques to study the shallow sub-surface properties of three recent and historic earthquakes that together are representative of diverse, remotely-sensed data types now available. For each earthquake, I (along with co-authors) employ a separate, recently- developed technique that is best suited for the specific dataset(s) involved, and in this way, explore how extant datasets can be analyzed (or re-analyzed) to reveal new characteristics of the earthquakes. The earthquakes studied (which comprise the three chapters of this thesis) are: (1) The 2016 Mw 7.0 Kumamoto, Japan earthquake, for which pre- and post-event gridded digital elevation model (DEM) datasets are available.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Elsinore fault zone, Laguna Salada section (Class A) No. 126g Last Review Date: 1998-12-01 citation for this record: Treiman, J.A., compiler, 1998, Fault number 126g, Elsinore fault zone, Laguna Salada section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:16 PM. Synopsis General: A major dextral strike-slip fault zone that is part of the San Andreas fault system. Research studies have been done to assess faulting on most of the sections, and have documented Holocene activity for the length of the fault zone with a slip rate around 4–5 mm/yr. Multiple events have only been dated on the Whittier fault and Glen Ivy North fault strand, so interaction between faults and adjacent sections is not well-known. Multiple strands within several sections mean that the studies are not always fully representative of the whole section. Numerous consulting reports (not summarized herein) that have addressed location and recency of faulting are on file with the State of California, California Geological Survey, as part of the records of their Alquist-Priolo Earthquake Fault Zoning Program. Sections: This fault has 7 sections. Sections are selected
    [Show full text]
  • Imperial Irrigation District Final EIS/EIR
    Final Environmental Impact Report/ Environmental Impact Statement Imperial Irrigation District Water Conservation and Transfer Project VOLUME 2 of 6 (Section 3.3—Section 9.23) See Volume 1 for Table of Contents Prepared for Bureau of Reclamation Imperial Irrigation District October 2002 155 Grand Avenue Suite 1000 Oakland, CA 94612 SECTION 3.3 Geology and Soils 3.3 GEOLOGY AND SOILS 3.3 Geology and Soils 3.3.1 Introduction and Summary Table 3.3-1 summarizes the geology and soils impacts for the Proposed Project and Alternatives. TABLE 3.3-1 Summary of Geology and Soils Impacts1 Alternative 2: 130 KAFY Proposed Project: On-farm Irrigation Alternative 3: 300 KAFY System 230 KAFY Alternative 4: All Conservation Alternative 1: Improvements All Conservation 300 KAFY Measures No Project Only Measures Fallowing Only LOWER COLORADO RIVER No impacts. Continuation of No impacts. No impacts. No impacts. existing conditions. IID WATER SERVICE AREA AND AAC GS-1: Soil erosion Continuation of A2-GS-1: Soil A3-GS-1: Soil A4-GS-1: Soil from construction existing conditions. erosion from erosion from erosion from of conservation construction of construction of fallowing: Less measures: Less conservation conservation than significant than significant measures: Less measures: Less impact with impact. than significant than significant mitigation. impact. impact. GS-2: Soil erosion Continuation of No impact. A3-GS-2: Soil No impact. from operation of existing conditions. erosion from conservation operation of measures: Less conservation than significant measures: Less impact. than significant impact. GS-3: Reduction Continuation of A2-GS-2: A3-GS-3: No impact. of soil erosion existing conditions.
    [Show full text]
  • The Structural Evolution of Pull-Apart Basins in Response to Changes in Plate Motion
    Louisiana State University LSU Digital Commons Faculty Publications Department of Geology and Geophysics 4-1-2021 The structural evolution of pull-apart basins in response to changes in plate motion Georgios Pavlos Farangitakis Durham University Ken J.W. McCaffrey Durham University Ernst Willingshofer Utrecht University Mark B. Allen Durham University Lara M. Kalnins The University of Edinburgh See next page for additional authors Follow this and additional works at: https://digitalcommons.lsu.edu/geo_pubs Recommended Citation Farangitakis, G., McCaffrey, K., Willingshofer, E., Allen, M., Kalnins, L., van Hunen, J., Persaud, P., & Sokoutis, D. (2021). The structural evolution of pull-apart basins in response to changes in plate motion. Basin Research, 33 (2), 1603-1625. https://doi.org/10.1111/bre.12528 This Article is brought to you for free and open access by the Department of Geology and Geophysics at LSU Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Authors Georgios Pavlos Farangitakis, Ken J.W. McCaffrey, Ernst Willingshofer, Mark B. Allen, Lara M. Kalnins, Jeroen van Hunen, Patricia Persaud, and Dimitrios Sokoutis This article is available at LSU Digital Commons: https://digitalcommons.lsu.edu/geo_pubs/1329 Received: 27 July 2020 | Revised: 5 November 2020 | Accepted: 12 November 2020 DOI: 10.1111/bre.12528 EAGE RESEARCH ARTICLE The structural evolution of pull-apart basins in response to changes in plate motion Georgios-Pavlos Farangitakis1 | Ken J. W. McCaffrey1 | Ernst Willingshofer2 | Mark B. Allen1 | Lara M. Kalnins3 | Jeroen van Hunen1 | Patricia Persaud4 | Dimitrios Sokoutis2,5 1Department of Earth Sciences, Durham University, Durham, United Kingdom Abstract 2Department of Earth Sciences, Utrecht Pull-apart basins are structural features linked to the interactions between strike-slip University, Utrecht, the Netherlands and extensional tectonics.
    [Show full text]
  • Cucapah Earthquake of Baja California in Mexico
    LETTERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1213 Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico Shengji Wei1*, Eric Fielding2, Sebastien Leprince1, Anthony Sladen1,3, Jean-Philippe Avouac1, Don Helmberger1, Egill Hauksson1, Risheng Chu1, Mark Simons1, Kenneth Hudnut1,4, Thomas Herring5 and Richard Briggs6 The geometry of faults is usually thought to be more 118° W 116° W 114° W complicated at the surface than at depth and to control the GCMT Salton Sea SAF 34° N initiation, propagation and arrest of seismic ruptures1–6. The fault system that runs from southern California into Mexico is This study California a simple strike-slip boundary: the west side of California and 46 Arizona Pacific platem Sonora 32° N Mexico moves northwards with respect to the east. However, 33° N m ¬1 the Mw 7.2 2010 El Mayor–Cucapah earthquake on this fault CaliforniaGulf of system produced a pattern of seismic waves that indicates a Elsinore f 7 F4 far more complex source than slip on a planar strike-slip fault . ault Here we use geodetic, remote-sensing and seismological data iver to reconstruct the fault geometry and history of slip during this CucapahSierra fault lley ° earthquake. We find that the earthquake produced a straight 32.5 N F2 Mexicali va USA Latitude 120-km-long fault trace that cut through the Cucapah mountain ColoradoMexico r range and across the Colorado River delta. However, at depth, Sierra El Mayor f the fault is made up of two different segments connected by F1 ◦ Laguna Salad a small extensional fault.
    [Show full text]