A Triune Philosophy of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

A Triune Philosophy of Mathematics A Triune Philosophy of Mathematics Dusty Wilson Highline College June 2015 Abstract What is mathematics and is it discovered or invented? The Humanist, Platonist, and Foundationalist each provide answers. But are the options within the philosophy of mathematics so limited? Rather than viewing and describing mathematics in a mutually exclusive manner, each of these approaches includes components of truth from a greater triune philosophy of mathematics. This paper will briefly outline existing philosophies and then introduce an inclusive triune paradigm through which to explore fundamental questions about mathematics. 1 Introduction My parents were hippies who were leery of traditional education. So out of a desire to both protect and also encourage questioning they put me into alter- native public schools. These weren't edgy enough and so they allowed me to homeschool junior high into high school. This put me on a fast track and I began community college during what would have been my junior year of high school. I jumped right into calculus and worked my way through differential equations. After two years I transferred to The Evergreen State College to continue my alternative education with an interdisciplinary liberal arts degree studying political science, literature, and mathematics. With such an eclectic background, I didn't have a clear direction following my bachelor's degree so I went on to graduate school in mathematics thinking, \If this doesn't work out, I can do something else later." While a graduate student I was given the opportunity to teach and my career path suddenly became clear. I was hired by Highline College right out of graduate school where I became the youngest tenured faculty member in College history. While this makes me sound smart, it really means that I had a lot of growing to do as an educator and colleague. But I was in a supportive environment and by my eighth year I was firmly established as a teacher, in service, and in professional growth, and I generally felt that I knew my professional direction. In 2008 I attended a talk by a colleague [2]. The talk itself was on polling and statistics and not related to this paper. However in the midst of the lecture my coworker said, \I think math was invented by people, not discovered." 1 Is math discovered or invented? In all my non-traditional education as well as traditional community college and graduate studies and then continuing into the first eight years of my professional work, I don't once recall having asked myself the question, \Where does math come from?" But while this was the first time these ideas had ever registered in my mind, I have come to realize over the last seven years of study that I had subconsciously adopted a framework for understanding mathematics. As John Synge said, \[E]ach young mathematician who formulates his own philosophy | and all do | should make his decision in full possession of the facts. He should realize that if he follows the pattern of modern mathematics he is heir to a great tradition, but only part heir." [9, pp. 166] This certainly encapsulates my mathematical journey. As I have come to have \full possession of the facts", I've learned that there are three main ways to explain the origin of mathematics. Within each of these broad categories there is a spectrum of nuance. Others have written compelling descriptions of this, but allow me to outline using broad strokes so that I may synthesize the field. The three broad views are as follows. Foundational philosophies: Mathematics is developed from axioms and def- initions using logic Humanistic philosophies of mathematics: Mathematics is invented by hu- mans who are the source of math Mathematical Platonism Also called 'mathematical realism', this view holds that mathematics exists `out there' to be discovered; perhaps owing its existence is to God, but perhaps not While some readers may recognize or be able to articulate their philosophy of mathematics, others may resonate with my story in that I was years into my career as a professional without realizing that I even had a view. I believed mathematics devoid of presupposition without even having the vocabulary to articulate my own presupposition about the field. So as I clarify the basic views available for later synthesis, I encourage you to ask yourself where these views match your training, intuition, and pedagogy. 2 The Foundational Philosophies The first paradigm is that math is logic | this is the basis of the foundational philosophies: intuitionism, logicism, and formalism. If you do research on the philosophy of mathematics, these three views are described over and over again to the point that they nearly define the field. The intuitionists such as Kronecker and Brouwer held that humans create the axioms of logic/mathematics and that we then manipulate these axioms to construct the theorems of mathematics in a constructivist manner. Because it stems from our work, the intuitionism shows existence by demonstrating a for- mula/algorithm/recipe to explain how each entity may be constructed. Because of this, intuitionists rejected proof by contradiction as well as the existence of 2 Foundational Philosophies Intuitionism Logicism Formalism Figure 1: The spectrum of Foundational philosophies Humanistic Philosophies Biology & Brain Language Social Construction Figure 2: A spectrum of humanistic philosophies an actual infinity. For them the source of mathematics was decidedly human. Or as Kronecker famously wrote, \God made the integers, all else is the work of men." [11, pp. 19] The logicists movement was begun by Frege, reached its height with Russell and Whitehead, and concluded with G¨odel. They felt that the axioms of logic were self-evident truths that were known intuitively to the logician. They accepted the rules of logic apriori. In their effort to make solid their foundation, they held that some axioms were self-evident that are not so evident. Certainly the axiom of choice is on this list. Of the foundational camps, logicism was the most fully developed. For the logicist, the source of mathematics was beyond the human experience, self-evident, and discovered (albeit by a select few). The formalists led by Hilbert were perhaps the largest group. They did not concern themselves with the source of the axioms but worked from these using every clever device they could devise. They had no issue with contradiction or infinity. Hilbert referred to math as a meaningless game. [1, pp. 21] The formalist didn't have a strong opinion about where mathematics comes from; after all, it didn't matter anymore than the source of Chess or Monopoly. 3 Mathematical Humanism The second paradigm is mathematical humanism: all mathematics is somehow human in nature/origin. Unlike the foundational philosophies, the subcategories are not as clearly defined. In part this is because mathematical humanism is more current and thus hasn't had as much time to mature. The spectrum within mathematical humanism that I will discuss ranges from a biology-brain model, to language, and ends with social constructivism. Of these, the idea that math is a language is probably the oldest while social constructivism seems most dominant among educators. According to authors Lakoff and Nunez, our ability to perform abstract reasoning is biological. [8, pp. 347] Mathematics is ultimately grounded in ex- perience. [8, pp. 49] It is effective because mathematics is a product of evolution and culture. [8, pp. 378] Mathematics doesn't have an independent existence. It is culture dependent and only exists through grounding metaphors. [8, pp. 3 356, 368] Consequently the philosophy of mathematics is the realm of cognitive science and not the domain of mathematicians. [8, pp. xiii] Where does math- ematics come from? For these philosophers, the source of mathematics is bio- logical and evolutionary and thus serves only an evolutionary purpose. which is to say it has no intended purpose. Perhaps the most commonly held humanistic philosophy of mathematics is summed up in the phrase, \Mathematics is the language of science." This orig- inates with Galileo who wrote: \[The universe] cannot be understood unless one first learns to comprehend the language and read the letters in which it is composed. It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures without which it is humanly im- possible to understand a single word of it." [3, pp. 4] Today this phrase is most often used outside of university math departments because it defines mathe- matics through its applications and universities produce pure mathematicians (more akin to the formalists of the foundational movement). The basic premise of the view is that mathematics is invented as a way to describe discoveries in the natural world. Math isn't monolithic and unchanging because language changes. The strength of this view is that it seems to explain the perceived transcendence and beauty in math by tying it back to science. Mathematics is something people do according to Reuben Hersh. [5, pp. 30] The philosophy of mathematics is the study of what mathematicians do. [5, pp. xii] The emphasis of social constructivism is on practice. As a practice there has been an evolution of mathematical knowledge. [5, pp. 224] This extends even to including proof itself. [5, pp. 6] As such, mathematics is a social construc- tion. It draws on conventions of language, rules, and agreement in establishing truths. Mathematical knowledge and concepts change through conjectures and refutations. The focus is on creation rather than the justification knowledge. [5, pp. 228] 4 Mathematical Platonism The third paradigm is mathematical Platonism (or mathematical realism) and is loosely based on the Plato's theory of forms and divided line.
Recommended publications
  • In Defence of Folk Psychology
    FRANK JACKSON & PHILIP PETTIT IN DEFENCE OF FOLK PSYCHOLOGY (Received 14 October, 1988) It turned out that there was no phlogiston, no caloric fluid, and no luminiferous ether. Might it turn out that there are no beliefs and desires? Patricia and Paul Churchland say yes. ~ We say no. In part one we give our positive argument for the existence of beliefs and desires, and in part two we offer a diagnosis of what has misled the Church- lands into holding that it might very well turn out that there are no beliefs and desires. 1. THE EXISTENCE OF BELIEFS AND DESIRES 1.1. Our Strategy Eliminativists do not insist that it is certain as of now that there are no beliefs and desires. They insist that it might very well turn out that there are no beliefs and desires. Thus, in order to engage with their position, we need to provide a case for beliefs and desires which, in addition to being a strong one given what we now know, is one which is peculiarly unlikely to be undermined by future progress in neuroscience. Our first step towards providing such a case is to observe that the question of the existence of beliefs and desires as conceived in folk psychology can be divided into two questions. There exist beliefs and desires if there exist creatures with states truly describable as states of believing that such-and-such or desiring that so-and-so. Our question, then, can be divided into two questions. First, what is it for a state to be truly describable as a belief or as a desire; what, that is, needs to be the case according to our folk conception of belief and desire for a state to be a belief or a desire? And, second, is what needs to be the case in fact the case? Accordingly , if we accepted a certain, simple behaviourist account of, say, our folk Philosophical Studies 59:31--54, 1990.
    [Show full text]
  • Logic: a Brief Introduction Ronald L
    Logic: A Brief Introduction Ronald L. Hall, Stetson University Chapter 1 - Basic Training 1.1 Introduction In this logic course, we are going to be relying on some “mental muscles” that may need some toning up. But don‟t worry, we recognize that it may take some time to get these muscles strengthened; so we are going to take it slow before we get up and start running. Are you ready? Well, let‟s begin our basic training with some preliminary conceptual stretching. Certainly all of us recognize that activities like riding a bicycle, balancing a checkbook, or playing chess are acquired skills. Further, we know that in order to acquire these skills, training and study are important, but practice is essential. It is also commonplace to acknowledge that these acquired skills can be exercised at various levels of mastery. Those who have studied the piano and who have practiced diligently certainly are able to play better than those of us who have not. The plain fact is that some people play the piano better than others. And the same is true of riding a bicycle, playing chess, and so forth. Now let‟s stretch this agreement about such skills a little further. Consider the activity of thinking. Obviously, we all think, but it is seldom that we think about thinking. So let's try to stretch our thinking to include thinking about thinking. As we do, and if this does not cause too much of a cramp, we will see that thinking is indeed an activity that has much in common with other acquired skills.
    [Show full text]
  • The Philosophy of Mathematics: a Study of Indispensability and Inconsistency
    Claremont Colleges Scholarship @ Claremont Scripps Senior Theses Scripps Student Scholarship 2016 The hiP losophy of Mathematics: A Study of Indispensability and Inconsistency Hannah C. Thornhill Scripps College Recommended Citation Thornhill, Hannah C., "The hiP losophy of Mathematics: A Study of Indispensability and Inconsistency" (2016). Scripps Senior Theses. Paper 894. http://scholarship.claremont.edu/scripps_theses/894 This Open Access Senior Thesis is brought to you for free and open access by the Scripps Student Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in Scripps Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. The Philosophy of Mathematics: A Study of Indispensability and Inconsistency Hannah C.Thornhill March 10, 2016 Submitted to Scripps College in Partial Fulfillment of the Degree of Bachelor of Arts in Mathematics and Philosophy Professor Avnur Professor Karaali Abstract This thesis examines possible philosophies to account for the prac- tice of mathematics, exploring the metaphysical, ontological, and epis- temological outcomes of each possible theory. Through a study of the two most probable ideas, mathematical platonism and fictionalism, I focus on the compelling argument for platonism given by an ap- peal to the sciences. The Indispensability Argument establishes the power of explanation seen in the relationship between mathematics and empirical science. Cases of this explanatory power illustrate how we might have reason to believe in the existence of mathematical en- tities present within our best scientific theories. The second half of this discussion surveys Newtonian Cosmology and other inconsistent theories as they pose issues that have received insignificant attention within the philosophy of mathematics.
    [Show full text]
  • Validity and Soundness
    1.4 Validity and Soundness A deductive argument proves its conclusion ONLY if it is both valid and sound. Validity: An argument is valid when, IF all of it’s premises were true, then the conclusion would also HAVE to be true. In other words, a “valid” argument is one where the conclusion necessarily follows from the premises. It is IMPOSSIBLE for the conclusion to be false if the premises are true. Here’s an example of a valid argument: 1. All philosophy courses are courses that are super exciting. 2. All logic courses are philosophy courses. 3. Therefore, all logic courses are courses that are super exciting. Note #1: IF (1) and (2) WERE true, then (3) would also HAVE to be true. Note #2: Validity says nothing about whether or not any of the premises ARE true. It only says that IF they are true, then the conclusion must follow. So, validity is more about the FORM of an argument, rather than the TRUTH of an argument. So, an argument is valid if it has the proper form. An argument can have the right form, but be totally false, however. For example: 1. Daffy Duck is a duck. 2. All ducks are mammals. 3. Therefore, Daffy Duck is a mammal. The argument just given is valid. But, premise 2 as well as the conclusion are both false. Notice however that, IF the premises WERE true, then the conclusion would also have to be true. This is all that is required for validity. A valid argument need not have true premises or a true conclusion.
    [Show full text]
  • 1 Critical Thinking: the Very Basics
    1 CRITICAL THINKING: THE VERY BASICS - HANDBOOK Dona Warren, Philosophy Department, The University of Wisconsin – Stevens Point I. RECOGNIZING ARGUMENTS An argument is a unit of reasoning that attempts to prove that a certain idea is true by citing other ideas as evidence. II. ANALYZING ARGUMENTS 1. Identify the ultimate conclusion (the main idea that the argument is trying to prove). Sometimes, this is unstated. 2. Determine which other ideas are important. An idea is important if it helps the argument to establish the truth of the ultimate conclusion. 3. Figure out how these other ideas work together to support the ultimate conclusion. Ideas work together according to four basic patterns of cooperation. Basic Patterns: i. Premise / Ultimate Conclusion Idea Premise - an idea that the argument assumes to be true % without support Inference - the connection that holds between the idea(s) at the top of the arrow and the idea at the bottom of the arrow when the truth of the idea(s) at the top is supposed % to establish the truth of the idea at the bottom - often indicated by conclusion indicator expressions like “therefore” and reason indicator expressions “because.” Idea Ultimate Conclusion – what the argument is ultimately % trying to prove. 2 ii. Subconclusions Idea Idea Subconclusion – an intermediate idea on the way from the % premises to the ultimate conclusion Idea iii. Dependent Reasons Idea + Idea Dependent Reasons – neither idea can support the % conclusion alone but together they can support the conclusion Idea iv. Independent Reasons Independent Reasons – each idea can support the Idea Idea conclusion on its own % Idea This gives us independent lines of reasoning.
    [Show full text]
  • What Is a Logical Argument? What Is Deductive Reasoning?
    What is a logical argument? What is deductive reasoning? Fundamentals of Academic Writing Logical relations • Deductive logic – Claims to provide conclusive support for the truth of a conclusion • Inductive logic – Arguments support a conclusion, but do not claim to show that it is necessarily true Deductive logic • Categorical propositions – Deductive arguments are either valid or invalid. – Premises are either true or not true. – If the argument is valid and the premises are true, then the conclusion is true. Deductive logic • Categorical propositions – All S is P. – No S is P. – Some S is P. – Some S is not P. • Quantity: Some or All • Quality: Positive or Negative (no, not) Deductive logic • Categorical propositions – All dogs are mammals. – No dogs are fish. – Some mammals are carnivores. – Some mammals are not carnivores. • The truth of a proposition is determined by its “fit” with the world. – “Some mammals are carnivores” is true if and only if there are some mammals that eat meat. Deductive logic • Categorical propositions – “Physicians licensed to practice in Japan must pass the National Medical Licensing Board Exam.” – All licensed physicians in Japan are people who passed the Licensing Board Exam. – All S is P. Exercise • Create one or more categorical statements of the following types. Compare your statements with your group members’. – All S is P. – No S is P. (= All S is not-P.) – Some S is P. – Some S is not P. Syllogisms • Syllogism: A conclusion inferred from two premises All Cretans are liars. All liars are dishonest. ∴ All Cretans are dishonest. Syllogisms All Cretans are liars.
    [Show full text]
  • Introduction to Logic and Critical Thinking
    Introduction to Logic and Critical Thinking Version 1.4 Matthew J. Van Cleave Lansing Community College Introduction to Logic and Critical Thinking by Matthew J. Van Cleave is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Table of contents Preface Chapter 1: Reconstructing and analyzing arguments 1.1 What is an argument? 1.2 Identifying arguments 1.3 Arguments vs. explanations 1.4 More complex argument structures 1.5 Using your own paraphrases of premises and conclusions to reconstruct arguments in standard form 1.6 Validity 1.7 Soundness 1.8 Deductive vs. inductive arguments 1.9 Arguments with missing premises 1.10 Assuring, guarding, and discounting 1.11 Evaluative language 1.12 Evaluating a real-life argument Chapter 2: Formal methods of evaluating arguments 2.1 What is a formal method of evaluation and why do we need them? 2.2 Propositional logic and the four basic truth functional connectives 2.3 Negation and disjunction 2.4 Using parentheses to translate complex sentences 2.5 “Not both” and “neither nor” 2.6 The truth table test of validity 2.7 Conditionals 2.8 “Unless” 2.9 Material equivalence 2.10 Tautologies, contradictions, and contingent statements 2.11 Proofs and the 8 valid forms of inference 2.12 How to construct proofs 2.13 Short review of propositional logic 2.14 Categorical logic 2.15 The Venn test of validity for immediate categorical inferences 2.16 Universal statements and existential commitment 2.17 Venn validity for categorical syllogisms Chapter 3: Evaluating inductive arguments and probabilistic and statistical fallacies 3.1 Inductive arguments and statistical generalizations 3.2 Inference to the best explanation and the seven explanatory virtues 3.3 Analogical arguments 3.4 Causal arguments 3.5 Probability 3.6 The conjunction fallacy 3.7 The base rate fallacy 3.8 The small numbers fallacy 3.9 Regression to the mean fallacy 3.10 Gambler’s fallacy Chapter 4: Informal fallacies 4.1 Formal vs.
    [Show full text]
  • Problems on Philosophical Logic
    Problems on Philosophical Logic For each of the five logics treated (temporal, modal, conditional, relevantistic, intuitionistic) the list below first collects verifications ‘left to the reader’ in the corresponding chapter of Philosophical Logic, then adds other problems, introducing while doing so some supplementary topics not treated in the book. In working problems ‘left to the reader’ it is appropriate to use any material up to the point in the book where the problem occurs; in working other problems, it is appropriate to use any material in the pertinent chapter. In all cases, it is appropriate to use results from earlier problems in later problems Instructors adopting the book as a text for a course may obtain solutions to these problems by e-mailing the author [email protected] 2 Temporal Logic Problems ‘left to the reader’ in chapter 2 of Philosophical Logic 1. From page 22: Show that axiom (24a) is true everywhere in every model. 2. From page 24: Do the conjunction case in the proof of the rule of replacement (Rep). 3. From page 25: The lemma needed for the proof of the rule of duality (Dual) is proved by induction on complexity. If A is an atom, then A* is just A while A' is ¬A, so ¬A' is ¬¬A and A* « ¬A' is A « ¬¬A, which is a tautology, hence a theorem; thus the lemma holds in the atomic case. Prove that: (a) show that if A is a negation ¬B and the lemma holds for B it holds for A. (b) show that if A is a conjunction B Ù C and the lemma holds for B and for C, then the lemma holds for A.
    [Show full text]
  • Abductive Reasoning As a Way of Worldmaking
    Foundations of Science, special issue on "The Impact of Radical Constructivism on Science", edited by A. Riegler, 2001, vol. 6, no.4: 361–383. Abductive Reasoning as a Way of Worldmaking Hans Rudi Fischer Heidelberger Institut für systemische Forschung und Therapie Kussmaulstr. 10 D-69120 Heidelberg, Germany The Gods have certainty, whereas to us as men conjecture [only is possible]..” Alcmaion von Kroton (Diels /Kranz, Vol. I,p. 214) "...the true method of philosophical construction is to frame a scheme of ideas , the best that one can, and unflinchingly to explore the interpretation of experience in terms of that scheme." (Alfred North Whitehead 1978, p.xiv) "...man's truth is never absolute because the basis of fact is hypothesis." (Ch. S. Peirce, Writings vol. I, p. 7.) Abstract The author deals with the operational core of logic, i.e. its diverse procedures of inference, in order to show that logically false inferences may in fact be right because - in contrast to logical rationality - they actually enlarge our knowledge of the world. This does not only mean that logically true inferences say nothing about the world, but also that all our inferences are invented hypotheses the adequacy of which cannot be proved within logic but only pragmatically. In conclusion the author demonstrates, through the relationship between rule-following and rationality, that it is most irrational to want to exclude the irrational: it may, at times, be most rational to think and infer irrationally. Focussing on the operational aspects of knowing as inferring does away with the hiatus between logic and life, cognition and the world (reality) - or whatever other dualism one wants to invoke -: knowing means inferring, inferring means rule-governed interpreting, interpreting is a constructive, synthetic act, and a construction that proves adequate (viable) in the “world of experience”, in life, in the praxis of living, is, to the constructivist mind, knowledge.
    [Show full text]
  • Premise Foam
    SAFETY DATA SHEET PREMISE® FOAM 1/11 Version 5.0 / USA Revision Date: 05/18/2021 102000011452 Print Date: 05/19/2021 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING Product identifier Trade name PREMISE® FOAM Product code (UVP) 06335683 SDS Number 102000011452 EPA Registration No. 432-1391 Relevant identified uses of the substance or mixture and uses advised against Use Insecticide Restrictions on use See product label for restrictions. Information on supplier Supplier Bayer Environmental Science A division of Bayer CropScience LP 5000 Centregreen Way, Suite 400 Cary, NC 27513 USA Responsible Department Email: [email protected] Emergency telephone no. Emergency Telephone 1-800-334-7577 Number (24hr/ 7 days) Product Information 1-800-331-2867 Telephone Number SECTION 2: HAZARDS IDENTIFICATION Classification in accordance with regulation HCS 29CFR §1910.1200 Gases under pressure: Compressed gas Labelling in accordance with regulation HCS 29CFR §1910.1200 Signal word: Warning Hazard statements Contains gas under pressure; may explode if heated. Precautionary statements SAFETY DATA SHEET PREMISE® FOAM 2/11 Version 5.0 / USA Revision Date: 05/18/2021 102000011452 Print Date: 05/19/2021 Protect from sunlight. Store in a well-ventilated place. Hazards Not Otherwise Classified (HNOC) No physical hazards not otherwise classified. No health hazards not otherwise classified. SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS Hazardous Component Name CAS-No. Concentration % by weight Imidacloprid 138261-41-3 0.05 Fatty alcohol ethoxylate 66455-15-0 2.0 Isobutane 75-28-5 6.75 SECTION 4: FIRST AID MEASURES Description of first aid measures General advice When possible, have the product container or label with you when calling a poison control center or doctor or going for treatment.
    [Show full text]
  • Nominalism-20K2vml.Pdf
    NOMINALISM Zoltán Gendler Szabó The Sage School of Philosophy Cornell University 218 Goldwin Smith Hall Ithaca, NY 14853-3201 e-mail: [email protected] tel.: 607.272.6824 forthcoming in Michael Loux and Dean Zimmerman eds., Oxford Handbook of Metaphysics. Oxford: Oxford University Press. Draft of May 22, 2001 0. Introduction 1. The nominalist thesis 1.1. Are there… 1.2. … abstract… 1.3. …entities? 2. How to be a nominalist 2.1. “Speak with the vulgar …” 2.2. “…think with the learned” 3. Arguments for nominalism 3.1. Intelligibility, physicalism, and economy 3.2. Causal isolation 4. Arguments against nominalism 4.1. Indispensability 4.2. The Context Principle 5. A middle way? 0. Introduction Are there numbers? What about directions, sets, shapes, animal species, properties, relations, propositions, linguistic expressions, meanings, concepts, rights, values, or any other abstract entities? There are two sorts of answers to such questions: straight ones and oblique ones. The straight answers are typically introduced by the expression “of course”, as in “Of course there are, otherwise how could sentences like ‘2+2=4’ and ‘There is something Napoleon and Alexander have in common’ be true?” and “Of course 1 there aren’t, for how could we even know or speak of things that are causally inert?” The oblique answers are usually headed by the locution “well, you know”, as in “Well, you know that really depends on whether you take this to be an internal or external question” and “Well, you know that actually depends on whether you mean ‘exist’ in a thick or thin sense.” Analytic philosophers tend to feel a strong inclination towards the clear-cut.
    [Show full text]
  • Philosophy 109, Modern Logic, Queens College
    Philosophy 109, Modern Logic, Queens College Russell Marcus, Instructor email: [email protected] website: http://philosophy.thatmarcusfamily.org Office phone: (718) 997-5287 Introduction, §§1.1 and 1.4 I. Defining ‘Logic’ Consider the following pair of definitions: A. Logic is the study of argument. B. Arguments ares what logic studies. There is a circularity here, which makes the definitions unhelpful. This circularity is a formal result. We study formal results, in logic. Now, replace B., above, with: B’. An argument is a set of statements, called premises, intended to establish a specific point, called the conclusion. This is a better definition, not circular, and reduces terms to simpler ones. An alternative description of logic: the rules of reasoning. A big philosophical question: Is logic descriptive, representing how we actually reason? Or is it prescriptive, setting out rules for good reasoning? Before we can start to answer this question, we have to see what logic looks like, at least a bit. Here’s another definition: a ‘proposition’, or a ‘statement’, is a declarative sentence that has a truth value. We will consider only two truth values: true and false. There are logics with more. The most interesting have three, or infinitely many. Here, we’ll mostly keep it simple, at first. II. Separating Premises from Conclusions Our first task is to analyze arguments, indicating their structures, separating premises from conclusions. Consider the following argument: ‘We may conclude that eating meat is wrong. This may be inferred from the fact that we must kill to get meat. And killing is wrong.’ The conclusion is: ‘Eating meat is wrong.’ The premises are: ‘We must kill to get meat.
    [Show full text]