Introduction to Logic and Critical Thinking

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Logic and Critical Thinking Introduction to Logic and Critical Thinking Version 1.4 Matthew J. Van Cleave Lansing Community College Introduction to Logic and Critical Thinking by Matthew J. Van Cleave is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Table of contents Preface Chapter 1: Reconstructing and analyzing arguments 1.1 What is an argument? 1.2 Identifying arguments 1.3 Arguments vs. explanations 1.4 More complex argument structures 1.5 Using your own paraphrases of premises and conclusions to reconstruct arguments in standard form 1.6 Validity 1.7 Soundness 1.8 Deductive vs. inductive arguments 1.9 Arguments with missing premises 1.10 Assuring, guarding, and discounting 1.11 Evaluative language 1.12 Evaluating a real-life argument Chapter 2: Formal methods of evaluating arguments 2.1 What is a formal method of evaluation and why do we need them? 2.2 Propositional logic and the four basic truth functional connectives 2.3 Negation and disjunction 2.4 Using parentheses to translate complex sentences 2.5 “Not both” and “neither nor” 2.6 The truth table test of validity 2.7 Conditionals 2.8 “Unless” 2.9 Material equivalence 2.10 Tautologies, contradictions, and contingent statements 2.11 Proofs and the 8 valid forms of inference 2.12 How to construct proofs 2.13 Short review of propositional logic 2.14 Categorical logic 2.15 The Venn test of validity for immediate categorical inferences 2.16 Universal statements and existential commitment 2.17 Venn validity for categorical syllogisms Chapter 3: Evaluating inductive arguments and probabilistic and statistical fallacies 3.1 Inductive arguments and statistical generalizations 3.2 Inference to the best explanation and the seven explanatory virtues 3.3 Analogical arguments 3.4 Causal arguments 3.5 Probability 3.6 The conjunction fallacy 3.7 The base rate fallacy 3.8 The small numbers fallacy 3.9 Regression to the mean fallacy 3.10 Gambler’s fallacy Chapter 4: Informal fallacies 4.1 Formal vs. informal fallacies 4.1.1 Composition fallacy 4.1.2 Division fallacy 4.1.3 Begging the question fallacy 4.1.4 False dichotomy 4.1.5 Equivocation 4.2 Slippery slope fallacies 4.2.1 Conceptual slippery slope 4.2.2 Causal slippery slope 4.3 Fallacies of relevance 4.3.1 Ad hominem 4.3.2 Straw man 4.3.3 Tu quoque 4.3.4 Genetic 4.3.5 Appeal to consequences 4.3.6 Appeal to authority Answers to exercises Glossary/Index Preface Preface This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a “critical thinking textbook.” The formal logic in chapter 2 is intended to give an elementary introduction to formal logic. Specifically, chapter 2 introduces several different formal methods for determining whether an argument is valid or invalid (truth tables, proofs, Venn diagrams). I contrast these formal methods with the informal method of determining validity introduced in chapter 1. What I take to be the central theoretical lesson with respect to the formal logic is simply that of understanding the difference between formal and informal methods of evaluating an argument’s validity. I believe there are also practical benefits of learning the formal logic. First and foremost, once one has internalized some of the valid forms of argument, it is easy to impose these structures on arguments one encounters. The ability to do this can be of use in evaluating an argumentative passage, especially when the argument concerns a topic with which one is not very familiar (such as on the GRE or LSAT). However, what I take to be of far more practical importance is the skill of being able to reconstruct and evaluate arguments. This skill is addressed in chapter 1, where the central ideas are that of using the principle of charity to put arguments into standard form and of using the informal test of validity to evaluate those arguments. Since the ability to reconstruct and evaluate arguments is a skill, one must practice in order to acquire it. The exercises in each section are intended to give students some practice, but in order to really master the skill, one must practice much, much more than simply completing the exercises in the text. It makes about as much sense to say that one could become a critical thinker by reading a critical thinking textbook as that one could become fluent in French by reading a French textbook. Logic and critical thinking, like learning a foreign language, takes practice because it is a skill. While chapters 1 and 2 mainly concern deductive arguments, chapter 3 addresses inductive arguments, including probabilistic and statistical fallacies. In a world in which information is commonly couched within probabilistic and statistical frameworks, understanding these basic concepts, as well as some of the common mistakes is essential for understanding our world. I have tried to i Preface write chapter 3 with an eye towards this understanding. As with all the chapters, I have tried to walk the fine line between being succinct without sacrificing depth. Chapter 4 picks out what I take to be some of the most common fallacies, both formal and informal. In my experience, many critical thinking textbooks end up making the fallacies sound obvious; one is often left wondering how anyone could commit such a fallacy. In my discussion of the fallacies I have tried to correct this not only in the particular examples I use in the text and exercises, but also by discussing what makes a particular fallacy seductive. I have used numerous different textbooks over the years that I have been teaching logic and critical thinking courses. Some of them were very good; others were not. Although this textbook is my attempt to improve on what I’ve encountered, I am indebted to a number of textbooks that have shaped how I teach logic and critical thinking. In particular, Sinnott-Armstrong and Fogelin’s Understanding Arguments: An Introduction to Informal Logic and Copi and Cohen’s Introduction to Logic have influenced how I present the material here (although this may not be obvious). My interest in better motivating the seductiveness of the fallacies is influenced by Daniel Kahneman’s work in psychology (for which he won the Nobel Prize in economics in 2002). This textbook is an “open textbook” that is licensed under the Creative Commons Attribution 4.0 license (CC BY 4.0). Anyone can take this work and alter it for their own purposes as long as they give appropriate credit to me, noting whether or not you have altered the text. (If you would like to alter the text but have come across this textbook in PDF format, please do not hesitate to email me at [email protected] and I will send you the text in a file format that is easier to manipulate.) At Lansing Community College, my place of employment, we have undertaken an initiative to reduce the cost of textbooks. I see this as an issue of access to education and even an issue of justice. Some studies have shown that without access to the textbook, a student’s performance in the class will suffer. Many students lack access to a textbook simply because they do not buy it in the first place since there are more pressing things to pay for (rent, food, child care, etc.) and because the cost of some textbooks is prohibitive. Moreover, both professors and students are beholden to publishers who profit from selling textbooks (professors, because the content of the course is set by the author of the textbook, and perhaps market forces, rather than by the professor herself; students, because they must buy the newest ii Preface editions of increasingly expensive textbooks). If education is necessary for securing certain basic human rights (as philosophers like Martha Nussbaum have argued), then lack of access to education is itself an issue of justice. Providing high quality, low-cost textbooks is one, small part of making higher education more affordable and thus more equitable and just. This open textbook is a contribution towards that end. Matthew J. Van Cleave January 4, 2016 iii Chapter 1: Reconstructing and analyzing arguments 1.1 What is an argument? This is an introductory textbook in logic and critical thinking. Both logic and critical thinking centrally involve the analysis and assessment of arguments. “Argument” is a word that has multiple distinct meanings, so it is important to be clear from the start about the sense of the word that is relevant to the study of logic. In one sense of the word, an argument is a heated exchange of differing views as in the following: Sally: Abortion is morally wrong and those who think otherwise are seeking to justify murder! Bob: Abortion is not morally wrong and those who think so are right-wing bigots who are seeking to impose their narrow-minded views on all the rest of us! Sally and Bob are having an argument in this exchange. That is, they are each expressing conflicting views in a heated manner. However, that is not the sense of “argument” with which logic is concerned. Logic concerns a different sense of the word “argument.” An argument, in this sense, is a reason for thinking that a statement, claim or idea is true.
Recommended publications
  • Conjunction Fallacy' Revisited: How Intelligent Inferences Look Like Reasoning Errors
    Journal of Behavioral Decision Making J. Behav. Dec. Making, 12: 275±305 (1999) The `Conjunction Fallacy' Revisited: How Intelligent Inferences Look Like Reasoning Errors RALPH HERTWIG* and GERD GIGERENZER Max Planck Institute for Human Development, Berlin, Germany ABSTRACT Findings in recent research on the `conjunction fallacy' have been taken as evid- ence that our minds are not designed to work by the rules of probability. This conclusion springs from the idea that norms should be content-blind Ð in the present case, the assumption that sound reasoning requires following the con- junction rule of probability theory. But content-blind norms overlook some of the intelligent ways in which humans deal with uncertainty, for instance, when drawing semantic and pragmatic inferences. In a series of studies, we ®rst show that people infer nonmathematical meanings of the polysemous term `probability' in the classic Linda conjunction problem. We then demonstrate that one can design contexts in which people infer mathematical meanings of the term and are therefore more likely to conform to the conjunction rule. Finally, we report evidence that the term `frequency' narrows the spectrum of possible interpreta- tions of `probability' down to its mathematical meanings, and that this fact Ð rather than the presence or absence of `extensional cues' Ð accounts for the low proportion of violations of the conjunction rule when people are asked for frequency judgments. We conclude that a failure to recognize the human capacity for semantic and pragmatic inference can lead rational responses to be misclassi®ed as fallacies. Copyright # 1999 John Wiley & Sons, Ltd. KEY WORDS conjunction fallacy; probabalistic thinking; frequentistic thinking; probability People's apparent failures to reason probabilistically in experimental contexts have raised serious concerns about our ability to reason rationally in real-world environments.
    [Show full text]
  • Chrysippus's Dog As a Case Study in Non-Linguistic Cognition
    Chrysippus’s Dog as a Case Study in Non-Linguistic Cognition Michael Rescorla Abstract: I critique an ancient argument for the possibility of non-linguistic deductive inference. The argument, attributed to Chrysippus, describes a dog whose behavior supposedly reflects disjunctive syllogistic reasoning. Drawing on contemporary robotics, I urge that we can equally well explain the dog’s behavior by citing probabilistic reasoning over cognitive maps. I then critique various experimentally-based arguments from scientific psychology that echo Chrysippus’s anecdotal presentation. §1. Language and thought Do non-linguistic creatures think? Debate over this question tends to calcify into two extreme doctrines. The first, espoused by Descartes, regards language as necessary for cognition. Modern proponents include Brandom (1994, pp. 145-157), Davidson (1984, pp. 155-170), McDowell (1996), and Sellars (1963, pp. 177-189). Cartesians may grant that ascribing cognitive activity to non-linguistic creatures is instrumentally useful, but they regard such ascriptions as strictly speaking false. The second extreme doctrine, espoused by Gassendi, Hume, and Locke, maintains that linguistic and non-linguistic cognition are fundamentally the same. Modern proponents include Fodor (2003), Peacocke (1997), Stalnaker (1984), and many others. Proponents may grant that non- linguistic creatures entertain a narrower range of thoughts than us, but they deny any principled difference in kind.1 2 An intermediate position holds that non-linguistic creatures display cognitive activity of a fundamentally different kind than human thought. Hobbes and Leibniz favored this intermediate position. Modern advocates include Bermudez (2003), Carruthers (2002, 2004), Dummett (1993, pp. 147-149), Malcolm (1972), and Putnam (1992, pp. 28-30).
    [Show full text]
  • A Task-Based Taxonomy of Cognitive Biases for Information Visualization
    A Task-based Taxonomy of Cognitive Biases for Information Visualization Evanthia Dimara, Steven Franconeri, Catherine Plaisant, Anastasia Bezerianos, and Pierre Dragicevic Three kinds of limitations The Computer The Display 2 Three kinds of limitations The Computer The Display The Human 3 Three kinds of limitations: humans • Human vision ️ has limitations • Human reasoning 易 has limitations The Human 4 ️Perceptual bias Magnitude estimation 5 ️Perceptual bias Magnitude estimation Color perception 6 易 Cognitive bias Behaviors when humans consistently behave irrationally Pohl’s criteria distilled: • Are predictable and consistent • People are unaware they’re doing them • Are not misunderstandings 7 Ambiguity effect, Anchoring or focalism, Anthropocentric thinking, Anthropomorphism or personification, Attentional bias, Attribute substitution, Automation bias, Availability heuristic, Availability cascade, Backfire effect, Bandwagon effect, Base rate fallacy or Base rate neglect, Belief bias, Ben Franklin effect, Berkson's paradox, Bias blind spot, Choice-supportive bias, Clustering illusion, Compassion fade, Confirmation bias, Congruence bias, Conjunction fallacy, Conservatism (belief revision), Continued influence effect, Contrast effect, Courtesy bias, Curse of knowledge, Declinism, Decoy effect, Default effect, Denomination effect, Disposition effect, Distinction bias, Dread aversion, Dunning–Kruger effect, Duration neglect, Empathy gap, End-of-history illusion, Endowment effect, Exaggerated expectation, Experimenter's or expectation bias,
    [Show full text]
  • Avoiding the Conjunction Fallacy: Who Can Take a Hint?
    Avoiding the conjunction fallacy: Who can take a hint? Simon Klein Spring 2017 Master’s thesis, 30 ECTS Master’s programme in Cognitive Science, 120 ECTS Supervisor: Linnea Karlsson Wirebring Acknowledgments: The author would like to thank the participants for enduring the test session with challenging questions and thereby making the study possible, his supervisor Linnea Karlsson Wirebring for invaluable guidance and good questions during the thesis work, and his fiancée Amanda Arnö for much needed mental support during the entire process. 2 AVOIDING THE CONJUNCTION FALLACY: WHO CAN TAKE A HINT? Simon Klein Humans repeatedly commit the so called “conjunction fallacy”, erroneously judging the probability of two events occurring together as higher than the probability of one of the events. Certain hints have been shown to mitigate this tendency. The present thesis investigated the relations between three psychological factors and performance on conjunction tasks after reading such a hint. The factors represent the understanding of probability and statistics (statistical numeracy), the ability to resist intuitive but incorrect conclusions (cognitive reflection), and the willingness to engage in, and enjoyment of, analytical thinking (need-for-cognition). Participants (n = 50) answered 30 short conjunction tasks and three psychological scales. A bimodal response distribution motivated dichotomization of performance scores. Need-for-cognition was significantly, positively correlated with performance, while numeracy and cognitive reflection were not. The results suggest that the willingness to engage in, and enjoyment of, analytical thinking plays an important role for the capacity to avoid the conjunction fallacy after taking a hint. The hint further seems to neutralize differences in performance otherwise predicted by statistical numeracy and cognitive reflection.
    [Show full text]
  • Critical Thinking STARS Handout Finalx
    Critical Thinking "It is the mark of an educated mind to be able to entertain a thought without accepting it." - Aristotle "The important thing is not to stop questioning." - Albert Einstein What is critical thinking? Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. A Critical Thinker: Asks pertinent questions Assess statements and arguments Is able to admit a lack of understanding or information Has a sense of curiosity Is interested in finding new solutions Examines beliefs, assumptions and opinions and weighs them against facts Listens carefully to others and can give effective feedback Suspends judgment until all facts have been gathered and considered Look for evidence to support assumptions or beliefs Is able to adjust beliefs when new information is found Examines problems closely Is able to reject information that is irrelevant or incorrect Critical Thinking Standards and Questions: The most significant thinking (intellectual) standards/questions: • Clarity o Could you elaborate further on that point? o Could you give me an example? o Could you express
    [Show full text]
  • Thinking About the Ultimate Argument for Realism∗
    Thinking About the Ultimate Argument for Realism∗ Stathis Psillos Department of Philosophy and History of Science University of Athens Panepistimioupolis (University Campus) Athens 15771 Greece [email protected] 1. Introduction Alan Musgrave has been one of the most passionate defenders of scientific realism. Most of his papers in this area are, by now, classics. The title of my paper alludes to Musgrave’s piece “The Ultimate Argument for Realism”, though the expression is Bas van Fraassen’s (1980, 39), and the argument is Hilary Putnam’s (1975, 73): realism “is the only philosophy of science that does not make the success of science a miracle”. Hence, the code-name ‘no-miracles’ argument (henceforth, NMA). In fact, NMA has quite a history and a variety of formulations. I have documented all this in my (1999, chapter 4). But, no matter how exactly the argument is formulated, its thrust is that the success of scientific theories lends credence to the following two theses: a) that scientific theories should be interpreted realistically and b) that, so interpreted, these theories are approximately true. The original authors of the argument, however, did not put an extra stress on novel predictions, which, as Musgrave (1988) makes plain, is the litmus test for the ability of any approach to science to explain the success of science. Here is why reference to novel predictions is crucial. Realistically understood, theories entail too many novel claims, most of them about unobservables (e.g., that ∗ I want to dedicate this paper to Alan Musgrave. His exceptional combination of clear-headed and profound philosophical thinking has been a model for me.
    [Show full text]
  • Graphical Techniques in Debiasing: an Exploratory Study
    GRAPHICAL TECHNIQUES IN DEBIASING: AN EXPLORATORY STUDY by S. Bhasker Information Systems Department Leonard N. Stern School of Business New York University New York, New York 10006 and A. Kumaraswamy Management Department Leonard N. Stern School of Business New York University New York, NY 10006 October, 1990 Center for Research on Information Systems Information Systems Department Leonard N. Stern School of Business New York University Working Paper Series STERN IS-90-19 Forthcoming in the Proceedings of the 1991 Hawaii International Conference on System Sciences Center for Digital Economy Research Stem School of Business IVorking Paper IS-90-19 Center for Digital Economy Research Stem School of Business IVorking Paper IS-90-19 2 Abstract Base rate and conjunction fallacies are consistent biases that influence decision making involving probability judgments. We develop simple graphical techniques and test their eflcacy in correcting for these biases. Preliminary results suggest that graphical techniques help to overcome these biases and improve decision making. We examine the implications of incorporating these simple techniques in Executive Information Systems. Introduction Today, senior executives operate in highly uncertain environments. They have to collect, process and analyze a deluge of information - most of it ambiguous. But, their limited information acquiring and processing capabilities constrain them in this task [25]. Increasingly, executives rely on executive information/support systems for various purposes like strategic scanning of their business environments, internal monitoring of their businesses, analysis of data available from various internal and external sources, and communications [5,19,32]. However, executive information systems are, at best, support tools. Executives still rely on their mental or cognitive models of their businesses and environments and develop heuristics to simplify decision problems [10,16,25].
    [Show full text]
  • In Defence of Folk Psychology
    FRANK JACKSON & PHILIP PETTIT IN DEFENCE OF FOLK PSYCHOLOGY (Received 14 October, 1988) It turned out that there was no phlogiston, no caloric fluid, and no luminiferous ether. Might it turn out that there are no beliefs and desires? Patricia and Paul Churchland say yes. ~ We say no. In part one we give our positive argument for the existence of beliefs and desires, and in part two we offer a diagnosis of what has misled the Church- lands into holding that it might very well turn out that there are no beliefs and desires. 1. THE EXISTENCE OF BELIEFS AND DESIRES 1.1. Our Strategy Eliminativists do not insist that it is certain as of now that there are no beliefs and desires. They insist that it might very well turn out that there are no beliefs and desires. Thus, in order to engage with their position, we need to provide a case for beliefs and desires which, in addition to being a strong one given what we now know, is one which is peculiarly unlikely to be undermined by future progress in neuroscience. Our first step towards providing such a case is to observe that the question of the existence of beliefs and desires as conceived in folk psychology can be divided into two questions. There exist beliefs and desires if there exist creatures with states truly describable as states of believing that such-and-such or desiring that so-and-so. Our question, then, can be divided into two questions. First, what is it for a state to be truly describable as a belief or as a desire; what, that is, needs to be the case according to our folk conception of belief and desire for a state to be a belief or a desire? And, second, is what needs to be the case in fact the case? Accordingly , if we accepted a certain, simple behaviourist account of, say, our folk Philosophical Studies 59:31--54, 1990.
    [Show full text]
  • Arguments Vs. Explanations
    Arguments vs. Explanations Arguments and explanations share a lot of common features. In fact, it can be hard to tell the difference between them if you look just at the structure. Sometimes, the exact same structure can function as an argument or as an explanation depending on the context. At the same time, arguments are very different in terms of what they try to accomplish. Explaining and arguing are very different activities even though they use the same types of structures. In a similar vein, building something and taking it apart are two very different activities, but we typically use the same tools for both. Arguments and explanations both have a single sentence as their primary focus. In an argument, we call that sentence the “conclusion”, it’s what’s being argued for. In an explanation, that sentence is called the “explanandum”, it’s what’s being explained. All of the other sentences in an argument or explanation are focused on the conclusion or explanandum. In an argument, these other sentences are called “premises” and they provide basic reasons for thinking that the conclusion is true. In an explanation, these other sentences are called the “explanans” and provide information about how or why the explanandum is true. So in both cases we have a bunch of sentences all focused on one single sentence. That’s why it’s easy to confuse arguments and explanations, they have a similar structure. Premises/Explanans Conclusion/Explanandum What is an argument? An argument is an attempt to provide support for a claim. One useful way of thinking about this is that an argument is, at least potentially, something that could be used to persuade someone about the truth of the argument’s conclusion.
    [Show full text]
  • Critical Thinking for the Military Professional
    Document created: 17 Jun 04 Critical Thinking For The Military Professional Col W. Michael Guillot “Any complex activity, if it is to be carried on with any degree of virtuosity, calls for appropriate gifts of intellect and temperament …Genius consists in a harmonious combination of elements, in which one or the other ability may predominate, but none may be in conflict with the rest.”1 In a previous article on Strategic leadership I described the strategic environment as volatile, uncertain, complex, and ambiguous (VUCA). Additionally, that writing introduced the concept of strategic competency.2 This article will discuss the most important essential skill for Strategic Leaders: critical thinking. It is hard to imagine a Strategic leader today who does not think critically or at least uses the concept in making decisions. Critical thinking helps the strategic leader master the challenges of the strategic environment. It helps one understand how to bring stability to a volatile world. Critical thinking leads to more certainty and confidence in an uncertain future. This skill helps simplify complex scenarios and brings clarity to the ambiguous lens. Critical thinking is the kind of mental attitude required for success in the strategic environment. In essence, critical thinking is about learning how to think and how to judge and improve the quality of thinking—yours and others. Lest you feel you are already a great critical thinker, consider this, in a recent study supported by the Kellogg Foundation, only four percent of the U.S. organizational
    [Show full text]
  • 7.1 Rules of Implication I
    Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic. The method consists of using sets of Rules of Inference (valid argument forms) to derive either a conclusion or a series of intermediate conclusions that link the premises of an argument with the stated conclusion. The First Four Rules of Inference: ◦ Modus Ponens (MP): p q p q ◦ Modus Tollens (MT): p q ~q ~p ◦ Pure Hypothetical Syllogism (HS): p q q r p r ◦ Disjunctive Syllogism (DS): p v q ~p q Common strategies for constructing a proof involving the first four rules: ◦ Always begin by attempting to find the conclusion in the premises. If the conclusion is not present in its entirely in the premises, look at the main operator of the conclusion. This will provide a clue as to how the conclusion should be derived. ◦ If the conclusion contains a letter that appears in the consequent of a conditional statement in the premises, consider obtaining that letter via modus ponens. ◦ If the conclusion contains a negated letter and that letter appears in the antecedent of a conditional statement in the premises, consider obtaining the negated letter via modus tollens. ◦ If the conclusion is a conditional statement, consider obtaining it via pure hypothetical syllogism. ◦ If the conclusion contains a letter that appears in a disjunctive statement in the premises, consider obtaining that letter via disjunctive syllogism. Four Additional Rules of Inference: ◦ Constructive Dilemma (CD): (p q) • (r s) p v r q v s ◦ Simplification (Simp): p • q p ◦ Conjunction (Conj): p q p • q ◦ Addition (Add): p p v q Common Misapplications Common strategies involving the additional rules of inference: ◦ If the conclusion contains a letter that appears in a conjunctive statement in the premises, consider obtaining that letter via simplification.
    [Show full text]
  • Notes on Pragmatism and Scientific Realism Author(S): Cleo H
    Notes on Pragmatism and Scientific Realism Author(s): Cleo H. Cherryholmes Source: Educational Researcher, Vol. 21, No. 6, (Aug. - Sep., 1992), pp. 13-17 Published by: American Educational Research Association Stable URL: http://www.jstor.org/stable/1176502 Accessed: 02/05/2008 14:02 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=aera. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. http://www.jstor.org Notes on Pragmatismand Scientific Realism CLEOH. CHERRYHOLMES Ernest R. House's article "Realism in plicit declarationof pragmatism. Here is his 1905 statement ProfessorResearch" (1991) is informative for the overview it of it: of scientificrealism.
    [Show full text]