For Peer Review Only

Total Page:16

File Type:pdf, Size:1020Kb

For Peer Review Only BMJ Open BMJ Open: first published as 10.1136/bmjopen-2016-012177 on 30 November 2016. Downloaded from Commonly prescribed drugs associated with cognition: a cross-sectional study in UK Biobank ForJournal: peerBMJ Open review only Manuscript ID bmjopen-2016-012177 Article Type: Research Date Submitted by the Author: 06-Apr-2016 Complete List of Authors: Nevado-Holgado, Alejo; University of Oxford, Psychiatry Kim, Chi-Hun; University of Oxford, Psychiatry Winchester, Laura; University of Oxford, Psychiatry Gallacher, John; University of Oxford, Psychiatry Lovestone, Simon; University of Oxford, Psychiatry <b>Primary Subject Public health Heading</b>: Secondary Subject Heading: Mental health, Pharmacology and therapeutics, Neurology Keywords: PUBLIC HEALTH, MENTAL HEALTH, Cognition, UK biobank http://bmjopen.bmj.com/ on September 26, 2021 by guest. Protected copyright. For peer review only − http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 1 of 16 BMJ Open BMJ Open: first published as 10.1136/bmjopen-2016-012177 on 30 November 2016. Downloaded from 1 2 3 Commonly prescribed drugs associate with cognition: a cross-sectional study 4 in UK Biobank 5 6 7 8 Authors 9 10 Alejo J Nevado-Holgado*, Chi-Hun Kim*, Laura Winchester, John Gallacher, Simon Lovestone 11 12 13 14 15 Address For peer review only 16 17 Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK 18 19 20 21 22 23 Authors’ names and positions 24 25 Alejo J Nevado-Holgado*: Postdoctoral researcher 26 27 Chi-Hun Kim*: Postdoctoral researcher 28 29 Laura Winchester: Postdoctoral researcher 30 31 John Gallacher: Professor 32 33 Simon Lovestone: Professor 34 http://bmjopen.bmj.com/ 35 *These authors contributed equally to this work. 36 37 38 39 40 Correspondence to: S Lovestone [email protected] 41 42 on September 26, 2021 by guest. Protected copyright. 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1 For peer review only − http://bmjopen.bmj.com/site/about/guidelines.xhtml BMJ Open Page 2 of 16 BMJ Open: first published as 10.1136/bmjopen-2016-012177 on 30 November 2016. Downloaded from Abstract 1 2 Objective To investigate medications associated with cognitive function 3 4 Design Population-based cross-sectional cohort study 5 6 Setting UK Biobank 7 8 Participants UK Biobank participants aged 37-73 years who completed cognitive tests at the baseline visit 9 in 2006-2010 10 11 Main outcome measures Cognitive test outcomes on verbal-numerical reasoning test (n=165493), 12 memory test (n=482766) and reaction time test (n=496813). 13 14 Results Most drugs were not associated with significant changes in any of the cognitive tests (262 of 368) 15 For peer review only 16 after adjusting for age, gender, education, household income, ethnicity, assessment centre and concurrent 17 diagnoses and other medications. Among those that were, the majority were associated with poorer 18 cognitive performance. Drugs used for nervous system disorders showed the largest effect size with a 19 direction of effect associated with poorer cognition (effect size ± 95% confidence interval) for reasoning (as 20 assessed by number of corrects), memory (assessed by number of errors) and reaction time (ms) 21 respectively: antipsychotics e.g. risperidone -0.55±0.40/0.36±0.41/37±1, antiepileptics e.g. topiramate - 22 23 0.75±0.41/1.47±0.38/7±-2. Other drugs used for non-nervous system conditions also showed significant 24 negative association with cognitive score, including those where such an effect might have been predicted 25 (antidiabetics e.g. insulin -0.05±0.11/0.11±0.11/14±1, antihypertensive e.g. amlodipine - 26 0.13±0.05/0.10±0.05/5±1) and others where such an association was a surprising observation (proton 27 pump inhibitors e.g. omeprazole -0.15±0.04/0.10±0.04/7±1, calcium - -0.12±0.08/-0.01±0.08/6±1). Finally, 28 only a few medications and health supplements showed association towards a positive effect on cognition 29 30 (anti-inflammatory agents e.g. ibuprofen 0.07±0.03/-0.05±0.03/-5±0, glucosamine 0.12±0.05/-0.08±0.05/- 31 6±0). 32 33 Conclusions In this large volunteer study, some commonly prescribed medications in the UK were 34 associated with poor cognitive performance. Some associations may reflect underlying diseases for which http://bmjopen.bmj.com/ 35 the medications were prescribed, although the analysis controlled for the possible effect of diagnosis. 36 Other drugs, whose association cannot be linked to the effect of any disease, may need vigilance for their 37 implications in clinical practice. 38 39 40 41 42 on September 26, 2021 by guest. Protected copyright. 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 2 For peer review only − http://bmjopen.bmj.com/site/about/guidelines.xhtml Page 3 of 16 BMJ Open BMJ Open: first published as 10.1136/bmjopen-2016-012177 on 30 November 2016. Downloaded from Strengths and limitations of this study 1 2 • Using a very large UK population cohort, this study was sufficiently powered to perform a systematic 3 investigation for a range of medications and its association with cognition. 4 5 • We report multiple associations between commonly prescribed medications and poorer or better 6 cognitive performance, which may have implications for clinicians and patients. 7 • Due to the cross-sectional design, it is difficult to make causal inferences between medication and 8 cognition. 9 • Although trained nurses interviewed participants to obtain medications and diagnoses, this self- 10 11 reported nature may limit the accuracy of information. 12 13 14 15 For peer review only 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 http://bmjopen.bmj.com/ 35 36 37 38 39 40 41 42 on September 26, 2021 by guest. Protected copyright. 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 3 For peer review only − http://bmjopen.bmj.com/site/about/guidelines.xhtml BMJ Open Page 4 of 16 BMJ Open: first published as 10.1136/bmjopen-2016-012177 on 30 November 2016. Downloaded from Introduction 1 2 A significant number of drugs are used for therapeutic indications other than those they were either 3 designed, or first used for. Well known examples include Viagra, developed for cardiac indications but used 4 for erectile failure, and aspirin, used in an increasingly wide range of indications. This phenomenon has 5 6 prompted systematic efforts to repurpose compounds already in clinical practice.[1,2] In the field of 7 cognitive disorders, repurposing approaches have included consensus building using understanding from 8 epidemiology to molecular sciences,[3] and informatics driven approaches using platforms such as the 9 connectivity map,[1] which derives gene expression signatures from in vitro cells exposed to drugs and 10 matches these to disease associated signatures. As part of a process seeking drugs to promote healthy 11 brain ageing, and potentially counter disorders of cognitive decline, as well as to identify compounds that 12 13 might have a detrimental effect on cognition, we have used the UK Biobank [4] dataset to identify drugs 14 associated with cognitive performance. 15 For peer review only 16 17 18 Methods 19 20 UK Biobank is a prospective study of a half million participants across the UK with extensive data from 21 questionnaires, interviews, physical measures, biological samples and imaging.[4] This study used baseline 22 data from 502647 subjects aged between 37 and 73 years collected at 21 assessment centres in 2006- 23 2010. 24 25 Outcome and other measures 26 27 Three cognitive tests, which have been described previously [5], were used as outcome variables. In brief, 28 29 cognitive tests were administered using a touch screen device with trained researchers present for 30 assistance. Memory was assessed using the pairs matching test in which subjects had to remember 6 pairs 31 of shapes and their locations displayed for 5 seconds on the screen. Performance was assessed as the 32 total number of errors made in matching all 6 pairs. For verbal-numerical reasoning, subjects were asked to 33 solve as many multiple choice questions as possible (maximum 13) within two minutes. Performance was 34 http://bmjopen.bmj.com/ assessed as the total number of correct responses. Reaction time (RT) was measured by pressing a button 35 36 as quickly as possible when two identical shapes were presented on the screen. Performance was 37 assessed as the mean RT for correctly identified matching pairs. Participants completed each cognitive test 38 were included for the analysis of that cognitive test: verbal-numerical reasoning test (n=165493), memory 39 test (n=482766) and RT test (n=496813). The verbal-numeric reasoning test was introduced later to the 40 study and the numbers available for analysis are lower. 41 42 Trained nurses interviewed subjects to obtain diagnoses given by doctors and medications. Only on September 26, 2021 by guest. Protected copyright. 43 regular medications and health supplements taken weekly, monthly or three monthly were recorded. 44 45 Medications were recorded using 6745 categories adapted from Read code version 3 (CTV3) used in the 46 general practice in the UK. Of these, 1192 medications were taken by 30 or more participants, and were 47 classified using the Anatomical Therapeutic Chemical (ATC) classification [6] as a backbone. For example, 48 brand names with different doses were allocated into their chemical substance (e.g. Lipitor and atorvastatin 49 were treated as atorvastatin), chemical subgroup (e.g.
Recommended publications
  • Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers with Topical Pharmaceutical Agents
    Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Author Watts, Annabelle M, Cripps, Allan W, West, Nicholas P, Cox, Amanda J Published 2019 Journal Title FRONTIERS IN PHARMACOLOGY Version Version of Record (VoR) DOI https://doi.org/10.3389/fphar.2019.00294 Copyright Statement © Frontiers in Pharmacology 2019. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/386246 Griffith Research Online https://research-repository.griffith.edu.au fphar-10-00294 March 27, 2019 Time: 17:52 # 1 REVIEW published: 29 March 2019 doi: 10.3389/fphar.2019.00294 Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Annabelle M. Watts1*, Allan W. Cripps2, Nicholas P. West1 and Amanda J. Cox1 1 Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, QLD, Australia, 2 Menzies Health Institute Queensland, School of Medicine, Griffith University, Southport, QLD, Australia Allergic rhinitis (AR) is a chronic upper respiratory disease estimated to affect between 10 and 40% of the worldwide population. The mechanisms underlying AR are highly complex and involve multiple immune cells, mediators, and cytokines. As such, the development of a single drug to treat allergic inflammation and/or symptoms is confounded by the complexity of the disease pathophysiology. Complete avoidance of allergens that trigger AR symptoms is not possible and without a cure, the available therapeutic options are typically focused on achieving symptomatic relief.
    [Show full text]
  • Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis
    Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mösges, Carlos E. Baena-Cagnani, and Desiderio Passali Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Journal of Allergy Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis Guest Editors: Ralph Mosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Allergy.” All articles are open access articles distributed under the Creative Commons At- tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board William E. Berger, USA Alan P. Knutsen, USA Fabienne Ranc, France Kurt Blaser, Switzerland Marek L. Kowalski, Poland Anuradha Ray, USA Eugene R. Bleecker, USA Ting Fan Leung, Hong Kong Harald Renz, Germany JandeMonchy,TheNetherlands Clare M Lloyd, UK Nima Rezaei, Iran Frank Hoebers, The Netherlands Redwan Moqbel, Canada Robert P. Schleimer, USA StephenT.Holgate,UK Desiderio Passali, Italy Massimo Triggiani, Italy Sebastian L. Johnston, UK Stephen P. Peters, USA Hugo Van Bever, Singapore Young J. Juhn, USA David G. Proud, Canada Garry Walsh, United Kingdom Contents Nonpharmacological Treatment of Rhinoconjunctivitis and Rhinosinusitis,RalphMosges,¨ Carlos E. Baena-Cagnani, and Desiderio Passali Volume 2014, Article ID 416236, 2 pages Clinical Efficacy of a Spray Containing Hyaluronic Acid and Dexpanthenol after Surgery in the Nasal Cavity (Septoplasty, Simple Ethmoid Sinus Surgery, and Turbinate Surgery), Ina Gouteva, Kija Shah-Hosseini, and Peter Meiser Volume 2014, Article ID 635490, 10 pages The Effectiveness of Acupuncture Compared to Loratadine in Patients Allergic to House Dust ,Mites Bettina Hauswald, Christina Dill, Jurgen¨ Boxberger, Eberhard Kuhlisch, Thomas Zahnert, and Yury M.
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of medicines belonging to the ATC group R01 (Nasal preparations) Table of Contents Page INTRODUCTION 5 DISCLAIMER 7 GLOSSARY OF TERMS USED IN THIS DOCUMENT 8 ACTIVE SUBSTANCES Cyclopentamine (ATC: R01AA02) 10 Ephedrine (ATC: R01AA03) 11 Phenylephrine (ATC: R01AA04) 14 Oxymetazoline (ATC: R01AA05) 16 Tetryzoline (ATC: R01AA06) 19 Xylometazoline (ATC: R01AA07) 20 Naphazoline (ATC: R01AA08) 23 Tramazoline (ATC: R01AA09) 26 Metizoline (ATC: R01AA10) 29 Tuaminoheptane (ATC: R01AA11) 30 Fenoxazoline (ATC: R01AA12) 31 Tymazoline (ATC: R01AA13) 32 Epinephrine (ATC: R01AA14) 33 Indanazoline (ATC: R01AA15) 34 Phenylephrine (ATC: R01AB01) 35 Naphazoline (ATC: R01AB02) 37 Tetryzoline (ATC: R01AB03) 39 Ephedrine (ATC: R01AB05) 40 Xylometazoline (ATC: R01AB06) 41 Oxymetazoline (ATC: R01AB07) 45 Tuaminoheptane (ATC: R01AB08) 46 Cromoglicic Acid (ATC: R01AC01) 49 2 Levocabastine (ATC: R01AC02) 51 Azelastine (ATC: R01AC03) 53 Antazoline (ATC: R01AC04) 56 Spaglumic Acid (ATC: R01AC05) 57 Thonzylamine (ATC: R01AC06) 58 Nedocromil (ATC: R01AC07) 59 Olopatadine (ATC: R01AC08) 60 Cromoglicic Acid, Combinations (ATC: R01AC51) 61 Beclometasone (ATC: R01AD01) 62 Prednisolone (ATC: R01AD02) 66 Dexamethasone (ATC: R01AD03) 67 Flunisolide (ATC: R01AD04) 68 Budesonide (ATC: R01AD05) 69 Betamethasone (ATC: R01AD06) 72 Tixocortol (ATC: R01AD07) 73 Fluticasone (ATC: R01AD08) 74 Mometasone (ATC: R01AD09) 78 Triamcinolone (ATC: R01AD11) 82
    [Show full text]
  • Nootropic Concepts
    Nootropic concepts intelligent ingredient for gut health Nootropics definition Nootropic is a substance that enhances cognition and memory and facilitates learning. Nootropics work in many ways to produce a range of benefits across memory, focus, attention, motivation, relaxation, mood, alertness, stress resistance. Bluenesse® Bluenesse® – an innovative, exclusive lemon balm extract, Melissa officinalis (L.) – supports your mental health. It has an immediate effect on focus, concentration, and memory. Furthermore, it supports a calm and good mood and helps to balance the stress hormone cortisol. Bluenesse® - Nootropics concepts Nootropic benefits of Bluenesse® and the underlying mode of action: Bluenesse® - Nootropics concepts – detailed information: Several, double blind, randomized, placebo-controlled, crossover human study results have shown that Bluenesse® supports nootropic effects on demand. Below, the investigated parameter and mode of action is explained per each nootropic application. Vital Solutions GmbH, Hausingerstrasse 6, D-40764 Langenfeld, +49 (0) 2173 109 82 02 [email protected] www.vitalsolutions.biz . Nootropic concepts Cognitive performance support and enhancing learning & memory: Bluenesse® significantly improves cognitive performance, particularly alertness, working memory and mathematic processing by improving the efficiency of neuronal communication. It activates Muscarinic receptors, which are responsible for the efficient flow of information between neurological cells, so-called “oscillation”, leading to
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,555,168 B2 Browning (45) Date of Patent: *Jan
    USO09555168B2 (12) United States Patent (10) Patent No.: US 9,555,168 B2 Browning (45) Date of Patent: *Jan. 31, 2017 (54) SYSTEM FOR DELIVERY OF MEDICATION (58) Field of Classification Search IN TREATMENT OF DISORDERS OF THE None PELVIS See application file for complete search history. (71) Applicant: Coloplast A/S. Humlebaek (DK) (56) References Cited (72) Inventor: James Browning, Glasgow (GB) U.S. PATENT DOCUMENTS (73) Assignee: Coloplast A/S. Humlebaek (DK) 1450,101 A 3, 1923 Mathewson 2,097,018 A 10, 1937 Chamberlin (*) Notice: Subject to any disclaimer, the term of this 2.427,176 A 9, 1947 Aldeen 2,738,790 A 3/1956 Todt, Sr. et al. patent is extended or adjusted under 35 3,054,406 A 9, 1962 Usher U.S.C. 154(b) by 0 days. 3,124,136 A 3, 1964 Usher 3,126,600 A 3, 1964 De Marre This patent is Subject to a terminal dis 3,182,662 A 5, 1965 Shirodkar claimer. 3,311,110 A 3/1967 Singerman et al. 3,384,073. A 5/1968 Van Winkle, Jr. (21) Appl. No.: 15/131,043 3,472,232 A 10, 1969 Pendleton 3,580,313 A 5/1971 McKnight 3,763,860 A 10, 1973 Clarke (22) Filed: Apr. 18, 2016 3,789,828 A 2f1974 Schulte 3,858,783 A 1/1975 Kapitanov et al. (65) Prior Publication Data 3,888.975 A 6, 1975 Ramwell 3,911,911 A 10/1975 Scommegna US 2016/0228620 A1 Aug. 11, 2016 3,913, 179 A 10, 1975 Rhee Related U.S.
    [Show full text]
  • Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
    Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide
    [Show full text]
  • Nootropics for Healthy Individuals
    Trinity College Trinity College Digital Repository Trinity Publications (Newspapers, Yearbooks, The First-Year Papers (2010 - present) Catalogs, etc.) 2015 Nootropics for Healthy Individuals Jin Pyo Jeon Trinity College, Hartford Connecticut, [email protected] Follow this and additional works at: https://digitalrepository.trincoll.edu/fypapers Part of the Chemicals and Drugs Commons Recommended Citation Jeon, Jin Pyo, "Nootropics for Healthy Individuals". The First-Year Papers (2010 - present) (2015). Trinity College Digital Repository, Hartford, CT. https://digitalrepository.trincoll.edu/fypapers/61 Nootropics for Healthy Individuals Jin Pyo Jeon With recent advances in fields like biotechnology and genetic engineering, the concern for a just and equal distribution of human enhancement technologies undoubtedly became one of the most significant ethical dilemmas of the 21st century. And with the sudden rise of cognitive enhancement drug (otherwise called as nootropics) use in society, the need for developing policies to address these dilemmas have now become an urgent issue that the scientific and political community must confront. Once only used by the few with special needs or neurological disorders, nootropics are now being utilized by a significant part of the population for cognitive enhancement, inciting a debate of the regulation and legalization of nootropics. Nonetheless, given the currently known benefits and risks of nootropics, the mechanisms through which nootropics function, and the ineffectiveness of policy restrictions, it would be more pragmatic to inform and allow for the non-prescription uses for some nootropics rather than to restrict its use. Benefits, Risks, and Viability of the Use of Nootropics Among many other nootropics, two drugs have become the de facto nootropics for many healthy individuals: modafinil (commercially known as Provigil) and methylphenidate (commercially known as Ritalin).
    [Show full text]
  • Rhinitis - Allergic (1 of 15)
    Rhinitis - Allergic (1 of 15) 1 Patient presents w/ signs & symptoms of rhinitis 2 • Consider other classifi cations of rhinitis DIAGNOSIS No - Please see Rhinitis Is allergic rhinitis - Nonallergic disease confi rmed? management chart Yes 3 ASSESS DURATION & SEVERITY OF ALLERGIC RHINITIS A Non-pharmacological therapy • Allergen avoidance • Patient education VAS <5 VAS ≥5 B Pharmacological therapy B Pharmacological therapy • Antihistamines (oral/nasal), &/or • Corticosteroids (nasal), w/ or without • Corticosteroids (nasal), or • Antihistamines (nasal), or • Cromone (nasal), or • LTRA • Leukotriene receptor antagonists (LTRA)MIMS TREATMENT © See next page Specifi cally for patients w/ asthma Not all products are available or approved for above use in all countries. Specifi c prescribing information may be found in the latest MIMS. B167 © MIMS Pediatrics 2020 Rhinitis - Allergic (2 of 15) Previously treated symptomatic Previously treated symptomatic patient (VAS <5) on antihistamines patient (VAS ≥5) on intensifi ed (oral/nasal) &/or corticosteroids (nasal) therapy w/ corticosteroids (nasal) w/ or without antihistamines (nasal) Intermittent Persistent symptoms, symptoms or without allergen w/ allergen exposure exposure B Pharmacological therapy B Pharmacological therapy • Step down or discontinue therapy • Continue or step up therapy Untreated REASSESS DISEASE SEVERITY VAS symptomatic patient DAILY UP TO DAY 3 (VAS <5 or ≥5) 4 CONTINUE Yes THERAPY & STEP EVALUATION VAS <5 DOWN THERAPY1 Improvement of symptoms? No VAS ≥5 B Pharmacological therapy • Step-up therapy REASSESS DISEASE SEVERITY MIMSVAS DAILY UP TO DAY 7 4 Yes EVALUATION VAS <5 Improvement of symptoms? No TREATMENT © VAS ≥5 See next page Continue therapy if symptomatic; consider step-down or discontinuation of therapy if symptoms subside Not all products are available or approved for above use in all countries.
    [Show full text]
  • Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
    l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al.
    [Show full text]
  • INFORMATION for the PATIENT Femulen ® Etynodiol Diacetate
    INFORMATION FOR THE PATIENT Femulen ® etynodiol diacetate Please read this leaflet carefully before you start taking your pills. The leaflet can't tell you everything about Femulen. So if you have any questions or are not sure about anything, ask your doctor, clinic or pharmacist. Some information about Femulen The name of your medicine is Femulen. It contains etynodiol diacetate, a type of hormone called a 'progestogen'. Femulen is a progestogen-only contraceptive pill, or 'POP' for short. The only hormone it contains is progestogen, unlike the combined contraceptive pill which contains two types of hormones - oestrogen and progestogen. What is in Femulen? Each Femulen pill contains: • 500 micrograms of etynodiol diacetate (the 'active' ingredient); and • calcium phosphate, maize starch, polyvinylpyrrolidone, sodium phosphate, calcium acetate and hydrogenated castor oil (the 'inactive' ingredients). Femulen pills are white and have 'SEARLE' written on each side. They are packed in blister strips and supplied in packs of 84 pills. The active ingredient in this medicine is etynodiol diacetate. This is the new name for ethynodiol diacetate. The ingredient itself has not changed. Who supplies Femulen? Femulen is supplied by: Pfizer Limited Ramsgate Road Sandwich Kent CT13 9NJ, UK Who makes Femulen? Femulen is made by: Piramal Healthcare UK Limited Whalton Road Morpeth Northumberland NE61 3YA United Kingdom What is Femulen for? Femulen helps to prevent you becoming pregnant. It does this in several ways. It thickens the fluid at the entrance to your womb. This makes it hard for sperm to travel through and enter the womb. It also changes the lining of your womb so that a fertilised egg cannot grow there.
    [Show full text]
  • Nootropic and Anti-Alzheimer's Actions of Medicinal Plants
    Molecular Neurobiology (2019) 56:4925–4944 https://doi.org/10.1007/s12035-018-1420-2 Nootropic and Anti-Alzheimer’s Actions of Medicinal Plants: Molecular Insight into Therapeutic Potential to Alleviate Alzheimer’s Neuropathology Md. Sahab Uddin1 & Abdullah Al Mamun1 & Md. Tanvir Kabir 2 & Md. Jakaria3 & Bijo Mathew4 & George E. Barreto5,6 & Ghulam Md Ashraf7 Received: 5 September 2018 /Accepted: 29 October 2018 /Published online: 9 November 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Medicinal plants are the backbone of modern medicine. In recent times, there is a great urge to discover nootropic medicinal plants to reverse cognitive dysfunction owing to their less adverse effects. Alzheimer’s disease (AD) is an age-related neurode- generative disorder characterized by the inevitable loss of cognitive function, memory and language impairment, and behavioral disturbances, which turn into gradually more severe. Alzheimer’s has no current cure, but symptomatic treatments are available and research continues. The number of patients suffering from AD continues to rise and today, there is a worldwide effort under study to find better ways to alleviate Alzheimer’s pathogenesis. In this review, the nootropic and anti-Alzheimer’spotentialsof6 medicinal plants (i.e., Centella asiatica, Clitoria ternatea, Crocus sativus, Terminalia chebula, Withania somnifera,and Asparagus racemosus) were explored through literature review. This appraisal focused on available information about neuro- protective and anti-Alzheimer’s use of these plants and their respective bioactive compounds/metabolites and associated effects in animal models and consequences of its use in human as well as proposed molecular mechanisms. This review progresses our existing knowledge to reveal the promising linkage of traditional medicine to halt AD pathogenesis.
    [Show full text]
  • Drugs Influencing Cognitive Function
    Indian J Physiol Phannacol 1994; 38(4) : 241-251 RE\llEW ARTICLE DRUGS INFLUENCING COGNITIVE FUNCTION ALICE KURUYILLA* AND YASUNDARA DEYI Department ofPharmacology. Christian Medical College. Vellore - 632 002 DRUGS INFLUENCING COGNITIVE FUNCTION cerebrovascular disorders with dementias and reversible dementias. Drugs can inOuence cognitive function in several different ways. The cognitrve enhancers or nootropics Primary degenerative disorders include the have become a major issue in drug development during subgroups senile dementia of the Alzheimer's type the last decade. Nootropics arc defined as drugs that (SDAT), Alzheimer's disease, Picks disease and generally increase neuron metabolic activity, improve Huntington's chorea (4). Alzheimer's disease usually cognitive and ,'igilance level and are said to have occurs in individuals past 70 years old and appears to antidemcntia effect (I). These drugs are essential for be in part genetically determin'd (5). the treatment of geriatric disorders like Alzheimer's which have become one of the major problems socially Pathophysiology oj Alzheimer's disease : and medically. Considerable evidence has been gathered Extensive research in the recent years has made major in the last decade to support the observation that advances in understanding the pathogenesis of children with epilepsy have morc learning difficulties Alzheimer's disease (6). The hallmark lesions of than age matched controls (2, 3). Anti-epileptic drugs Alzheimer's disease are neuritic plaques and are useful in controlling the frequency and duration of neurofibrillary tangles. Two amyloid proteins seizures. These drugs can also be the source of side accumulate in Alzheimer's disease, these arc beta effects including cognitive impairment.
    [Show full text]