The Role of MRPL45 and OXA1L in Human Mitochondrial Protein Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

The Role of MRPL45 and OXA1L in Human Mitochondrial Protein Synthesis The role of MRPL45 and OXA1L in human mitochondrial protein synthesis Nicole Mai Supervisors: Professor Zofia Chrzanowska-Lightowlers Professor Robert Lightowlers A thesis submitted for the degree of Doctor of Philosophy Institute of Neuroscience Wellcome Trust Centre for Mitochondrial Research October 2016 Abstract Mitochondria produce 90% of the adenosine triphosphate (ATP) used by eukaryotic cells as a source of energy. ATP synthesis is carried out by the oxidative phosphorylation (OXPHOS) system whose components are partially-encoded by mitochondrial DNA and translated by mitoribosomes found in the organelle itself. The interaction between mitoribosomes and the inner mitochondrial membrane (IMM) has been claimed to be important for efficient protein synthesis in these organelles, but how this association occurs is still unclear. The aim of this study was to investigate the association between mitoribosomes and IMM in human mitochondria. My attention focused on MRPL45, a component of the mitoribosome that might be a key player of this interaction due to its proximity to the polypeptide exit tunnel and its structural similarity to the IMM-interacting proteins TIM44 and Mba1. During the course of this study, in order to further investigate the interaction, interest in the IMM protein OXA1L arose. The yeast homologue of this protein has been reported to interact with the mitoribosome, offering an interacting point between the IMM and the translation machinery. I performed depletion studies that confirmed the importance of MRPL45 for the stability of the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. With the development of a protocol to investigate membrane-interaction, I demonstrated that MRPL45 is able to interact directly with the IMM. The addition of a FLAG-tag at the C-terminal of MRPL45 did not affect the ability of the protein to interact with the membrane and did not have effects on the homeostasis of the cells. Therefore, immunoprecipitation of MRPL45FLAG was performed in the absence of assembled mitoribosomal subunits to identify potential IMM binding partners. No obvious candidates, however, were detected from mass spectrometry analysis of the immunoprecipitated sample. Modifications of MRPL45 based on structural similarities with TIM44 and Mba1 were performed to identify the membrane-associating domain of the protein. Mutation of charged amino acids on a protruding α-helix of MRPL45 were performed. The resultant protein was completely integrated into the mt-LSU in the absence of the endogenous counterpart, partially rescuing the phenotype observed upon depletion of MRPL45. Membrane - interaction studies showed that the modifications did not affect the ability of this mutant to interact directly with the membrane. Another attempt to disrupt the interaction between MRPL45 and the membrane was performed by expressing a mutant protein lacking 117 amino acids at the N-terminal, which is predicted to correspond to the putative membrane-interacting domain of TIM44. Only a minor proportion of this protein was integrated in the mt-LSU in absence of the endogenous MRPL45, although the mutant protein retained the ability to interact directly with the membrane. The role of another mitochondrial protein, OXA1L, in mitochondrial translation was also investigated in this work. This was motivated by the discovery of a paediatric patient with mutations in the gene encoding OXA1L. Since the published studies showing OXA1L to interact with the mitoribosome were attempted in vitro, I performed immunoprecipitation studies which i confirmed the ability of OXA1L to associate with the mitoribosome in intact human cells. In order to characterise the role of OXA1L in mitochondrial translation, depletion studies were performed. These suggested that OXA1L was important for the stability of both the large and, unexpectedly, the small mitoribosomal subunit. Due to this surprising result, extensive studies were performed to confirm its robustness, which confirmed the reduction of the steady-state level of the mitoribosomal subunits and of OXPHOS components upon depletion of OXA1L. To conclude, my studies showed the importance of the mitoribosomal protein MRPL45 for the stability and the assembly of the large subunit of the mitochondrial translation machinery, as well as its ability to interact directly with the IMM. Although it was not possible to identify the domain of MRPL45 involved in membrane interaction, insights on the importance of the N- terminal domain for its integration in the mt-LSU were identified. The ability of OXA1L to interact with the mitoribosome in vivo was determined and a role of this protein in the stability and assembly of the mitoribosome was demonstrated. ii Acknowledgments First of all I want to thank my supervisors, Bob and Zosia, for the constant support and the guidance during this project. Thank you for giving me the chance to do this PhD and grow professionally. A special thanks to the Barbour Foundation for supporting my PhD studies as well as helping many other students. Thank you for to Prof Jeremy Lakey and Prof Rita Horvath for their contribution and support during the year reviews. Another thank goes to Prof Taylor, for involving me in his work and for putting me in touch with Dr. Rosalba Carrozzo, who I also thank. Thanks to (almost Dr.) Charlotte for all the help with the sequencing. Thanks to Dr Aurelio Reyes for sharing is mitochondrial fractionation protocol which helped the optimisation of the membrane- soluble fraction protocol presented in this work. Thank you to Dr Achim Treumann for the help with the mass spectrometry analysis. Thank you to all the members of the Mitochondrial Research Group for their help an d for always be up for a chat. A special thanks goes to Amy, for being a special friend, and to Ewen and Hannah. Thank you for sharing this adventure with me. Thank you Pav for being always there for me. A massive thanks goes to Monika, Rawaa, Christie, Kyle, Agata, Fei, Marysia and Francesco and whoever else has been in the Lightowler’s lab for the past 3 years. You had to deal with my roller-coaster of emotion throughout this PhD. Thank you for the kindness, for all the support and suggestions and for making me feel so welcome. This experience wouldn’t be the same without you. I wish you all the best for your future! Thank you to all my friends here in Newcastle. Being so far away from home can be very hard, and you made this a lot easier! How not to thank also my friends back home, which are still there despite the distance. The support of all of you has been immeasurable. A gigantic thank you to Matt. Thank you for dealing with me on a daily basis. I know that is not easy! Your love and support have been an unlimited source of energy that made me power through all the difficulties I had. The past year, which we both spent writing up, made us stronger. I am so happy that I’ve found you (with a little help from Pav and Stacey!). I wouldn’t have made it without you. Il grazie piu’ grosso e’dedicato ai miei miei genitori che hanno dovuto sopportare la lontananza cosi’ tanto a lungo. Grazie per il vostro sostegno continuo e illimitato che mi avete dato durante tutta la mia vita, e che ancora mi darete in future. Senza il vostro aiuto, oggi non sarei dove sono. iii iv Table of Contents Abstract .................................................................................................................................... i Acknowledgments ...................................................................................................................iii List of figures ...........................................................................................................................xi List of tables ...........................................................................................................................xv Abbreviations ....................................................................................................................... xvii Chapter 1: Introduction ............................................................................................................ 1 1.1. Mitochondria .............................................................................................................. 1 1.2. The origin and evolution of mitochondria .................................................................... 1 1.3. Mitochondrial structure............................................................................................... 3 1.3.1. Nucleoids and RNA granules.............................................................................. 5 1.4. Functions of mitochondria .......................................................................................... 6 1.4.1. Oxidative phosphorylation .................................................................................. 7 1.5. Mitochondrial diseases............................................................................................... 9 1.6. Mitochondrial DNA ................................................................................................... 10 1.6.1. Replication ....................................................................................................... 12 1.6.2. Transcription .................................................................................................... 13 1.7. Protein import in mitochondria.................................................................................. 14 1.8. Mitochondrial protein synthesis
Recommended publications
  • The Rise and Fall of the Bovine Corpus Luteum
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
    [Show full text]
  • Proteomic Analysis of the Role of the Quality Control Protease LONP1 in Mitochondrial Protein Aggregation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.12.439502; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Proteomic analysis of the role of the quality control protease LONP1 in mitochondrial protein aggregation Karen Pollecker1, Marc Sylvester2 and Wolfgang Voos1,* 1Institute of Biochemistry and Molecular Biology (IBMB), University of Bonn, Faculty of Medicine, Nussallee 11, 53115 Bonn, Germany 2Core facility for mass spectrometry, Institute of Biochemistry and Molecular Biology (IBMB), University of Bonn, Faculty of Medicine, Nussallee 11, 53115 Bonn, Germany *Corresponding author Email: [email protected] Phone: +49-228-732426 Abbreviations: AAA+, ATPases associated with a wide variety of cellular activities; Δψ, mitochondrial membrane potential; gKD, genetic knockdown; HSP, heat shock protein; m, mature form; mt, mitochondrial; p, precursor form; PQC, protein quality control; qMS, quantitative mass spectrometry; ROS, reactive oxygen species; SILAC, stable isotope labeling with amino acids in cell culture; siRNA, small interfering RNA; TIM, preprotein translocase complex of the inner membrane; TMRE, tetramethylrhodamine; TOM, preprotein translocase complex of the outer membrane; UPRmt, mitochondrial unfolded protein response; WT, wild type. bioRxiv preprint doi: https://doi.org/10.1101/2021.04.12.439502; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Size Changes in Eukaryotic Ribosomes
    Proc. Nat. Acad. Sci. USA Vol. 68, No. 12, pp. 3021-3025, December 1971 Size Changes in Eukaryotic Ribosomes (diffusion constant/sedimentation constant/ribosomal dissociation/chick embryo) JOHN VOURNAKIS AND ALEXANDER RICH Department of Biology, Massachusetts Institute of Technology, Cambridge, Mass. 02139 Contributed by Alexander Rich, September 20, 1971 ABSTRACT Evidence is presented that ribosomes two particles are similar. However, these changes suggest active in protein synthesis and attached to messenger that when the ribosome is attached to messenger RNA it has a RNA on polysomes have a smaller diameter than free cytoplasmic single ribosomes. Measurements have been smaller diameter than is found for the free cytoplastic ribo- made on these two types of ribosomes of differences in some. This more compact form of the ribosome is maintained sedimentation velocity and diffusion constant. Differences even when the nascent polypeptide chain is relased by puro- in these quantities suggest about a 20-A decrease in the mycin. We thus infer that there are substantial differences diameter of the ribosomes from chick embryo muscles in the interactions between the ribosomal subunits when when they are attached to messenger RNA. Similar dif- they ferences are also observed in rabbit reticulocytes and are attached to messenger RNA as compared to the free cyto- mouse ascites tumor cells. These two ribosomal states plasmic single ribosome, which is inactive in protein synthesis. have different sensitivity to Pronase digestion and dis- sociate into ribosomal subunits at different KCI concen- METHODS AND MATERIALS trations. This size difference is not associated with a sig- nificant difference in overall ribosomal mass and appears Preparation of Ribosomes.
    [Show full text]
  • What Are Their Roles in Mitochondrial Protein Synthesis?
    Characterisation of human mtRF1 and C12orf65: What are their roles in mitochondrial protein synthesis? Aleksandra Pajak M.Res Thesis submitted to Newcastle University in candidature for the degree of Doctor of Philosophy Newcastle University Faculty of Medical Sciences Institute for Ageing and Health Mitochondrial Research Group January 2013 Abstract Mitochondria have their own protein synthesis machinery that synthesises the oxidative phosphorylation components encoded by their mtDNA. This translation process consists of four main phases: initiation, elongation, termination and ribosome recycling. Termination and its control have been the least investigated. Recently, however, the termination factor, mtRF1a, has been characterised as sufficient to release all the nascent proteins from the mitoribosome. Furthermore, bioinformatics has identified three additional members of this mitochondrial release factor family namely, mtRF1, C12orf65 and ICT1. The latter is now known to be incorporated into the mitoribosome but its exact function remains unclear. My project has therefore focussed on characterising the remaining two factors; mtRF1 and C12orf65, and investigating their possible involvement in mitochondrial protein synthesis. It has been demonstrated that protein synthesis is not perfect and bacterial ribosomes not infrequently stall during translation. This can result from limiting amounts of charged tRNAs, stable secondary structures, or truncated/degraded transcripts. Ribosome stalling has been shown to cause growth arrest. In order to prevent that and maintain high efficiency of mitochondrial protein synthesis such stalled complexes need to be rapidly recycled. Bacteria have developed at least three distinct mechanisms by which ribosomes can be rescued. Contrastingly, despite the presence of truncated mRNAs in mitochondria, no such quality control mechanisms have been identified in these organelles.
    [Show full text]
  • New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology
    Cancer Research and Treatment 2003;35(4):304-313 New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology Yong-Wan Kim, Ph.D.1, Min-Je Suh, M.S.1, Jin-Sik Bae, M.S.1, Su Mi Bae, M.S.1, Joo Hee Yoon, M.D.2, Soo Young Hur, M.D.2, Jae Hoon Kim, M.D.2, Duck Young Ro, M.D.2, Joon Mo Lee, M.D.2, Sung Eun Namkoong, M.D.2, Chong Kook Kim, Ph.D.3 and Woong Shick Ahn, M.D.2 1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul; 3College of Pharmacy, Seoul National University, Seoul, Korea Purpose: This study utilized both mRNA differential significant genes of unknown function affected by the display and the Gene Ontology (GO) analysis to char- HPV-16-derived pathway. The GO analysis suggested that acterize the multiple interactions of a number of genes the cervical cancer cells underwent repression of the with gene expression profiles involved in the HPV-16- cancer-specific cell adhesive properties. Also, genes induced cervical carcinogenesis. belonging to DNA metabolism, such as DNA repair and Materials and Methods: mRNA differential displays, replication, were strongly down-regulated, whereas sig- with HPV-16 positive cervical cancer cell line (SiHa), and nificant increases were shown in the protein degradation normal human keratinocyte cell line (HaCaT) as a con- and synthesis. trol, were used. Each human gene has several biological Conclusion: The GO analysis can overcome the com- functions in the Gene Ontology; therefore, several func- plexity of the gene expression profile of the HPV-16- tions of each gene were chosen to establish a powerful associated pathway, identify several cancer-specific cel- cervical carcinogenesis pathway.
    [Show full text]
  • Screening of a Clinically and Biochemically Diagnosed SOD Patient Using Exome Sequencing: a Case Report with a Mutations/Variations Analysis Approach
    The Egyptian Journal of Medical Human Genetics (2016) 17, 131–136 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Screening of a clinically and biochemically diagnosed SOD patient using exome sequencing: A case report with a mutations/variations analysis approach Mohamad-Reza Aghanoori a,b,1, Ghazaleh Mohammadzadeh Shahriary c,2, Mahdi Safarpour d,3, Ahmad Ebrahimi d,* a Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran b Research and Development Division, RoyaBioGene Co., Tehran, Iran c Department of Genetics, Shahid Chamran University of Ahvaz, Ahvaz, Iran d Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Received 12 May 2015; accepted 15 June 2015 Available online 22 July 2015 KEYWORDS Abstract Background: Sulfite oxidase deficiency (SOD) is a rare neurometabolic inherited disor- Sulfite oxidase deficiency; der causing severe delay in developmental stages and premature death. The disease follows an auto- Case report; somal recessive pattern of inheritance and causes deficiency in the activity of sulfite oxidase, an Exome sequencing enzyme that normally catalyzes conversion of sulfite to sulfate. Aim of the study: SOD is an underdiagnosed disorder and its diagnosis can be difficult in young infants as early clinical features and neuroimaging changes may imitate some common diseases. Since the prognosis of the disease is poor, using exome sequencing as a powerful and efficient strat- egy for identifying the genes underlying rare mendelian disorders can provide important knowledge about early diagnosis, disease mechanisms, biological pathways, and potential therapeutic targets.
    [Show full text]
  • A Genome-Wide Association Study of Asthma Symptoms in Latin American Children Gustavo N
    Costa et al. BMC Genetics (2015) 16:141 DOI 10.1186/s12863-015-0296-7 RESEARCH ARTICLE Open Access A genome-wide association study of asthma symptoms in Latin American children Gustavo N. O. Costa1*, Frank Dudbridge12, Rosemeire L. Fiaccone2, Thiago M. da Silva1, Jackson S. Conceição2, Agostino Strina1, Camila A. Figueiredo3, Wagner C. S. Magalhães4, Maira R. Rodrigues4, Mateus H. Gouveia4, Fernanda S. G. Kehdy4, Andrea R. V. R. Horimoto5, Bernardo Horta6, Esteban G. Burchard7, Maria Pino-Yanes7, Blanca Del Rio Navarro8, Isabelle Romieu9, Dana B. Hancock10, Stephanie London8, Maria Fernanda Lima-Costa11, Alexandre C. Pereira11, Eduardo Tarazona4, Laura C Rodrigues13 and Mauricio L. Barreto1,14 Abstract Background: Asthma is a chronic disease of the airways and, despite the advances in the knowledge of associated genetic regions in recent years, their mechanisms have yet to be explored. Several genome-wide association studies have been carried out in recent years, but none of these have involved Latin American populations with a high level of miscegenation, as is seen in the Brazilian population. Methods: 1246 children were recruited from a longitudinal cohort study in Salvador, Brazil. Asthma symptoms were identified in accordance with an International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. Following quality control, 1 877 526 autosomal SNPs were tested for association with childhood asthma symptoms by logistic regression using an additive genetic model. We complemented the analysis with an estimate of the phenotypic
    [Show full text]
  • Application of the Polymerase Chain Reaction in Bacterial Identification
    Exercise 16 APPLICATION OF THE POLYMERASE CHAIN REACTION IN BACTERIAL IDENTIFICATION Introduction The Polymerase Chain Reaction (PCR), as conceived by Kary Mullis and his coworkers at Cetus Corporation (Emeryville, California) in 1986, is a powerful diagnostic tool with multiple applications in genetic and molecular analysis. The procedure can be applied to the identification of unknown genes or microorganisms from a variety of samples and has revolutionized nucleotide sequencing. The polymerase chain reaction allows specific segments of DNA to be amplified (replicated over and over again) by utilizing some characteristic features of DNA and its replication process as follows: 1. The two nucleotide strands of a cellular DNA molecule (DNA double helix) are complementary to one another and antiparallel. 2. The complementary base pairs of a DNA double helix are held together by relatively weak hydrogen bonds, and can be induced to separate. Within cells, this involves enzymes, but can be accomplished in vitro by the application of heat. 3. During DNA replication, the enzyme complex known as DNA-dependent DNA polymerase uses the nucleotide sequence of an existing DNA strand as the template or pattern for building each new strand. This enzyme builds DNA by catalyzing the formation of phosphodiester bonds that attach nucleotides to the free 3' ends of existing nucleotide strands (i.e., builds from 5' to 3' and requires a primer). 4. Within cells, primase enzymes (DNA-dependent RNA polymerases) build the RNA primers required for replication. In vitro, single-stranded oligonucleotide sequences that are complimentary to specific regions of DNA can hybridize with these (anneal to them) and can serve as primer sequences (providing the free 3' ends) required for DNA-dependent DNA polymerase.
    [Show full text]
  • The Interactome of the Yeast Mitochondrial Ribosome
    The interactome of the yeast mitochondrial ribosome Organization of mitochondrial post-transcriptional regulation, membrane protein insertion and quality control Braulio Vargas Möller-Hergt Academic dissertation for the Degree of Doctor of Philosophy in Biochemistry at Stockholm University to be publicly defended on Friday 19 October 2018 at 13.00 in Magnélisalen Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B. Abstract The proteins found in mitochondria originate from two different genetic systems. Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into the organelle. However, a small subset of mitochondrial proteins is encoded in an organelle-resident genome. Mitochondria contain factors responsible for replication, transcription and, most important for this thesis, synthesis of the mitochondrially encoded proteins. In the course of evolution the mitochondria specific ribosomes were extensively remodeled. The reasons for many of these adaptations are currently not well understood. For example, the mitoribosome is less stable and abundant than its bacterial counterpart. Therefore, I contributed in the development of robust biochemical tools in order to isolate and analyze the intact yeast mitoribosome and interaction partners by mass spectrometry. The results revealed a higher order organization of mitochondrial gene expression in complexes that we termed MIOREX (mitochondrial organization of gene expression). Besides the mitoribosome, MIOREX complexes contain factors involved in all steps of gene expression. This study also established many new ribosomal interaction partners, among them some proteins that were previously completely uncharacterized. In order to study these proteins, I refined the mass spectrometry approach, allowing a subunit-specific assignment of ribosomal interaction partners. The Mrx15 protein was determined by this approach as an interactor of the large subunit.
    [Show full text]
  • Nucleolin and Its Role in Ribosomal Biogenesis
    NUCLEOLIN: A NUCLEOLAR RNA-BINDING PROTEIN INVOLVED IN RIBOSOME BIOGENESIS Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Julia Fremerey aus Hamburg Düsseldorf, April 2016 2 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. A. Borkhardt Korreferent: Prof. Dr. H. Schwender Tag der mündlichen Prüfung: 20.07.2016 3 Die vorgelegte Arbeit wurde von Juli 2012 bis März 2016 in der Klinik für Kinder- Onkologie, -Hämatologie und Klinische Immunologie des Universitätsklinikums Düsseldorf unter Anleitung von Prof. Dr. A. Borkhardt und in Kooperation mit dem ‚Laboratory of RNA Molecular Biology‘ an der Rockefeller Universität unter Anleitung von Prof. Dr. T. Tuschl angefertigt. 4 Dedicated to my family TABLE OF CONTENTS 5 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................... 5 LIST OF FIGURES ......................................................................................................10 LIST OF TABLES .......................................................................................................12 ABBREVIATION .........................................................................................................13 ABSTRACT ................................................................................................................19 ZUSAMMENFASSUNG
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Evaluation of Cancer-Derived Myocardial Impairments Using a Mouse Model
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 41), pp: 3712-3722 Research Paper Evaluation of cancer-derived myocardial impairments using a mouse model Yoshihiro Miyagawa1, Shota Nukaga1,2, Takuya Mori1, Rina Fujiwara-Tani1, Kiyomu Fujii1, Shiori Mori1, Kei Goto1,3, Shingo Kishi1, Takamitsu Sasaki1, Chie Nakashima1, Hitoshi Ohmori1, Isao Kawahara1,2, Yi Luo4 and Hiroki Kuniyasu1 1Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan 2Division of Rehabilitation, Hanna Central Hospital, Ikoma, Nara 630-0243, Japan 3Division of Rehabilitation, Hoshida Minami Hospital, Katano, Osaka 576-0022, Japan 4Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China Correspondence to: Yi Luo, email: [email protected] Hiroki Kuniyasu, email: [email protected] Keywords: cachexia; myocardium; atrophy; mitochondria; oxidative stress Received: June 26, 2020 Accepted: September 10, 2020 Published: October 13, 2020 Copyright: © 2020 Miyagawa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Myocardial damage in cancer patients is emphasized as a cause of death; however, there are not many murine cachexia models to evaluate cancer-derived heart disorder. Using the mouse cachexia model that we established previously, we investigated myocardial damage in tumor-bearing mice. In cachexic mice, decreased heart weight and myocardial volume, and dilated left ventricular lumen, and atrophied cardiomyocytes were noted. The cardiomyocytes also showed accumulated 8-hydroxydeoxyguanosine, decreased leucine zipper and EF-hand- containing transmembrane protein-1, and increased microtubule-associated protein light chain3-II.
    [Show full text]