Size Changes in Eukaryotic Ribosomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application of the Polymerase Chain Reaction in Bacterial Identification
Exercise 16 APPLICATION OF THE POLYMERASE CHAIN REACTION IN BACTERIAL IDENTIFICATION Introduction The Polymerase Chain Reaction (PCR), as conceived by Kary Mullis and his coworkers at Cetus Corporation (Emeryville, California) in 1986, is a powerful diagnostic tool with multiple applications in genetic and molecular analysis. The procedure can be applied to the identification of unknown genes or microorganisms from a variety of samples and has revolutionized nucleotide sequencing. The polymerase chain reaction allows specific segments of DNA to be amplified (replicated over and over again) by utilizing some characteristic features of DNA and its replication process as follows: 1. The two nucleotide strands of a cellular DNA molecule (DNA double helix) are complementary to one another and antiparallel. 2. The complementary base pairs of a DNA double helix are held together by relatively weak hydrogen bonds, and can be induced to separate. Within cells, this involves enzymes, but can be accomplished in vitro by the application of heat. 3. During DNA replication, the enzyme complex known as DNA-dependent DNA polymerase uses the nucleotide sequence of an existing DNA strand as the template or pattern for building each new strand. This enzyme builds DNA by catalyzing the formation of phosphodiester bonds that attach nucleotides to the free 3' ends of existing nucleotide strands (i.e., builds from 5' to 3' and requires a primer). 4. Within cells, primase enzymes (DNA-dependent RNA polymerases) build the RNA primers required for replication. In vitro, single-stranded oligonucleotide sequences that are complimentary to specific regions of DNA can hybridize with these (anneal to them) and can serve as primer sequences (providing the free 3' ends) required for DNA-dependent DNA polymerase. -
Nucleolin and Its Role in Ribosomal Biogenesis
NUCLEOLIN: A NUCLEOLAR RNA-BINDING PROTEIN INVOLVED IN RIBOSOME BIOGENESIS Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Julia Fremerey aus Hamburg Düsseldorf, April 2016 2 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. A. Borkhardt Korreferent: Prof. Dr. H. Schwender Tag der mündlichen Prüfung: 20.07.2016 3 Die vorgelegte Arbeit wurde von Juli 2012 bis März 2016 in der Klinik für Kinder- Onkologie, -Hämatologie und Klinische Immunologie des Universitätsklinikums Düsseldorf unter Anleitung von Prof. Dr. A. Borkhardt und in Kooperation mit dem ‚Laboratory of RNA Molecular Biology‘ an der Rockefeller Universität unter Anleitung von Prof. Dr. T. Tuschl angefertigt. 4 Dedicated to my family TABLE OF CONTENTS 5 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................... 5 LIST OF FIGURES ......................................................................................................10 LIST OF TABLES .......................................................................................................12 ABBREVIATION .........................................................................................................13 ABSTRACT ................................................................................................................19 ZUSAMMENFASSUNG -
Ana Rita Macedo Bezerra Genómica Molecular De Uma Alteração Ao
Universidade de Aveiro Departamento de Biologia 2013 Ana Rita Macedo Genómica molecular de uma alteração ao código Bezerra genético. Molecular genomics of a genetic code alteration. Universidade de Aveiro Departamento de Biologia 2013 Ana Rita Macedo Genómica molecular de uma alteração ao código Bezerra genético. Molecular genomics of a genetic code alteration. Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica do Prof. Doutor Manuel António da Silva Santos, Professor Associado do Departamento de Biologia da Universidade de Aveiro Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio. o júri presidente Doutora Maria Hermínia Deulonder Correia Amado Laurel Professora Catedrática da Universidade de Aveiro Doutora Judith Berman Professora Catedrática da Universidade de Tel Aviv Doutora Margarida Paula Pedra Amorim Casal Professora Catedrática da Universidade do Minho Doutor Manuel António da Silva Santos Professor Associado da Universidade de Aveiro Doutora Isabel Antunes Mendes Gordo Investigadora Principal do Instituto Gulbenkian de Ciência Doutor António Carlos Matias Correia Professor Catedrático da Universidade de Aveiro agradecimentos First and foremost, I would like to thank my supervisor, Doutor Manuel Santos, for the opportunity to work on this project and for his support throughout the last 5 years. Thank you for keeping me going when times were tough, asking acknowledgements insightful questions, and offering invaluable advice whilst allowing me the room to work in my own way. I am indebted to many colleagues who helped me during these last 5 years, especially to João Simões whose precious input was essential for this work. -
A Global Analysis of Enzyme Compartmentalization to Glycosomes
pathogens Article A Global Analysis of Enzyme Compartmentalization to Glycosomes Hina Durrani 1, Marshall Hampton 2 , Jon N. Rumbley 3 and Sara L. Zimmer 1,* 1 Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA; [email protected] 2 Mathematics & Statistics Department, University of Minnesota Duluth, Duluth, MN 55812, USA; [email protected] 3 College of Pharmacy, University of Minnesota, Duluth Campus, Duluth, MN 55812, USA; [email protected] * Correspondence: [email protected] Received: 25 March 2020; Accepted: 9 April 2020; Published: 12 April 2020 Abstract: In kinetoplastids, the first seven steps of glycolysis are compartmentalized into a glycosome along with parts of other metabolic pathways. This organelle shares a common ancestor with the better-understood eukaryotic peroxisome. Much of our understanding of the emergence, evolution, and maintenance of glycosomes is limited to explorations of the dixenous parasites, including the enzymatic contents of the organelle. Our objective was to determine the extent that we could leverage existing studies in model kinetoplastids to determine the composition of glycosomes in species lacking evidence of experimental localization. These include diverse monoxenous species and dixenous species with very different hosts. For many of these, genome or transcriptome sequences are available. Our approach initiated with a meta-analysis of existing studies to generate a subset of enzymes with highest evidence of glycosome localization. From this dataset we extracted the best possible glycosome signal peptide identification scheme for in silico identification of glycosomal proteins from any kinetoplastid species. Validation suggested that a high glycosome localization score from our algorithm would be indicative of a glycosomal protein. -
Cilia and Flagella: from Discovery to Disease Dylan J
Dartmouth Undergraduate Journal of Science Volume 20 Article 2 Number 1 Assembly 2017 Cilia and Flagella: From Discovery to Disease Dylan J. Cahill Dylan Cahill, [email protected] Follow this and additional works at: https://digitalcommons.dartmouth.edu/dujs Part of the Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Cahill, Dylan J. (2017) "Cilia and Flagella: From Discovery to Disease," Dartmouth Undergraduate Journal of Science: Vol. 20 : No. 1 , Article 2. Available at: https://digitalcommons.dartmouth.edu/dujs/vol20/iss1/2 This Research Article is brought to you for free and open access by the Student-led Journals and Magazines at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Undergraduate Journal of Science by an authorized editor of Dartmouth Digital Commons. For more information, please contact [email protected]. BIOLOGY Cilia and Flagella: FromCilia and Discovery Flagella: to Disease From Discovery to Disease BY DYLAN CAHILL ‘18 Introduction certain insect sperm fagella (3, 5, 6). A unique Figure 1: Chlamydomonas intracellular transport mechanism known as reinhardtii, a single-celled, bi- In 1674, peering through the lens of a crude flagellate green alga, viewed intrafagellar transport is responsible for the light microscope, Antoni van Leeuwenhoek with a scanning electron assembly and maintenance of these organelles Chlamydomonas observed individual living cells for the frst time microscope. is (3, 6). Cilia and fagella are primarily composed a model organism in flagellar in history (1). He noted long, thin appendages of the protein tubulin, which polymerizes into dynamics and motility studies. -
The Flagellum and Flagellar Pocket of Trypanosomatids
Molecular & Biochemical Parasitology 115 (2001) 1–17 www.parasitology-online.com. Reviews: Parasite cell Biology: 1 The flagellum and flagellar pocket of trypanosomatids Scott M. Landfear *, Marina Ignatushchenko Department of Molecular Microbiology and Immunology, Oregon Health Sciences Uni6ersity, Portland, OR 97201, USA Received 9 November 2000; received in revised form 26 January 2001; accepted 5 March 2001 Abstract The flagellum and flagellar pocket are distinctive organelles present among all of the trypanosomatid protozoa. Currently, recognized functions for these organelles include generation of motility for the flagellum and dedicated secretory and endocytic activities for the flagellar pocket. The flagellar and flagellar pocket membranes have long been recognized as morphologically separate domains that are component parts of the plasma membrane that surrounds the entire cell. The structural and functional specialization of these two membranes has now been underscored by the identification of multiple proteins that are targeted selectively to each of these domains, and non-membrane proteins have also been identified that are targeted to the internal lumina of these organelles. Investigations on the functions of these organelle-specific proteins should continue to shed light on the unique biological activities of the flagellum and flagellar pocket. In addition, work has begun on identifying signals or modifications of these proteins that direct their targeting to the correct subcellular location. Future endeavors should further refine our knowledge of targeting signals and begin to dissect the molecular machinery involved in transporting and retaining each polypeptide at its designated cellular address. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Trypanosomatid protozoa; Flagellum; Flagellar Pocket; Organelle-specific proteins; Review 1. -
On the Sedimentation Behavior and Molecular Weight of 16S Ribosomal RNA from Escherichia Coli
University of Montana ScholarWorks at University of Montana Biological Sciences Faculty Publications Biological Sciences 1977 On the Sedimentation Behavior and Molecular Weight of 16S Ribosomal RNA from Escherichia coli Walter E. Hill University of Montana - Missoula, [email protected] Kenneth R. Bakke Donald P. Blair Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Hill, Walter E.; Bakke, Kenneth R.; and Blair, Donald P., "On the Sedimentation Behavior and Molecular Weight of 16S Ribosomal RNA from Escherichia coli" (1977). Biological Sciences Faculty Publications. 196. https://scholarworks.umt.edu/biosci_pubs/196 This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Volume 4 Number 2 February 1977 Nucleic Acids Research On the sedimentation behavior and molecular weight of 16S ribosomal RNA from Escherichia coli Walter E.Hill, Kenneth R.Bakke and Donald P.Blair Department of Chemistry, University of Montana, Missoula, MT 59812, USA Received 10 January 1977 INTRODUCTION Although there have been several studies made on the physical characteristics of rRNA in the past [1,2,3], there is still continuing discussion on the molecular weight and sedimentation behavior of 16S rRNA. A recent study by Pearce et al. [4] reported on anomalous concentration dependence of the sedimentation coefficient of the Na salt of 16S rRNA. -
João Cancela De Amorim Falcão Paredes Estudo Molecular Da
Universidade de Aveiro Departamento de Biologia 2010 João Cancela de Estudo molecular da degeneração e evolução Amorim Falcão celular induzidas por erros na tradução do mRNA Paredes Molecular study of cell degeneration and evolution induced by mRNA mistranslation Universidade de Aveiro Departamento de Biologia 2010 João Cancela de Estudo molecular da degeneração e evolução Amorim Falcão celular induzidas por erros na tradução do mRNA Paredes Molecular study of cell degeneration and evolution induced by mRNA mistranslation Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica do Doutor Manuel António da Silva Santos, Professor Associado do Departamento de Biologia da Universidade de Aveiro. Apoio financeiro do POCI 2010 no âmbito do III Quadro Comunitário de Apoio, comparticipado pelo FSE e por fundos nacionais do MCES/FCT. “The known is finite, the unknown infinite; intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little more land, to add something to the extent and the solidity of our possessions” Thomas Henry Huxley (1825 – 1895) o júri presidente Doutor Domingos Moreira Cardoso Professor Catedrático da Universidade de Aveiro Doutora Claudina Amélia Marques Rodrigues Pousada Professora Catedrática Convidada da Universidade Nova de Lisboa Doutor António Carlos Matias Correia Professor Catedrático da Universidade de Aveiro Doutor -
Driving Nucleolar Assembly
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Driving nucleolar assembly Kathleen L. McCann,1 and Susan J. Baserga1,2,3,4 1Department of Genetics, 2Department of Molecular Biophysics and Biochemistry, 3Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA In this issue of Genes & Development,Grobandcol- breaks down (open mitosis), transcription of the ribosomal leagues (pp. 220–230) identify the minimal molecular re- RNA (rRNA) is inhibited, and the nucleolus disassem- quirements to assemble a fully functional nucleolus in bles. Upon completion of mitosis, rRNA transcription human cells and demonstrate the importance of the is reinitiated within the NOR, ribosome biogenesis fac- nucleolar transcription factor upstream binding factor tors are recruited, and the nucleolus is assembled. Only (UBF) as a mitotic bookmark at the ribosomal DNA NORs that are actively engaged in transcription can (rDNA). direct nucleolar assembly (Hernandez-Verdun 2011). Consequently, the nucleolus truly appears to be ‘‘an organelle formed by the act of building a ribosome’’ (Melese and Xue 1995). In all eukaryotes, the nucleolus is an essential, non- To begin to reveal the molecular mechanisms of nucle- membrane-bound organelle within the nucleus. Assem- olar formation, McStay’s laboratory (Mais et al. 2005; Grob bled around the ribosomal DNA (rDNA), the nucleolus et al. 2014) has applied synthetic biology. In an earlier is the site of ribosome biogenesis. In addition to its role report, they introduced 6.4 kb of DNA repeat sequences in making ribosomes, the nucleolus functions in other from the intergenic spacer of the Xenopus ribosomal gene important cellular processes, including stress sensing, into a noncanonical site in the human genome. -
Plastid in Human Parasites
SCIENTIFIC CORRESPONDENCE being otherwise homo Plastid in human geneous. The 35-kb genome-containing organ parasites elle identified here did not escape the attention of early Sm - The discovery in malarial and toxo electron microscopists who plasmodial parasites of genes normally - not expecting the pres occurring in the photosynthetic organelle ence of a plastid in a proto of plants and algae has prompted specula zoan parasite like tion that these protozoans might harbour Toxoplasma - ascribed to it a vestigial plastid1• The plastid-like para various names, including site genes occur on an extrachromosomal, 'Hohlzylinder' (hollow cylin maternally inherited2, 35-kilobase DNA der), 'Golgi adjunct' and circle with an architecture reminiscent of 'grof3e Tilkuole mit kriiftiger that of plastid genomes3•4• Although the Wandung' (large vacuole 35-kb genome is distinct from the 6-7-kb with stout surrounds) ( see linear mitochondrial genome3-6, it is not refs cited in ref. 9). Our pre known where in the parasite cells the plas liminary experiments with tid-like genome resides. Plasmodium falciparum, the To determine whether a plastid is pre causative agent of the most sent, we used high-resolution in situ lethal form of malaria, hybridization7 to localize transcripts of a identify an organelle (not plastid-like 16S ribosomal RNA gene shown) which appears sim from Toxoplasma gondii8, the causative ilar to the T. gondii plastid. agent of toxoplasmosis. Transcripts accu The number of surrounding mulate in a small, ovoid organelle located membranes in the P. anterior to the nucleus in the mid-region falciparum plastid, and its of the cell (a, b in the figure). -
Membrane Structure and Function
Chapter 7 Membrane Structure and Function Lecture Outline Overview: Life at the Edge • The plasma membrane separates the living cell from its surroundings. • This thin barrier, 8 nm thick, controls traffic into and out of the cell. • Like all biological membranes, the plasma membrane is selectively permeable, allowing some substances to cross more easily than others. • The formation of a membrane that encloses a solution different from the surrounding solution while still permitting the uptake of nutrients and the elimination of waste products was a key event in the evolution of life. • The ability of the cell to discriminate in its chemical exchanges with its environment is fundamental to life. • It is the plasma membrane and its component molecules that make this selectivity possible. Concept 7.1 Cellular membranes are fluid mosaics of lipids and proteins. • The main macromolecules in membranes are lipids and proteins, but carbohydrates are also important. • The most abundant lipids are phospholipids. • Phospholipids and most other membrane constituents are amphipathic molecules, which have both hydrophobic and hydrophilic regions. Membrane models have evolved to fit new data. • The arrangement of phospholipids and proteins in biological membranes is described by the fluid mosaic model. • In this model, the membrane is a fluid structure with a “mosaic” of various proteins embedded in or attached to a double layer (bilayer) of phospholipids. • Models of membranes were developed long before membranes were first seen with electron microscopes in the 1950s. • In 1915, membranes isolated from red blood cells were chemically analyzed and found to be composed of lipids and proteins. • In 1925, E. -
Untersuchung Zur Rolle Des La-Verwandten Proteins LARP4B Im Mrna- Metabolismus
Untersuchung zur Rolle des La-verwandten Proteins LARP4B im mRNA-Metabolismus Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Maritta Küspert aus Schwäbisch Hall Würzburg 2014 Eingereicht bei der Fakultät für Chemie und Pharmazie am: ....................................... Gutachter der schriftlichen Arbeit: 1. Gutachter: Prof. Dr. Utz Fischer 2. Gutachter: Prof. Dr. Alexander Buchberger Prüfer des öffentlichen Promotionskolloquiums: 1. Prüfer: Prof. Dr. Utz Fischer 2. Prüfer: Prof. Dr. Alexander Buchberger 3. Prüfer: Prof. Dr. Stefan Gaubatz Datum des öffentlichen Promotionskolloquiums: ......................................................... Doktorurkunde ausgehändigt am: ................................................................................ Zusammenfassung Eukaryotische messenger-RNAs (mRNAs) müssen diverse Prozessierungsreaktionen durchlaufen, bevor sie der Translationsmaschinerie als Template für die Proteinbiosynthese dienen können. Diese Reaktionen beginnen bereits kotranskriptionell und schließen das Capping, das Spleißen und die Polyadenylierung ein. Erst nach dem die Prozessierung abschlossen ist, kann die reife mRNA ins Zytoplasma transportiert und translatiert werden. mRNAs interagieren in jeder Phase ihres Metabolismus mit verschiedenen trans-agierenden Faktoren und bilden mRNA-Ribonukleoproteinkomplexe (mRNPs) aus. Dieser „mRNP-Code“ bestimmt das Schicksal jeder mRNA und reguliert dadurch die Genexpression auf posttranskriptioneller