Ana Rita Macedo Bezerra Genómica Molecular De Uma Alteração Ao

Total Page:16

File Type:pdf, Size:1020Kb

Ana Rita Macedo Bezerra Genómica Molecular De Uma Alteração Ao Universidade de Aveiro Departamento de Biologia 2013 Ana Rita Macedo Genómica molecular de uma alteração ao código Bezerra genético. Molecular genomics of a genetic code alteration. Universidade de Aveiro Departamento de Biologia 2013 Ana Rita Macedo Genómica molecular de uma alteração ao código Bezerra genético. Molecular genomics of a genetic code alteration. Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica do Prof. Doutor Manuel António da Silva Santos, Professor Associado do Departamento de Biologia da Universidade de Aveiro Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio. o júri presidente Doutora Maria Hermínia Deulonder Correia Amado Laurel Professora Catedrática da Universidade de Aveiro Doutora Judith Berman Professora Catedrática da Universidade de Tel Aviv Doutora Margarida Paula Pedra Amorim Casal Professora Catedrática da Universidade do Minho Doutor Manuel António da Silva Santos Professor Associado da Universidade de Aveiro Doutora Isabel Antunes Mendes Gordo Investigadora Principal do Instituto Gulbenkian de Ciência Doutor António Carlos Matias Correia Professor Catedrático da Universidade de Aveiro agradecimentos First and foremost, I would like to thank my supervisor, Doutor Manuel Santos, for the opportunity to work on this project and for his support throughout the last 5 years. Thank you for keeping me going when times were tough, asking acknowledgements insightful questions, and offering invaluable advice whilst allowing me the room to work in my own way. I am indebted to many colleagues who helped me during these last 5 years, especially to João Simões whose precious input was essential for this work. To Tatiana, Cristina, Denisa and João Paredes for helping me when I started my laboratory work. To Ana, Marisa, Tobias, Laura, Céu and Patrícia for support and fruitful discussions during my journey in the laboratory. To Violeta for the constant patience and readiness with everything and to the other past members of the Aveiro RNA Biology laboratory for their friendship and for making the laboratory such a pleasant place to do science. My gratitude goes also to my international colleagues of the EU-FP7 Sybaris consortium that helped with the Candida albicans whole genome sequencing and data analysis. In particular, Wanseon Lee and Johan Rung from the European Bioinformatics Institute (EBI-EMBL) in Cambridge, Ivo Gut and Mónica Bayés from Centro Nacional de Análises Genómico (CNAG) in Barcelona and Lisa Rizzetto from Florence University in Florence. And also to Professor Judith Berman from the Universities of Telavive and Minnesota for the constructive comments and discussions about my work. I am grateful to FCT, for funding my work through a PhD grant SFRH/BD/39030/2007 and project PTDC/SAU-GMG/098850/2008. Finally, I am deeply grateful to my parents, who stood by me and supported my choices and to my sister for her encouragement and care. A very special thanks to all my friends, who were always a phone call away, in particular to Renato for all the listening and advising. A big thank you to all of you. palavras-chave Candida albicans, código genético, tRNA, evolução, erros de tradução, transcriptoma, genoma resumo O código genético não é universal. Alterações à identidade de vários codões descobertas em procariotas e eucariotas invalidam a hipótese dum código genético universal e imutável. Por exemplo, várias espécies do género Candida traduzem o codão CUG de leucina como serina. Em Candida Ser albicans, um único tRNA de serina (tRNACAG ) incorpora in vivo 97% de serina e 3% de leucina nas proteínas em resposta a codões CUG presentes nos mRNAs deste fungo patogénico. Esta ambiguidade é flexível e a incorporação de leucina aumenta em condições de stress. De forma a elucidar a função desta ambiguidade e determinar se a identidade dos codões CUG podia ser revertida de serina para leucina, desenvolvemos uma estratégia de evolução forçada e uma proteína recombinante fluorescente cuja actividade depende da incorporação de leucina num codão CUG. Construímos estirpes que incorporam leucina nas proteínas em resposta a codões CUGs em níveis que variam entre 0,64% e 98,46%. Esta reversão de uma alteração ao código genético demostrou de modo inequívoco que o código é flexível e pode evoluir. Testes de crescimento em diferentes meios de cultivo revelaram uma série impressionante de fenótipos com elevado potencial adaptativo nas estirpes mais ambíguas, nomeadamente tolerância a antifúngicos. A sequenciação dos genomas das estirpes que construímos revelou que a ambiguidade do codão CUG resulta na acumulação de polimorfismos de nucleótido únicos (SNP) no genoma. Verificámos também perda de heterozigozidade (LOH) nos cromossomas 5 e R das estirpes que incorporam 80,84% e 98,46% de leucina em locais proteicos codificados por codões CUG. Os SNPs acumularam-se preferencialmente em genes envolvidos na adesão celular, no crescimento filamentoso e na formação de biofilmes, sugerindo que C. albicans utiliza a sua ambiguidade natural para aumentar a diversidade genética dos processos relacionados com a patogénese e resistência a drogas. Estes resultados evidenciam uma notável flexibilidade do código genético de C. albicans e revelam funções inesperadas da ambiguidade do código genético na evolução da diversidade genética e fenotípica. keywords Candida albicans, genetic code, tRNA, evolution, mistranslation, transcriptome, genome abstract The genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Ser Candida albicans, a serine tRNA (tRNACAG ) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity. Contents List of contents List of figures…………………………………………………………………………... ii List of tables……………………………………………………………………………. ii List of abbreviations………………………………………………………………….. iv Chapter 1 Introduction……………………………………………………………………………... 1 1.1 Genetic code: the interface between nucleic acid and protein chemistry…….. 2 1.1.1 The standard genetic code………………………………………………….. 2 1.1.2 Genetic code components: AARS and tRNAs……………………………. 4 1.1.2.1 Molecular architecture of AARS…………………………………… 4 1.1.2.2 Structure and function of the tRNA molecule…………………….. 7 1.1.2.3 Aminoacylation reaction……………………………………………. 11 1.1.2.4 AARS:tRNA interactions……………………………………………. 12 1.1.2.5 Quality control in tRNA charging…………………………………... 15 1.2 Protein synthesis: the process of mRNA translation……………………………. 18 1.2.1 Mechanism of mRNA translation…………………………………………… 18 1.2.1.1 mRNA translation initiation…………………………………………. 19 1.2.1.2 mRNA translation elongation………………………………………. 21 1.2.1.3 mRNA translation termination and recycling……………………... 22 1.2.2 Ribosomal proofreading……………………………………………………... 24 1.2.3 mRNA mistranslation………………………………………………………… 26 1.3 Development of the genetic code…………………………………………………. 28 1.3.1 Origin and early evolution of the genetic code……………………………. 28 1.3.2 Natural variations in the universal assignment of codons……………….. 30 1.3.3 Natural expansion of the genetic code to 22 amino acids……………….. 32 1.3.4 Theories for the evolution of the genetic code……………………………. 35 1.3.5 Variation in codon assignment through codon identity engineering……. 38 1.4 Evolution of the genetic code in yeast……………………………………………. 40 1.4.1 Reassignment of the CUN codon family in yeast mitochondria………… 41 1.4.2 Reassignment of the UGA stop codon in yeast mitochondria…………... 41 1.4.3 Reassignment of the CUG codon in the CTG clade……………………… 42 Ser 1.4.3.1 tRNA CAG, LeuRS and SerRS…………………………………….. 43 1.4.3.2 Pathway for the CUG reassignment in the fungal CTG clade….. 45 1.4.4 C. albicans as a model system to study the genetic code………………. 47 1.4.4.1 C. albicans biology………………………………………………….. 49 1.5 Objectives of this study…………………………………………………………….
Recommended publications
  • Size Changes in Eukaryotic Ribosomes
    Proc. Nat. Acad. Sci. USA Vol. 68, No. 12, pp. 3021-3025, December 1971 Size Changes in Eukaryotic Ribosomes (diffusion constant/sedimentation constant/ribosomal dissociation/chick embryo) JOHN VOURNAKIS AND ALEXANDER RICH Department of Biology, Massachusetts Institute of Technology, Cambridge, Mass. 02139 Contributed by Alexander Rich, September 20, 1971 ABSTRACT Evidence is presented that ribosomes two particles are similar. However, these changes suggest active in protein synthesis and attached to messenger that when the ribosome is attached to messenger RNA it has a RNA on polysomes have a smaller diameter than free cytoplasmic single ribosomes. Measurements have been smaller diameter than is found for the free cytoplastic ribo- made on these two types of ribosomes of differences in some. This more compact form of the ribosome is maintained sedimentation velocity and diffusion constant. Differences even when the nascent polypeptide chain is relased by puro- in these quantities suggest about a 20-A decrease in the mycin. We thus infer that there are substantial differences diameter of the ribosomes from chick embryo muscles in the interactions between the ribosomal subunits when when they are attached to messenger RNA. Similar dif- they ferences are also observed in rabbit reticulocytes and are attached to messenger RNA as compared to the free cyto- mouse ascites tumor cells. These two ribosomal states plasmic single ribosome, which is inactive in protein synthesis. have different sensitivity to Pronase digestion and dis- sociate into ribosomal subunits at different KCI concen- METHODS AND MATERIALS trations. This size difference is not associated with a sig- nificant difference in overall ribosomal mass and appears Preparation of Ribosomes.
    [Show full text]
  • Application of the Polymerase Chain Reaction in Bacterial Identification
    Exercise 16 APPLICATION OF THE POLYMERASE CHAIN REACTION IN BACTERIAL IDENTIFICATION Introduction The Polymerase Chain Reaction (PCR), as conceived by Kary Mullis and his coworkers at Cetus Corporation (Emeryville, California) in 1986, is a powerful diagnostic tool with multiple applications in genetic and molecular analysis. The procedure can be applied to the identification of unknown genes or microorganisms from a variety of samples and has revolutionized nucleotide sequencing. The polymerase chain reaction allows specific segments of DNA to be amplified (replicated over and over again) by utilizing some characteristic features of DNA and its replication process as follows: 1. The two nucleotide strands of a cellular DNA molecule (DNA double helix) are complementary to one another and antiparallel. 2. The complementary base pairs of a DNA double helix are held together by relatively weak hydrogen bonds, and can be induced to separate. Within cells, this involves enzymes, but can be accomplished in vitro by the application of heat. 3. During DNA replication, the enzyme complex known as DNA-dependent DNA polymerase uses the nucleotide sequence of an existing DNA strand as the template or pattern for building each new strand. This enzyme builds DNA by catalyzing the formation of phosphodiester bonds that attach nucleotides to the free 3' ends of existing nucleotide strands (i.e., builds from 5' to 3' and requires a primer). 4. Within cells, primase enzymes (DNA-dependent RNA polymerases) build the RNA primers required for replication. In vitro, single-stranded oligonucleotide sequences that are complimentary to specific regions of DNA can hybridize with these (anneal to them) and can serve as primer sequences (providing the free 3' ends) required for DNA-dependent DNA polymerase.
    [Show full text]
  • Nucleolin and Its Role in Ribosomal Biogenesis
    NUCLEOLIN: A NUCLEOLAR RNA-BINDING PROTEIN INVOLVED IN RIBOSOME BIOGENESIS Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Julia Fremerey aus Hamburg Düsseldorf, April 2016 2 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. A. Borkhardt Korreferent: Prof. Dr. H. Schwender Tag der mündlichen Prüfung: 20.07.2016 3 Die vorgelegte Arbeit wurde von Juli 2012 bis März 2016 in der Klinik für Kinder- Onkologie, -Hämatologie und Klinische Immunologie des Universitätsklinikums Düsseldorf unter Anleitung von Prof. Dr. A. Borkhardt und in Kooperation mit dem ‚Laboratory of RNA Molecular Biology‘ an der Rockefeller Universität unter Anleitung von Prof. Dr. T. Tuschl angefertigt. 4 Dedicated to my family TABLE OF CONTENTS 5 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................... 5 LIST OF FIGURES ......................................................................................................10 LIST OF TABLES .......................................................................................................12 ABBREVIATION .........................................................................................................13 ABSTRACT ................................................................................................................19 ZUSAMMENFASSUNG
    [Show full text]
  • On the Sedimentation Behavior and Molecular Weight of 16S Ribosomal RNA from Escherichia Coli
    University of Montana ScholarWorks at University of Montana Biological Sciences Faculty Publications Biological Sciences 1977 On the Sedimentation Behavior and Molecular Weight of 16S Ribosomal RNA from Escherichia coli Walter E. Hill University of Montana - Missoula, [email protected] Kenneth R. Bakke Donald P. Blair Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs Part of the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation Hill, Walter E.; Bakke, Kenneth R.; and Blair, Donald P., "On the Sedimentation Behavior and Molecular Weight of 16S Ribosomal RNA from Escherichia coli" (1977). Biological Sciences Faculty Publications. 196. https://scholarworks.umt.edu/biosci_pubs/196 This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Volume 4 Number 2 February 1977 Nucleic Acids Research On the sedimentation behavior and molecular weight of 16S ribosomal RNA from Escherichia coli Walter E.Hill, Kenneth R.Bakke and Donald P.Blair Department of Chemistry, University of Montana, Missoula, MT 59812, USA Received 10 January 1977 INTRODUCTION Although there have been several studies made on the physical characteristics of rRNA in the past [1,2,3], there is still continuing discussion on the molecular weight and sedimentation behavior of 16S rRNA. A recent study by Pearce et al. [4] reported on anomalous concentration dependence of the sedimentation coefficient of the Na salt of 16S rRNA.
    [Show full text]
  • João Cancela De Amorim Falcão Paredes Estudo Molecular Da
    Universidade de Aveiro Departamento de Biologia 2010 João Cancela de Estudo molecular da degeneração e evolução Amorim Falcão celular induzidas por erros na tradução do mRNA Paredes Molecular study of cell degeneration and evolution induced by mRNA mistranslation Universidade de Aveiro Departamento de Biologia 2010 João Cancela de Estudo molecular da degeneração e evolução Amorim Falcão celular induzidas por erros na tradução do mRNA Paredes Molecular study of cell degeneration and evolution induced by mRNA mistranslation Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Biologia, realizada sob a orientação científica do Doutor Manuel António da Silva Santos, Professor Associado do Departamento de Biologia da Universidade de Aveiro. Apoio financeiro do POCI 2010 no âmbito do III Quadro Comunitário de Apoio, comparticipado pelo FSE e por fundos nacionais do MCES/FCT. “The known is finite, the unknown infinite; intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little more land, to add something to the extent and the solidity of our possessions” Thomas Henry Huxley (1825 – 1895) o júri presidente Doutor Domingos Moreira Cardoso Professor Catedrático da Universidade de Aveiro Doutora Claudina Amélia Marques Rodrigues Pousada Professora Catedrática Convidada da Universidade Nova de Lisboa Doutor António Carlos Matias Correia Professor Catedrático da Universidade de Aveiro Doutor
    [Show full text]
  • Untersuchung Zur Rolle Des La-Verwandten Proteins LARP4B Im Mrna- Metabolismus
    Untersuchung zur Rolle des La-verwandten Proteins LARP4B im mRNA-Metabolismus Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Maritta Küspert aus Schwäbisch Hall Würzburg 2014 Eingereicht bei der Fakultät für Chemie und Pharmazie am: ....................................... Gutachter der schriftlichen Arbeit: 1. Gutachter: Prof. Dr. Utz Fischer 2. Gutachter: Prof. Dr. Alexander Buchberger Prüfer des öffentlichen Promotionskolloquiums: 1. Prüfer: Prof. Dr. Utz Fischer 2. Prüfer: Prof. Dr. Alexander Buchberger 3. Prüfer: Prof. Dr. Stefan Gaubatz Datum des öffentlichen Promotionskolloquiums: ......................................................... Doktorurkunde ausgehändigt am: ................................................................................ Zusammenfassung Eukaryotische messenger-RNAs (mRNAs) müssen diverse Prozessierungsreaktionen durchlaufen, bevor sie der Translationsmaschinerie als Template für die Proteinbiosynthese dienen können. Diese Reaktionen beginnen bereits kotranskriptionell und schließen das Capping, das Spleißen und die Polyadenylierung ein. Erst nach dem die Prozessierung abschlossen ist, kann die reife mRNA ins Zytoplasma transportiert und translatiert werden. mRNAs interagieren in jeder Phase ihres Metabolismus mit verschiedenen trans-agierenden Faktoren und bilden mRNA-Ribonukleoproteinkomplexe (mRNPs) aus. Dieser „mRNP-Code“ bestimmt das Schicksal jeder mRNA und reguliert dadurch die Genexpression auf posttranskriptioneller
    [Show full text]
  • Enzymatic Hydrolosis of 16S Ribosomal RNA and 30S Ribosomal Subunits
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 1970 Enzymatic Hydrolosis of 16s Ribosomal RNA and 30s Ribosomal Subunits Jaime Amaya-Farfan University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Amaya-Farfan, Jaime, "Enzymatic Hydrolosis of 16s Ribosomal RNA and 30s Ribosomal Subunits" (1970). Open Access Master's Theses. Paper 1149. https://digitalcommons.uri.edu/theses/1149 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Q \--\ (oO 3 1' s !'.\L3 'J..J ENZYMATIC HYDROLYSIS ---OF 16S RIBOSOMAL RNA AND 30S RIBOSOMAL SUBUNITS BY JAIME AMAYA-FARFAN A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE. IN BIOLOGICAL SCIENCES UNIVERSITY: OF RH.ODE ISLAND 1970 !11ASTER OF SCIENCE THESIS OF JAIME AMAYA- FARFAN A!-iproved : Thesis Committee : Chairman _,c..~~~~~-¥--~~~~~~'"T/""-=---~~~ University of Rhode I s l and 1970 ABSTRACT !:..~ 30s ribosomal subunits and protein-free 168 RNA have been mildly hydrolyzed with pancreatic ribonuclease and the RNA fragments analyzed by polyacrylamide gel electrophoresis. The protein-free RNA gives nine discrete fragments and the 308 subunits give six discrete fragments. A comparison of electrophoretic mobilities, indicates that at least three fragments from 168 RNA are distinct from the fragments from 308. The kinetics of the hydrolysis reaction is pseudo first-order for the protein-free 168 RNA and pseudo second­ order for the 308 ribosomes.
    [Show full text]
  • Structure and Function of the Ribosome
    7 OCTOBER 2009 Scientifc Background on the Nobel Prize in Chemistry 2009 STRUCTURE AND FUNCTION OF THE RIBOSOME THE ROYAL SWEDISH ACADEMY OF SCIENCES has as its aim to promote the sciences and strengthen their infuence in society. BOX 50005 (LILLA FRESCATIVÄGEN 4 A), SE-104 05 STOCKHOLM, SWEDEN Nobel Prize® and the Nobel Prize® medal design mark TEL +46 8 673 95 00, FAX +46 8 15 56 70, [email protected] HTTP://KVA.SE are registrated trademarks of the Nobel Foundation Structure and function of the ribosome This year’s Nobel Prize in Chemistry is awarded to Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath for their studies of the structure and function of the ribosome. Their scientific contributions and the historical context are summarized below. Brief introduction to the ribosome The ribosome and the central dogma. The genetic information in living systems is stored in the genome sequences of their DNA (deoxyribonucleic acid). A large part of these sequences encode proteins which carry out most of the functional tasks in all extant organisms. The DNA information is made available by transcription of the genes to mRNAs (messenger ribonucleic acids) that subsequently are translated into the various amino acid sequences of all the proteins of an organism. This is the central dogma (Crick, 1970) of molecular biology in its simplest form (Figure 1) DNA () gene →transcription RNA ( mRNA )→translation Protein ( peptide sequence) Figure 1. The central dogma revisited. The genetic information in DNA is preserved by replication of the genome (Watson and Crick, 1953a, b) carried out by DNA polymerase (Kornberg, 1969) so that each daughter cell can receive one genome copy at every cell division.
    [Show full text]
  • Evolution of Translation the Ribosome
    University of Illinois at Urbana-Champaign Luthey-Schulten Group NIH Resource for Macromolecular Modeling and Bioinformatics Computational Biophysics Workshop Evolution of Translation The Ribosome VMD Developer: John Stone MultiSeq Developers Tutorial Authors Elijah Roberts Ke Chen John Eargle John Eargle Dan Wright Tyler Earnest Jonathan Lai Zan Luthey-Schulten April 2015 A current version of this tutorial is available at http://www.scs.illinois.edu/~schulten/tutorials/ribosome CONTENTS 2 Contents Introduction 3 Requirements . 4 1 The Ribosomal SSU and associated structures: [30 minutes] 4 2 The Ribosome LSU and associated structures: [30 minutes] 9 2.1 The peptidyl-transferase center . 10 3 Ribosome Origins: [30 minutes] 11 3.1 Hypothesis on the evolution of the ribosome . 11 4 Ribosomal signatures: [60 minutes] 12 4.1 Definition and classification of the ribosomal signatures . 14 4.2 Contribution of ribosomal signatures to phylogenetic separation . 17 4.3 Functional roles of signatures in ribosomal assembly . 20 5 Kinetic Model of Ribosome assembly: [30 minutes] 22 Acknowledgements 26 CONTENTS 3 Introduction The ribosome is a large structure found in all living cells that serves as the main translation machinery of the cell. Messenger RNA (mRNA), transcribed from the organism's genome, binds with the ribosome to commence translation to protein. As explained in the previous tutorials [1, 2, 3], many other cellular components, including tRNA, the aminoacyl-tRNA synthetases, and the elonga- tion factors participate in the translation process; however, the ribosome is the central machinery that assembles a protein from a transcribed gene. Solving the structure of the ribosome was awarded the Nobel Prize in Chemistry in 2009 [4].
    [Show full text]
  • Targeting the Human 80S Ribosome in Cancer: from Structure to Function and Drug Design for Innovative Adjuvant Therapeutic Strategies
    cells Review Targeting the Human 80S Ribosome in Cancer: From Structure to Function and Drug Design for Innovative Adjuvant Therapeutic Strategies Arnaud Gilles 1,Léo Frechin 2, Kundhavai Natchiar 2, Giulia Biondani 3, Ottilie von Loeffelholz 2 , Samuel Holvec 2, Julie-Lisa Malaval 1 , Jean-Yves Winum 1,* , Bruno P. Klaholz 2,* and Jean-François Peyron 3,* 1 IBMM, Univ Montpellier, CNRS, IBMM, ENSCM, 34296 Montpellier, France; [email protected] (A.G.); [email protected] (J.-L.M.) 2 Université de Strasbourg, CNRS, Inserm, Centre for Integrative Biology, IGBMC, 67404 Illkirch, France; [email protected] (L.F.); [email protected] (K.N.); loeff[email protected] (O.v.L.); [email protected] (S.H.) 3 Université Côte d’Azur, Inserm, C3M, 06204 Nice, France; [email protected] * Correspondence: [email protected] (J.-Y.W.); [email protected] (B.P.K.); [email protected] (J.-F.P.) Received: 23 January 2020; Accepted: 2 March 2020; Published: 5 March 2020 Abstract: The human 80S ribosome is the cellular nucleoprotein nanomachine in charge of protein synthesis that is profoundly affected during cancer transformation by oncogenic proteins and provides cancerous proliferating cells with proteins and therefore biomass. Indeed, cancer is associated with an increase in ribosome biogenesis and mutations in several ribosomal proteins genes are found in ribosomopathies, which are congenital diseases that display an elevated risk of cancer. Ribosomes and their biogenesis therefore represent attractive anti-cancer targets and several strategies are being developed to identify efficient and specific drugs. Homoharringtonine (HHT) is the only direct ribosome inhibitor currently used in clinics for cancer treatments, although many classical chemotherapeutic drugs also appear to impact on protein synthesis.
    [Show full text]
  • Lec No 18 Ribosomes
    Cell have tiny granular structures known as Ribosomes Ribosomes are Ribonucleo-Protein Particles Ribosomes serves as workbenches, with mRNA acting as the blueprint in the process of protein synthesis Palade was the first person to study them in 1955 The number of Ribosomes differs greatly A rapidly growing E.coli cell may have as many as 15,000 to 20,000 ribosomes, about 15% of the cell mass Matrix Ribosomes: These synthesize proteins destined to remain within the cell Plasma Membrane Ribosomes: These make proteins for transport to the outside There are two domains of Ribosomes Translational Domain: The region responsible for translation is called the Translational domain Both subunits contribute to this domain, located in the upper half of the small subunit and in the associated areas of the large subunit Exit Domain: The growing peptide chain emerges from the large subunit at the exit domain This is located on the side of the subunit Prokaryotic Ribosomes are commonly called 70S Ribosomes These have dimensions of about 14 to 15nm by 20nm A Molecular Weight of approximately 2.7 million daltons(2.7×106 daltons) These are constructed of a 50S and a 30S subunit Ribosomes are not bounded by membrane Prokaryotic Ribosomes are smaller and less dense than Eukaryotic Ribosomes Ribosomes are composed of two subunits, each of which consists of protein and a type of RNA called Ribosomal RNA (rRNA) Each subunit is constructed from one to two rRNA molecules and many polypeptides 30S smaller Subunit 50S larger Subunit The S
    [Show full text]
  • Studies on Structure of E Coli Ribosomes David Lloyd Weller Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 Studies on structure of E coli ribosomes David Lloyd Weller Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Weller, David Lloyd, "Studies on structure of E coli ribosomes " (1966). Retrospective Theses and Dissertations. 2923. https://lib.dr.iastate.edu/rtd/2923 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 66—10,446 WELLER, David Lloyd, 1938- STUDIES ON STRUCTURE OF E. COLI RIBOSOMES. Iowa State University of Science and Technology Ph.D., 1966 Chemistry, biological University Microfilms, Inc., Ann Arbor, Michigan STUDIES ON STRUCTURE OF E. COLI RIBOSOMES by David Lloyd Weller A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Biochemistry Approved ; Signature was redacted for privacy. Signature was redacted for privacy. H d 6f Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1966 il TABLE OF CONTENTS
    [Show full text]