Identification of Fish Families and Species from the Western Arabian Gulf by Otolith Shape Analysis and Factors Affecting the Identification Process

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Fish Families and Species from the Western Arabian Gulf by Otolith Shape Analysis and Factors Affecting the Identification Process SPECIAL ISSUE CSIRO PUBLISHING Marine and Freshwater Research, 2019, 70, 1818–1827 https://doi.org/10.1071/MF18282 Identification of fish families and species from the western Arabian Gulf by otolith shape analysis and factors affecting the identification process Yu-Jia LinA,C and Khaled Al-AbdulkaderB AMarine Studies Section, Center for Environment and Waters, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Eastern Province, Kingdom of Saudi Arabia. BEnvironmental Protection Department, Saudi Aramco, Dhahran 31261, Eastern Province, Kingdom of Saudi Arabia. CCorresponding author. Email: [email protected]; [email protected] Abstract. Otolith shape analysis was used to identify 16 fish species belong to 5 families from the western Arabian Gulf to construct a cost-effective method of delineating fish taxonomic groups. We further tested the factors potentially affecting the identification process, including using different dataset sources, sex, the number of candidate species, different sample sizes and different sampling procedures. No specific dataset outperformed any other in the identification of fish families and species. Using all data sources yielded the best performance. Otolith shape parameters were significantly affected by somatic length, but not by sex. The correct prediction rate declined as the number of candidate species increased. An insufficient sample size led to a reduction in correct prediction rates with increased variability. The effects of size-biased sampling were species specific and could greatly reduce the correct prediction rate if the species of interest exhibits strong allometric changes in otolith shape. Having multiple sources of data, information a priori to reduce the number of candidate species and sufficiently large sample sizes across wide size classes so as to include possible variations in otolith shape are key to the precise identification of fish families and species using otolith shape analysis. Additional keywords: linear discriminant analysis, sampling procedure, species identification, wavelet transformation. Received 1 August 2018, accepted 2 April 2019, published online 3 July 2019 Introduction et al. 2018) and numerous analytical approaches have been Otolith shape analysis is a well-established method of delineating developed (e.g. Tuset et al. 2003, 2016; Ponton 2006; Wakefield fish stocks, populations, species and higher taxonomic groups. It et al. 2014; Libungan and Pa´lsson 2015). The performance of is fairly cost-effective and requires only otolith images containing these methods in identifying fish groups is often case specific information about shape, outline and landmarks. The analysis (Ponton 2006), and it remains unclear whether incorporating programs are usually built in a free software environment with different sources of information would enhance the identifica- introductory protocols (e.g. the shapeR package, see https://cran. tion performance of these methods. Second, identification r-project.org/package=shapeR, in R, ver. 3.4.2, R Foundation performance may be affected by the number of candidate for Statistical Computing, Vienna, Austria, see https://www. species. Lombarte et al. (2018) suggested an inverse relation- R-project.org; Libungan and Pa´lsson 2015), which facilitates ship between the correct identification rate and the number of wide application. The requirement for digital images only further candidate species based on a summary of six studies. However, enables large electronic catalogues to be established and auto- these studies differed in methodology and collection sites, and mated taxon identification systems to be developed that can be the relationship has not been tested in a systematic manner using accessed by the general public (e.g. the Ana`lisi de Formes the same methodology in a single study. Third, the sample sizes d’Oto`lits (AFORO) database, http://isis.cmima.csic.es/aforo/, used for model construction vary considerably among studies, accessed 31 July 2018; Lombarte et al. 2006). from 10 otoliths for each species in the study of Salimi et al. Although otolith shape analysis is a promising tool for the (2016) up to 136 otoliths for the goby Sicyopterus lagocephalus identification of fish groups, several factors may hinder its in the study of Lord et al. (2012). Fourth, otolith shape may successful use, the first being the selection of available analyti- change allometrically with somatic growth (Monteiro et al. cal methods. Differences in otolith shape have been used to 2005; Vignon 2012). Therefore, sufficient sample sizes with identify teleost species for over 130 years (Nolf 2013; Lombarte proper sampling procedures, such as size-stratified random Journal Compilation Ó CSIRO 2019 Open Access CC BY-NC-ND www.publish.csiro.au/journals/mfr Factors affecting otolith shape analysis Marine and Freshwater Research 1819 Table 1. Summary table for the fish collected from the western Arabian Gulf LT, total length Family Species Sample size LT (mm) Mean Æ s.d. Range Lethrinidae Lethrinus borbonicus 122 189 Æ 49 57–297 Lethrinus lentjan 133 281 Æ 63 188–414 Lethrinus microdon 60 316 Æ 90 174–556 Lethrinus nebulosus 105 419 Æ 124 188–612 Nemipteridae Nemipterus bipunctatus 124 183 Æ 58 49–338 Nemipterus japonicus 198 220 Æ 54 79–334 Nemipterus peronii 115 159 Æ 37 79–244 Nemipterus randalli 80 158 Æ 33 56–217 Serranidae Cephalopholis hemistiktos 180 248 Æ 54 108–413 Epinephelus areolatus 164 282 Æ 62 171–444 Epinephelus coioides 118 508 Æ 121 249–775 Sparidae Argyrops spinifer 112 285 Æ 131 155–637 Rhabdosargus haffara 149 217 Æ 23 169–295 Sparidentex hasta 50 422 Æ 130 256–670 Synodontidae Saurida macrolepis 115 179 Æ 51 86–317 Saurida tumbil 128 314 Æ 105 94–523 sampling, could ensure that variations in otolith shape due to Serranidae, seabream Argyrops spinifer, Rhabdosargus haffara ontogenetic changes are included in the samples. It is of and Sparidentex hasta from Sparidae and lizardfish Saurida practical importance to know how different sample sizes and macrolepis and Saurida tumbil from Synodontidae. After thaw- sampling procedures may affect identification performance and ing, the total length and weight were measured to the nearest to design a best practice that balances the trade-off between 1 mm and 0.1 g. The largest pair of otoliths, the sagittae, was sampling costs and identification precision. removed from the fish, cleaned in fresh water, dried in air and The primary objective of this study was to identify fish stored in sealed plastic vials. families and species from the western Arabian Gulf using otolith shape analysis. Second, we tested the effects of several factors Otolith image processing, outline extraction and wavelet on identification performance, including the use of different transformation data sources, sex as a possible confounding factor (Cardinale A stratified random sampling scheme was used to fully represent et al. 2004), the number of candidate species, different sample the size distribution of the population. The fish were ranked by sizes and different sampling procedures with regard to somatic somatic size and classified into three size strata, namely small, sizes. Four data sources were extracted from otolith shape: medium and large, covering the lower, middle and upper thirds of otolith measurement, shape indices (Tuset et al. 2003), coeffi- the somatic length rank respectively. Between 17 and 60 speci- cients from wavelet transformation (Libungan and Pa´lsson mens were randomly drawn from each stratum. In all, 1953 fish 2015) and relative otolith length. Fisher’s linear discriminant specimens were collected, with sufficient coverage in length that analysis was used to analyse the multivariate data and the fish were sampled from juveniles to large adults (Table 1). classification of fish families and species. The otoliths of some fish species become greatly curved towards the external face and their three-dimensional (3D) Materials and methods structures become more apparent as the fish grows. Thus, it Sample collection was not feasible to obtain otolith photographs in which all the Fish specimens were collected from bottom trawl surveys otoliths were positioned in a perfect horizontal plane with the (Rabaoui et al. 2015, 2017) and visits to major landing sites sulcus acusticus facing the observer, as done by Lombarte et al. under a landing site monitoring program (Rabaoui et al. 2017). (2018). Alternatively, the otoliths were placed horizontally with The trawl surveys involved a commercial outrigger trawler in the external plane of the otolith facing towards the observer the western Arabian Gulf in 2013 and 2016. The landing site (Fig. 1), as described by Libungan and Pa´lsson (2015). The monitoring program examined 12 fish and invertebrate stocks of otoliths were observed against a black background with a major commercial importance in 2013 and 2014. reflected light source under a dissection microscope attached In this study, we selected 16 species from 5 families of to a digital camera (DP72; Olympus, Center Valley, PA, USA). commercial interest: emperor fish Lethrinus nebulosus, Lethri- The images were captured and digitised using CellSens nus lentjan, Lethrinus microdon and Lethrinus borbonicus Standard software (ver. 1.5, Olympus). from Lethrinidae, threadfin bream Nemipterus bipunctatus, Extraction of the otolith outline, contour smoothing, mea- Nemipterus japonicus, Nemipterus peronii and Nemipterus surement, generation of shape coefficients (wavelet transforma- randalli
Recommended publications
  • Zoology Marine Ornamental Fish Biodiversity of West Bengal ABSTRACT
    Research Paper Volume : 4 | Issue : 8 | Aug 2015 • ISSN No 2277 - 8179 Zoology Marine Ornamental Fish Biodiversity of KEYWORDS : Marine fish, ornamental, West Bengal diversity, West Bengal. Principal Scientist and Scientist-in-Charge, ICAR-Central Institute of Fisheries Education, Dr. B. K. Mahapatra Salt Lake City, Kolkata-700091, India Director and Vice-Chancellor, ICAR-Central Institute of Fisheries Education, Versova, Dr. W. S. Lakra Mumbai- 400 061, India ABSTRACT The State of West Bengal, India endowed with 158 km coast line for marine water resources with inshore, up-shore areas and continental shelf of Bay of Bengal form an important fishery resource and also possesses a rich wealth of indigenous marine ornamental fishes.The present study recorded a total of 113 marine ornamental fish species, belonging to 75 genera under 45 families and 10 orders.Order Perciformes is represented by a maximum of 26 families having 79 species under 49 genera followed by Tetraodontiformes (5 family; 9 genus and 10 species), Scorpaeniformes (2 family; 3 genus and 6 species), Anguilliformes (2 family; 3 genus and 4 species), Syngnathiformes (2 family; 3 genus and 3 species), Pleuronectiformes (2 family; 2 genus and 4 species), Siluriformes (2 family; 2 genus and 3 species), Beloniformes (2 family; 2 genus and 2 species), Lophiformes (1 family; 1 genus and 1 species), Beryciformes(1 family; 1 genus and 1 species). Introduction Table 1: List of Marine ornamental fishes of West Bengal Ornamental fishery, which started centuries back as a hobby, ORDER 1: PERCIFORMES has now started taking the shape of a multi-billion dollar in- dustry.
    [Show full text]
  • View/Download
    SPARIFORMES · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 13 Feb. 2021 Order SPARIFORMES 3 families · 49 genera · 283 species/subspecies Family LETHRINIDAE Emporerfishes and Large-eye Breams 5 genera · 43 species Subfamily Lethrininae Emporerfishes Lethrinus Cuvier 1829 from lethrinia, ancient Greek name for members of the genus Pagellus (Sparidae) which Cuvier applied to this genus Lethrinus amboinensis Bleeker 1854 -ensis, suffix denoting place: Ambon Island, Molucca Islands, Indonesia, type locality (occurs in eastern Indian Ocean and western Pacific from Indonesia east to Marshall Islands and Samoa, north to Japan, south to Western Australia) Lethrinus atkinsoni Seale 1910 patronym not identified but probably in honor of William Sackston Atkinson (1864-ca. 1925), an illustrator who prepared the plates for a paper published by Seale in 1905 and presumably the plates in this 1910 paper as well Lethrinus atlanticus Valenciennes 1830 Atlantic, the only species of the genus (and family) known to occur in the Atlantic Lethrinus borbonicus Valenciennes 1830 -icus, belonging to: Borbon (or Bourbon), early name for Réunion island, western Mascarenes, type locality (occurs in Red Sea and western Indian Ocean from Persian Gulf and East Africa to Socotra, Seychelles, Madagascar, Réunion, and the Mascarenes) Lethrinus conchyliatus (Smith 1959) clothed in purple, etymology not explained, probably referring to “bright mauve” area at central basal part of pectoral fins on living specimens Lethrinus crocineus
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Co-Occurrence of Ectoparasites of Marine Fishes: a Null Model Analysis
    Ecology Letters, (2002) 5: 86±94 REPORT Co-occurrence of ectoparasites of marine ®shes: a null model analysis Abstract Nicholas J. Gotelli1 We used null model analysis to test for nonrandomness in the structure of metazoan and Klaus Rohde2 ectoparasite communities of 45 species of marine ®sh. Host species consistently 1Department of Biology, supported fewer parasite species combinations than expected by chance, even in analyses University of Vermont, that incorporated empty sites. However, for most analyses, the null hypothesis was not Burlington, Vermont 05405, rejected, and co-occurrence patterns could not be distinguished from those that might USA. arise by random colonization and extinction. We compared our results to analyses of 2 School of Biological Sciences, presence±absence matrices for vertebrate taxa, and found support for the hypothesis University of New England, that there is an ecological continuum of community organization. Presence±absence Armidale, NSW 2351, Australia. matrices for small-bodied taxa with low vagility and/or small populations (marine E-mail: [email protected] ectoparasites, herps) were mostly random, whereas presence±absence matrices for large- bodied taxa with high vagility and/or large populations (birds, mammals) were highly structured. Metazoan ectoparasites of marine ®shes fall near the low end of this continuum, with little evidence for nonrandom species co-occurrence patterns. Keywords Species co-occurrence, ectoparasite communities, niche saturation, competitive interactions, null model analysis, presence±absence matrix Ecology Letters (2002) 5: 86±94 community patterns, reinforcing previous conclusions that INTRODUCTION these parasites live in largely unstructured assemblages Parasite communities are model systems for tests of (Rohde 1979, 1989, 1992, 1993, 1994, 1998a,b, 1999; Rohde community structure because community boundaries are et al.
    [Show full text]
  • 5. Bibliography
    click for previous page 101 5. BIBLIOGRAPHY Akazaki, M., 1958. Studies on the orbital bones of sparoid fishes. Zool.Mag., Tokyo, 67:322-25 -------------,1959. Comparative morphology of pentapodid fishes. Zool.Mag., Tokyo, 68(10):373-77 -------------,1961. Results of the Amami Islands expedition no. 4 on a new sparoid fish, Gymnocranius japonicus with special reference to its taxonomic status. Copeia, 1961 (4):437-41 -------------,1962. Studies on the spariform fishes. Anatomy, phylogeny, ecology and taxonomy. Misaki Mar.Biol.Inst.,Kyoto Univ., Spec. Rep. , No. 1, 368 p. Aldonov, KV.& A.D. Druzhinin, 1979. Some data on scavenger (family Lethrinidae) from the Gulf of Aden region. Voprosy Ikhthiologii, 18(4):527-35 Allen, G.R. & R.C. Steene, 1979. The fishes of Christmas Island, Indian Ocean. Aust.nat.Parks Wildl.Serv.Spec.Publ., 2:1-81 -------------, 1987. Reef fishes of the Indian Ocean. T.F.H. Publications, Neptune City, 240 p., 144 pls -------------, 1988. Fishes of Christmas Island, Indian Ocean. Christmas Island Natural History Association, 199 p. Allen, G. R. & R. Swainston, 1988. The Marine fishes of North-western Australia. A field guide for anglers and divers. Western Australian Museum, Perth, 201 p. Alleyne, H.G. & W. Macleay, 1877. The ichthyology of the Chevert expedition. Proc. Linn.Soc. New South Wales, 1:261-80, pls.3-9. Amesbury, S. S. & R. F. Myers, 1982. Guide to the coastal resources of Guam, Volume I. The Fishes. University of Guam Press, 141 p. Asano, H., 1978. On the tendencies of differentiation in the composition of the vertebral number of teleostean fishes. Mem.Fac.Agric.Kinki Univ., 10(1977):29-37 Baddar, M.K , 1987.
    [Show full text]
  • ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides Chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن
    A study on some biological aspects of longnose trevally (Carangoides chrysophrys) in Hormozgan waters Item Type monograph Authors Kamali, Easa; Valinasab, T.; Dehghani, R.; Behzadi, S.; Darvishi, M.; Foroughfard, H. Publisher Iranian Fisheries Science Research Institute Download date 10/10/2021 04:51:55 Link to Item http://hdl.handle.net/1834/40061 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﺞﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر – ﭘﮋوﻫﺸﻜﺪه اﻛﻮﻟﻮژي ﺧﻠﻴﺞ ﻓﺎرس و درﻳﺎي ﻋﻤﺎن ﻋﻨﻮان: ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﻣﺠﺮي: ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﺷﻤﺎره ﺛﺒﺖ 49023 وزارت ﺟﻬﺎد ﻛﺸﺎورزي ﺳﺎزﻣﺎن ﺗﺤﻘﻴﻘﺎت، آﻣﻮزش و ﺗﺮوﻳﭻ ﻛﺸﺎورزي ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر- ﭘﮋوﻫﺸﻜﺪه اﻛﻮﻟﻮژي ﺧﻠﻴﺞ ﻓﺎرس و درﻳﺎي ﻋﻤﺎن ﻋﻨﻮان ﭘﺮوژه : ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز (Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﺷﻤﺎره ﻣﺼﻮب ﭘﺮوژه : 2-75-12-92155 ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﮕﺎرﻧﺪه/ ﻧﮕﺎرﻧﺪﮔﺎن : ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي ﻣﺴﺌﻮل ( اﺧﺘﺼﺎص ﺑﻪ ﭘﺮوژه ﻫﺎ و ﻃﺮﺣﻬﺎي ﻣﻠﻲ و ﻣﺸﺘﺮك دارد ) : ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺠﺮي / ﻣﺠﺮﻳﺎن : ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻫﻤﻜﺎر(ان) : ﺳﻴﺎﻣﻚ ﺑﻬﺰادي ،ﻣﺤﻤﺪ دروﻳﺸﻲ، ﺣﺠﺖ اﷲ ﻓﺮوﻏﻲ ﻓﺮد، ﺗﻮرج وﻟﻲﻧﺴﺐ، رﺿﺎ دﻫﻘﺎﻧﻲ ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻣﺸﺎور(ان) : - ﻧﺎم و ﻧﺎم ﺧﺎﻧﻮادﮔﻲ ﻧﺎﻇﺮ(ان) : - ﻣﺤﻞ اﺟﺮا : اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﺗﺎرﻳﺦ ﺷﺮوع : 92/10/1 ﻣﺪت اﺟﺮا : 1 ﺳﺎل و 6 ﻣﺎه ﻧﺎﺷﺮ : ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﻋﻠﻮم ﺷﻴﻼﺗﻲ ﻛﺸﻮر ﺗﺎرﻳﺦ اﻧﺘﺸﺎر : ﺳﺎل 1395 ﺣﻖ ﭼﺎپ ﺑﺮاي ﻣﺆﻟﻒ ﻣﺤﻔﻮظ اﺳﺖ . ﻧﻘﻞ ﻣﻄﺎﻟﺐ ، ﺗﺼﺎوﻳﺮ ، ﺟﺪاول ، ﻣﻨﺤﻨﻲ ﻫﺎ و ﻧﻤﻮدارﻫﺎ ﺑﺎ ذﻛﺮ ﻣﺄﺧﺬ ﺑﻼﻣﺎﻧﻊ اﺳﺖ . «ﺳﻮاﺑﻖ ﻃﺮح ﻳﺎ ﭘﺮوژه و ﻣﺠﺮي ﻣﺴﺌﻮل / ﻣﺠﺮي» ﭘﺮوژه : ﺑﺮرﺳﻲ ﺑﺮﺧﻲ از وﻳﮋﮔﻲ ﻫﺎي زﻳﺴﺖ ﺷﻨﺎﺳﻲ ﻣﺎﻫﻲ ﮔﻴﺶ ﭘﻮزه دراز ( Carangoides chrysophrys) در آﺑﻬﺎي اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن ﻛﺪ ﻣﺼﻮب : 2-75-12-92155 ﺷﻤﺎره ﺛﺒﺖ (ﻓﺮوﺳﺖ) : 49023 ﺗﺎرﻳﺦ : 94/12/28 ﺑﺎ ﻣﺴﺌﻮﻟﻴﺖ اﺟﺮاﻳﻲ ﺟﻨﺎب آﻗﺎي ﻋﻴﺴﻲ ﻛﻤﺎﻟﻲ داراي ﻣﺪرك ﺗﺤﺼﻴﻠﻲ ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ در رﺷﺘﻪ ﺑﻴﻮﻟﻮژي ﻣﺎﻫﻴﺎن درﻳﺎ ﻣﻲﺑﺎﺷﺪ.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Exploited Off Thoothukudi Coast, Tamil Nadu, India
    Indian Journal of Geo Marine Sciences Vol.46 (11),November 2017, pp. 2367-2371 Age, Growth and Mortality characteristics of Lethrinus lentjan (Lacepede, 1802) exploited off Thoothukudi coast, Tamil Nadu, India M. Vasantharajan1, P.Jawahar2, S. Santhoshkumar2 & P.Ramyalakshmi3 1Directorate of Research, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India 2Department of Fisheries Biology and Resource Management, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India 3 Department of Aquaculture, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Nagapattinam 611 001, Tamil Nadu, India. [E- mail: [email protected]] Received 17 July 2015 ; revised 17 November 2016 Study on maximum sustainable yield along Thoothukudi coast indicated that L.lentjan is underexploited. The L∞, K and t0 value of L.lentjan were 78.8 cm, 0.37 year-1 and -0.68 year respectively. The K value of L.lentjan was relatively higher inferring slow growth rate of this tropical demersal fish species. Total instantaneous mortality (Z) of L.lentjan was 1.28 year-1 and the estimated Fishing mortality was 0.73. Recruitment of L.lentjan was recorded in throughout year with two peaks in July – August, 2011and April, 2012. [Keywords : Lethrinus lentjan, Age, Growth, Mortality ] Introduction In India, the good perch grounds were L.nebulosus (Starry emperor bream), L. harak found in northeast coasts from the depth of 60 -70 (Yellow banded emperor bream), L.elongatus (Long m and located in the range between 18° to 20° N face pig face bream) and Lethrinella miniatus (long and 84° to 87° E, as recorded1. Perches contribute nosed emperor)5.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Age and Growth of Nemipterus Randalli in the Southern Aegean Sea, Turkey
    J. Black Sea/Mediterranean Environment Vol. 25, No. 2: 140-149 (2019) RESEARCH ARTICLE Age and growth of Nemipterus randalli in the southern Aegean Sea, Turkey Umut Uyan1*, Halit Filiz2, Ali Serhan Tarkan2,3, Murat Çelik2, Nildeniz Top2 1 Department of Marine Biology, Pukyong National University, (48513) 45, Yongso-ro, Nam-Gu, Busan, KOREA 2 Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000, Menteşe, Muğla, TURKEY 3 Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, POLAND *Corresponding author: [email protected] Abstract In this study, the age and growth characteristics of Randall’s threadfin bream (Nemipterus randalli Russell, 1986) in Gökova Bay (southern Aegean Sea) were examined. In total, 221 (varied between 10.8-21.9 cm in total length and 18.19-150.10 g in total weight) were examined on a monthly basis between May 2015 and April 2016. The sex ratio (male: female) was 1:0.51 and showed significant variation depending on age classes. The length-weight relationship parameters were estimated as follows; a = 0.0171, b = 2.92, r 2= 0.92 (n = 221). Ages ranged from 1 to 5, and the 2-years group was dominant (42.53%) for both sexes. von Bertalanffy growth parameters and phi-prime -1 growth performance index value calculated as L∞= 27.57 cm, k= 0.183 year , t0= -2.88 and Φ= 2.14 for all individuals. The results representing the first study on age and growth of N. randalli in the southern Aegean Sea. Keywords: Randall’s threadfin bream, Nemipteridae, Lessepsian fish, Gökova Bay Received: 10.02.2019 Accepted: 30.05.2019 Introduction Randall’s threadfin bream (Nemipterus randalli Russell, 1986) naturally exists in all the western Indian Ocean including the east and west coasts of India, Pakistan, the Persian (Arabian) Gulf, Red Sea, including the Gulf of Aqaba, the Gulf of Aden, and the eastern African coast: the Seychelles and Madagascar (Russell 1990).
    [Show full text]
  • The Food and Feeding Habits of the Delagoa Threadfin Bream, Nemipterus Bipunctatus (Valenciennes, 1830), from the Coastal Waters Around Dar Es Salaam, Tanzania
    WIO Journal of Marine Science 16 (1 ) 2017 13-23 Original Article 13 The food and feeding habits of the Delagoa threadfin bream, Nemipterus bipunctatus (Valenciennes, 1830), from the coastal waters around Dar es Salaam, Tanzania Joseph S. Sululu1,*, Simon G. Ndaro2, Simon J. Kangwe1 1 Tanzania Fisheries Research 2 Department of Aquatic Sciences * corresponding author: Institute, P.O. Box 78850, and Fisheries Technology, [email protected] Dar es Salaam, University of Dar es Salaam, Tanzania. P.O. Box 35064, Dar es Salaam, Tanzania. Abstract Nemipterus bipunctatus is among the Nemipterids that support artisanal fisheries throughout most of the Western Indian Ocean (WIO) region. Despite its economic importance, information on food and feeding habits is poorly known in the region. Feeding habit was examined with respect to size, sex, maturity stages of the predator, and season. The food preference for N. bipunctatus was determined using Index of Relative Importance (IRI). Crustaceans were the main prey group accounting for more than 40% IRI of the total food ingested with crabs being the most dominant prey item in the group. Fish ranked as the second prey group accounting for 32.1 % IRI of the total food consumed. Meiofauna, bivalves, miscellaneous and cephalopods made up the rest of the diet. Significantly higher mean number of major prey categories were encountered in N. bipunctatus stomachs during the southeast monsoon as compared to during the northeast monsoon (two way contingency table analysis test, χ2-test, df=3, p< 0.001). An ontogenic diet shift study revealed that meiofauna, cephalopods, and bivalves groups had higher contributions in the diet of smaller N.
    [Show full text]