Vascular Flora of Concord, Massachusetts

Total Page:16

File Type:pdf, Size:1020Kb

Vascular Flora of Concord, Massachusetts Vascular Flora of Concord, Massachusetts compiled by Ray Angelo ([email protected]) (first posted Dec. 30, 2012; last revised July 24, 2020) INTRODUCTION -- p. 1 FORMAT OF FLORA -- p. 4 REFERENCES -- p. 6 ACKNOWLEDGMENTS -- p. 9 FLORA LIST -- p. 10 APPENDIX A: Excluded records – p. 293 APPENDIX B: Species Introduced by Minot Pratt -- p. 294 APPENDIX C: Species Listed by Richard J. Eaton excluded here -- p. 297 APPENDIX D: Species Listed by Alfred W. Hosmer excluded here -- p. 300 APPENDIX E: Species Listed by Minot Pratt excluded here -- p. 306 APPENDIX F: Images of some William Brace pressed grass specimens -- p. 309 APPENDIX G: Other Voucher Images -- p. 317 APPENDIX H: Primary Concord botanists of the past -- p. 324 Presented here is perhaps the most complete and detailed list that has been compiled to date of the vascular plant species that have been verified as growing wild in Concord, Massachusetts. It is likely that Concord, Massachusetts is the most intensely botanized town in the United States for the longest period of time, starting with the brothers, Edward and Charles Jarvis in the 1820’s and 1830’s and continuing to the present day. Concord is endowed not only with a rich literary and historical heritage, but also with a wealth of habitats – three rivers, many ponds, brooks, meadows, bogs, swamps, marshes, deciduous-coniferous woodlands, open sand plains, fields, hills, ledges, and acidic as well as some circumneutral soils. It is situated close enough to the Atlantic coast to pick up elements of the coastal plain flora coming up from the south and far enough north and inland to pick up some elements of the boreal forest flora extending southward from northern New England. I am privileged to have been one of those amateur botanists who lived in Concord for some years with the free time to explore its natural treasures almost daily during that time. In that time I came to appreciate that even in a lifetime of daily botanizing it is not possible to know Concord’s diverse flora completely. Doubtless those worthier amateurs who preceded me in Concord came to realize this as well. These predecessors were Charles Jarvis (1800-26), Edward Jarvis (1803- 89), Henry D. Thoreau (1817-62), Sophia Thoreau (1819-71), Edward S. Hoar (1823-93), Minot Pratt (1805-78), Horace Mann, Jr. (1844-1868), Alfred W. Hosmer (1851-1903), Richard J. Eaton (1890-1976) and Laurence E. Richardson (1893-1985). In the decade or so that I botanized extensively in Concord I came away with the clear sense that I had barely scratched the surface of all that was there. Indeed, additional native species have been discovered recently in Concord in a very short period of time by William Brace during the late 1990s and early 2000s, and by Cole Winstanley in 2015-2016. As recently as 2019 a distinctive native species, Fallopia cilinodis, not known in Concord previously, was found on his first, brief botanizing trip here by Harvard botanist, Walter Kittredge. A hint of this understanding of the impossibility of grasping the depth and breadth of the flora of a township as varied as Concord is in Thoreau’s Journal entry for April 2, 1856, “It will take you half a lifetime to find out where to look for the earliest flower”, and in May 1853 when he comments, “how long some very conspicuous ones [flowers] may escape the most diligent walker, if you do not chance to visit their localities the right week or fortnight”. In his manuscript of the Plants of Concord Minot Pratt states for Ligustrum vulgare (Common Privet) “In 1871, I first found an old bush growing wild in the old rocky pasture near the Lime-kiln, within two rods of a path I had traveled hundreds of times for the previous 25 years.” See also my notes in this flora under the species Phegopteris connectilis and Castilleja coccinea for examples that point to how very difficult it is for any one person to know the flora of a township such as Concord, even with years of intensive botanizing. Those who came before me had the great advantage of a more open landscape in Concord that has become more difficult to traverse due to the reforestation of New England since the mid-19th century. In addition there has been much more development of the land, even since the late 1970s and early 1980s when I lived in Concord. Beautiful areas that I once explored are either destroyed or are no longer accessible due to no-trespass posting. Thoreau even foresaw such a time coming. In his essay “Walking” he comments, “At present, in this vicinity, the best part of the land is not private property; the landscape is not owned, and the walker enjoys comparative freedom. But possibly the day will come when it will be partitioned off into so-called pleasure grounds, in which a few will take a narrow and exclusive pleasure only, — when fences shall be multiplied, and man traps and other engines invented to confine men to the public road; and walking over the surface of God’s earth, shall be construed to mean trespassing on some gentleman’s grounds.” Fortunately, Concord has ample and varied conservation areas where many of its rare native plants remain hidden and protected. There is no question that the flora of Concord has changed since Thoreau’s time, due in large part to the reforestation and development just mentioned, but also to other factors such as the increase in alien species spread via the greater mobility of people and greater interaction with the world at large. Other significant factors would be changes in water quality, in air quality, in predation due to changing animal populations (including insects and especially deer), in pollination due to disappearance of pollinators, due to climate change, and perhaps other factors. To give some examples, Richard Eaton notes in his flora that in the 1930s the Concord rivers became significantly polluted with sewage. This had the consequence of reducing the acidity of the adjacent river meadows so that some species preferring acidic habitat that were formerly frequent in the meadows such as Sarracenia purpurea, Pogonia ophioglossoides, Platanthera psycodes and Arethusa bulbosa disappeared from these places and became limited to acidic habitat away from the rivers. Other species that prefer less acidic habitat such as Lemna minor became common or abundant in the rivers where they did not occur or were sparse before. The advent of deer in Concord in recent years would have an effect on the prevalence of some species in Liliaceae and Orchidaceae which deer have a preference for eating. Thoreau never mentions seeing deer in Concord in his Journal. I never saw one there in all my rambles in the 1970s and 1980s. I first saw one in Concord in 2007 on one of my few visits there since I left. Lastly, the warming of the climate will inevitably lead to some more northerly species near the southern limit of their range retreating from Concord such as Linnaea borealis, rare even in Thoreau’s time, now apparently gone. Correspondingly, species with more southerly ranges not previously occurring in Concord are likely to begin appearing here. See my article Angelo (2014). I am very thankful that I got to know Richard (“Dick”) Eaton (1890-1976) in the last year of his life, followed in his footsteps as Curator of Vascular Plants for the New England Botanical Club, shared with him the very beginnings of my finds in Concord, was treated to a lunch with him and his wife at his Cape Cod home, and had the honor (with the aid of his children) of writing a tribute to him for Rhodora, the journal of his beloved New England Botanical Club (Angelo 1987). It fascinated me when he told me that as a youngster in Concord he had shoveled snow for his neighbor, one of Thoreau’s best friends, the reclusive Ellery Channing. It was well within the realm of possibility that Thoreau could have lived long enough for the young Dick Eaton to have met him too. The survival in Concord of numerous plant populations from Thoreau’s time, many in the same localities where Thoreau, his successors and his predecessors saw them, offers the chance for us to become acquainted with other friends in Concord that Thoreau knew so well. Richard Eaton was one of the four botanizers who have left to us extensive written records detailing their experience of the flora of Concord and which, in addition to significant herbarium collections of two of these and of others, form the foundation of this present flora. Those other three are Minot Pratt (1805-1878), who left a lengthy manuscript on the plants of Concord to the Concord Free Public Library, Henry D. Thoreau (1817-1862), who left us his Journal the later years saturated with botanical notes some of which are yet unpublished, and Alfred W. Hosmer (1851-1903), who left to the Concord Free Public Library his voluminous notes on the flora of Concord andvicinity, particularly including flowering dates. All of these four but Pratt were born and raised in Concord. Collections of pressed herbarium specimens are vital to verifying records of occurrence since the mere naming of a species in a written account does not establish that the plant is correctly identified. Of the four notable botanizers above only Thoreau and Eaton made extensive collections of herbarium specimens. Both men studied and collected the difficult grasses and sedges of Concord, unlike Pratt and Hosmer. I cataloged the known specimen collections of Thoreau in 2019 and found there to be conservatively 1,503 collections (one or more specimens of the same taxon collected from the same site at the same time).
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts
    Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts Botanical Survey of Bussey Brook Meadow Jamaica Plain, Massachusetts New England Wildflower Society 180 Hemenway Road Framingham, MA 01701 508-877-7630 www.newfs.org Report by Joy VanDervort-Sneed, Atkinson Conservation Fellow and Ailene Kane, Plant Conservation Volunteer Coordinator Prepared for the Arboretum Park Conservancy Funded by the Arnold Arboretum Committee 2 Conducted 2005 TABLE OF CONTENTS INTRODUCTION........................................................................................................................4 METHODS....................................................................................................................................6 RESULTS .......................................................................................................................................8 Plant Species ........................................................................................................................8 Natural Communities...........................................................................................................9 DISCUSSION .............................................................................................................................15 Recommendations for Management ..................................................................................15 Recommendations for Education and Interpretation .........................................................17 Acknowledgments..............................................................................................................19
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Concord River Diadromous Fish Restoration FEASIBILITY STUDY
    Concord River Diadromous Fish Restoration FEASIBILITY STUDY Concord River, Massachusetts Talbot Mills Dam Centennial Falls Dam Middlesex Falls DRAFT REPORT FEBRUARY 2016 Prepared for: In partnership with: Prepared by: This page intentionally left blank. Executive Summary Concord River Diadromous Fish Restoration FEASIBILITY STUDY – DRAFT REPORT EXECUTIVE SUMMARY Project Purpose The purpose of this project is to evaluate the feasibility of restoring populations of diadromous fish to the Concord, Sudbury, and Assabet Rivers, collectively known as the SuAsCo Watershed. The primary impediment to fish passage in the Concord River is the Talbot Mills Dam in Billerica, Massachusetts. Prior to reaching the dam, fish must first navigate potential obstacles at the Essex Dam (an active hydro dam with a fish elevator and an eel ladder) on the Merrimack River in Lawrence, Middlesex Falls (a natural bedrock falls and remnants of a breached dam) on the Concord River in Lowell, and Centennial Falls Dam (a hydropower dam with a fish ladder), also on the Concord River in Lowell. Blueback herring Alewife American shad American eel Sea lamprey Species targeted for restoration include both species of river herring (blueback herring and alewife), American shad, American eel, and sea lamprey, all of which are diadromous fish that depend upon passage between marine and freshwater habitats to complete their life cycle. Reasons The impact of diadromous fish species extends for pursuing fish passage restoration in the far beyond the scope of a single restoration Concord River watershed include the importance and historical presence of the project, as they have a broad migratory range target species, the connectivity of and along the Atlantic coast and benefit commercial significant potential habitat within the and recreational fisheries of other species.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Page 1 植物研究雜誌 J. Jpn. Bot. 80: 323–333 (2005) Taxonomic Notes on Vascular Plants in Japan and Its Adjacent Regions (I). -New Combinations and New Names of Japanese Plants
    植物研究雑誌 J. J. Jpn. Bo t. 80: 80: 323-333 (2005) Taxonomic Notes on Vascular Plants in Japan and Its Its Adjacent Regions (1). -New Combinations and New Names of Japanese Plants- K 吋i YONEKURA Botanical Botanical Gardens ,Tohoku University ,12-2 ,Kawauchi ,Sendai 980 ・0862 JAPAN E-mail: E-mail: yonekura@ma 幻ai l.tぬ凶 a幻i泊nS.tωohoku.a 配吋Cι .j (Received (Received on May 凶16,2005) Eighty-one Eighty-one new combinations , five new names and one new form for mostly J apanese seed plants , which are needed during prep 紅 ation of database of Japanese vascu- lar lar plants 紅 e proposed. Some taxonomi and nomenclatural comments are made on Geranium onoei (Geraniaceae) , Calystegia pubescens (Convolvulaceae) , Kalimeris yomena (Asteraceae) and Ixeridium dentatum (Asteraceae). Key words: Database ,Japan ,new combinations ,new names ,vascular plants. During prep 紅 ation of a database of (3) Picea alcocquiana (Veitch ex Lind l.) J apanese and scientific n倒 nes of indigenous , C 訂 ri とre f. chlorocarpa (Hayashi) Yone k., naturalized naturalized and cultivated vascular plants in comb. nov. - P. bicolor (Maxim.) Mayr f. Japan (BG Plants- YLis t: Japanese plant chlorocarpa Hayashi in Bull. Gov t. For. name index; http:/ /b ean.bio.chiba-u.jp/ Exp. Sta t. (77): 25 , photo 12 (1 955). bgplants/) bgplants/) numerous new names and new Nom. Jap.: Midori-iramomi. combinations 訂 e needed for the publication. Here 1 propose 81 new combinations , five (4) Picea torano (Siebold ex K. Koch) new names and one new form. Koehne f. rubriflora (Y oshio Kobay.) Yone k., comb.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • Section 4 Environmental Inventory & Analysis ` Town of Northborough Open Space and Recreation Plan – 2020
    SECTION 4 ENVIRONMENTAL INVENTORY & ANALYSIS ` TOWN OF NORTHBOROUGH OPEN SPACE AND RECREATION PLAN – 2020 A - Geology, Soils, and Topography The US Department of Agriculture, Soil The Paxton-Woodbridge-Canton soils are very Conservation Service, has defined eleven deep, nearly level to steep soils that are drained and moderately well-drained on uplands. general soil types, of these, six can be found in Chatfield-Hollis soils are moderately deep and Northborough. The predominant types are well- shallow, gently sloping to moderately steep soils drained soils on slopes of less than 15%. Others that are well drained or somewhat excessively in order of quantity are poorly drained bog drained on uplands. soils, moderately well drained soils with less than Table 4.1 details each soil area's limitations for 15% slopes, some with greater than 15% slopes development with acreage and percentages of and poorly drained mineral soils. Table 4.1 lists each found in Northborough. Approximately the general types with their respective acreages. 40% of the Town (Soil Area 4) is characterized The Surficial Geology shows three predominant by soils capable of supporting residential, soil groups, sand and gravel, till or bedrock and commercial or industrial land uses without flood plain alluvium. These correspond to the extensive modifications. These soils are generally three types of soil, which are predominant in capable of supporting on-site septic systems for town. disposal of sanitary waste. Where public sewers The Soil Conservation Service has mapped three are available, lands falling within other soil dominant soil types in the Town of Northborough. types become somewhat more suitable for commercial, industrial and high-density The Hinckley-Merrimac-Windsor soils are very deep, nearly level to steep soils that are residential use.
    [Show full text]
  • Acorus Calamus : an Overview
    Journal of Medicinal Plants Research Vol. 4(25), pp. 2740-2745, December Special Review, 2010 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2010 Academic Journals Review Acorus calamus : An overview R. Balakumbahan*, K. Rajamani and K. Kumanan Horticultural Research Station, TamilNadu Agricultural University, Pechiparai, 629161. Tamilnadu, India. Accepted 8 July, 2010 Acorus calamus (Sweet flag) is a wetland perennial monocot plant, in which the scented leaves and rhizomes have been traditionally used medicinally against different ailments like, fever, asthma, bronchitis, cough and mainly for digestive problems such as gas, bloating, colic, and poor digestive function. Number of active constituents and essential oil were identified and characterized from the leaves and rhizomes of sweet flag. An over view of the pharmacological activities and insecticidal activities are summarized here. Key words: Acorus calamus, Acorus gramineus , Acoraceae, active constituents, pharmacology. INTRODUCTION Mother earth has bestowed to the mankind and various Estimate reveals that the world trade in medicinal plants plants with healing ability for curing the ailments of and extracts industry was growing at a rate of 12 to 15% human being. This unique feature has been identified per annum. The export from India is to the tune of Rs 446 since pre historic times. The WHO has also estimated crores with the present growth rate of 7%. Acorus that 80% of the world population meets their primary calamus is a tall perennial wetland monocot plant from health care needs through traditional medicine only. the Acoraceae family. The scented leaves and rhizomes Medicinal plants are those plants possessing secondary of sweet flag have been traditionally used as a medicine metabolites and are potential sources of curative drugs and the dried and powdered rhizome has a spicy flavour with the very long list of chemicals and its curative nature.
    [Show full text]
  • Here Is No Visitor Center Located on Winterberry Hunting on Sundays
    U.S. Fish & Wildlife Service Assabet River National Wildlife Refuge 680 Hudson Road Sudbury, MA 01776 978/562 3527 978/562 3627 fax Assabet River http://www.fws.gov/refuge/assabet_river Federal Relay Service National Wildlife for the deaf and hard-of-hearing 1 800/877 8339 Refuge U.S. Fish & Wildlife Service http://www.fws.gov Trail and Recreation For Refuge Information Guide 1 800/344 WILD July 2015 NT OF E TH TM E R I A N P T E E R D I . O S R . U M A 49 RC H 3, 18 Welcome! Located along a portion of the which is headquartered out of Great Assabet River, Assabet River Meadows NWR and located at 73 National Wildlife Refuge (NWR) is Weir Hill Road in Sudbury. one of more than 562 refuges in the National Wildlife Refuge System. For more information about Assabet This blue goose, The refuge is approximately 20 miles River NWR go on-line to http://www. designed by J.N. west of Boston in portions of the fws.gov/refuge/assabet_river, or visit “Ding” Darling, has towns of Hudson, Maynard, Stow the Friends of Assabet River NWR at become the symbol of www.farnwr.org. the National Wildlife and Sudbury. It consists of several Refuge System separate pieces of land: a 1,900-acre northern section, a 300-acre southern The refuge is open from sunrise section, and 91 acres scattered along to sunset. Wildlife-dependent the Assabet River in Stow. The main recreation opportunities, including entrance to the refuge and the refuge wildlife observation, photography, visitor center is at 680 Hudson Road interpretation, and environmental in Sudbury.
    [Show full text]
  • Invisible Connections: Introduction to Parasitic Plants Dr
    Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]