2Nd Place: Universidade De Lisboa
Total Page:16
File Type:pdf, Size:1020Kb
Instituto Superior Técnico Integrated Master in Aerospace Engineering Aerospace Design Commissioned Attempt at a Mars Odyssey and Exploration of Space Eduardo Pires Giuseppe Landolfo Inês d’Ávila Manuel Faria Rita Rebelo Prof. Afzal Suleman Fall Semester 2016 Contents List of Tables 4 List of Figures 5 Nomenclature 8 Glossary 12 1 Introduction 13 2 Project Overview 14 2.1 Concept of Operations . 14 2.2 Functional Flow Diagram . 17 2.3 Long and Short Term Strategies . 17 3 Trajectory Design 18 3.1 Interplanetary Trajectory Trade-study . 18 3.2 Hyperbolic Injections Trade-study . 22 3.3 Transfer Correction Maneuver . 25 4 Re-entry Design 26 4.1 Direct Re-entry . 26 4.2 Selected Re-entry Method . 28 4.3 Flyby Moon . 28 5 Spacecraft Subsystems Design 29 5.1 ECLSS . 29 5.2 Habitat . 35 5.3 Command Module . 43 5.4 Propulsion . 45 5.5 Guidance Navigation and Control . 48 5.6 Telemetry Tracking and Communications . 51 5.7 Power . 57 5.8 Thermal . 63 6 Scientific Experiments 72 6.1 Health Effects of Deep Space Missions . 72 6.2 Mars Science Mission . 74 7 Crew Safety & Health 75 7.1 Crew Selection . 75 7.2 Crew Activities . 76 8 Cost Analysis 77 8.1 Combined Method Cost Estimation . 78 8.2 Market Research . 79 8.3 Cost Estimation Comparison . 80 9 Mission Analysis 80 9.1 ∆v Budget . 80 9.2 Mass Budget . 81 9.3 Timeline . 82 10 Risk Assessment 82 10.1 Safety and Mission Success . 82 10.2 Mission Factors/Issues: . 83 10.3 Technical Risk Assessment Scope . 83 10.4 Abort Possibilities . 84 10.5 Risk Analysis . 85 11 Conclusion 87 Appendices 88 A Functional Flow Diagram 88 B Command Module Characteristics 89 C 3D CAD Model of the Spacecraft 90 D Rendering of the Spacecraft 91 E Requirements 92 2 List of Tables 1 Engineering specifications needed to accomplish the mission . 14 2 Mission profile . 19 3 Itinerary of the entire mission . 20 4 Orbital elements of the Interplanetary trajectories . 21 5 Best flyby trajectory opportunities . 22 6 MPO simple trade study . 24 7 Parking orbits parameters . 24 8 Aeroassist maneuvers comparison . 25 9 TcM.................................................... 26 10 G-forces for skip re-entry, from the Air Force Institute of Technology . 27 11 Crew metabolic requirements . 30 12 Crew water consumption . 30 13 Trade study between bio-regenerative systems and physicochemical systems . 31 14 Air Management System equipment list . 33 15 Water Management equipment list . 34 16 Waste Management System equipment list . 35 17 Crew accommodation items . 35 18 First trade-study of concepts . 37 19 Mass budget for a 500 days mission using the DSH . 38 20 Concept trade-study . 42 21 Command module’s Trade Study . 44 22 Launchers market research . 45 23 Falcon 9 and Falcon Heavy data [18] [19] . 46 24 Engines fuel and weight comparison for a ∆v of 7 km/s . 47 25 GNC components . 51 26 Goldstone antennas technical details . 52 27 Feature of devices . 54 28 Communications schedule . 55 29 Link margin . 56 30 Total power budget . 58 31 Solar photovoltaic cells vs fuel cells . 59 32 Final power budget . 63 33 EPS mass budget . 63 34 Temperature requirements . 64 3 35 Energy flux received from the Sun . 68 36 Albedo radiation received from the planets . 68 37 Heat flux due to planetary radiation . 69 38 Constants used to determine the radiator area . 70 39 Worst hot case results . 71 40 Mass, volume and power budget for the TCS . 71 41 Scientific payload mass and power . 75 42 Standard crew day [57] . 77 43 Inflation factors relative to 2000 [20] and dollar to euro conversion at 31/12/2016 . 78 44 CAMOES’ mission cost estimation . 79 45 Final ∆v budget . 81 46 Final mass budget . 81 47 Abort possibilities . ..