Illini Mars Mission for the Opportunity to Revitalize the American Legacy
Total Page:16
File Type:pdf, Size:1020Kb
Illini Mars Mission for the Opportunity to Revitalize The American Legacy Faculty Advisor: Steven J. D’Urso, M.S. Team Leads: Braven Leung and Christopher Lorenz Mohammed Alvi ● Alexander Case ● Andrew Clarkson ● Logan Damiani ● Shoham Das John Fuller ● Thomas Gordon ● Pranika Gupta ● Andrew Holm ● Guangting Lee ● Brandon Leung Scott Neuhoff ● Anthony Park ● Jeffrey Pekosh ● Sri Krishna Potukuchi ● Kelsey White 1 Table of Contents I. Abstract ................................................................................................................................................. 3 II. Concept of Operations .......................................................................................................................... 3 III. Launch Vehicles ................................................................................................................................ 5 IV. Orbital Mechanics ............................................................................................................................. 6 V. Propulsion ............................................................................................................................................. 7 VI. Habitat Design ................................................................................................................................ 13 VII. Re-entry Technologies .................................................................................................................... 16 VIII. Power .............................................................................................................................................. 19 IX. Communications ............................................................................................................................. 20 X. Attitude Control and Navigation ......................................................................................................... 21 XI. Environmental Control and Life Support System ........................................................................... 22 XII. Human Factors ................................................................................................................................ 24 XIII. Radiation Protection ........................................................................................................................ 27 XIV. Scientific Return ......................................................................................................................... 29 XV. Cost ................................................................................................................................................. 30 XVI. Risk ............................................................................................................................................. 32 XVII. References ................................................................................................................................... 36 XVIII. Appendix A: Mass Budget .......................................................................................................... 40 2 List of Tables Table III-1: Launch Vehicle Trade Study ..................................................................................................... 5 Table V-1: Pratt & Whitney RL-10B-2 Engine Specifications [7] ............................................................... 8 Table V-2: LOX Boil-Off Rate for Two Centaur Tank Designs ................................................................ 11 Table V-3: LH2 and LO2 Total Propellant Boil-Off Rates for Two Centaur Tank Designs ....................... 11 Table V-4: Propellant loss summary with standard fuel management ....................................................... 12 Table V-5: Projections of LOX and LH2 Boil-Off Rates with VDMLI Implemented................................ 13 Table V-6: Propellant Loss Summary with Standard Fuel Management System + VDMLI...................... 13 Table VI-1: Habitat Module Trade Study ................................................................................................... 14 Table VII-1: Re-entry Capsule Selection Matrix ........................................................................................ 16 Table IX-1: Communication Trade Study [34] ........................................................................................... 20 Table X-1: Trajectory Correction Maneuvers ............................................................................................. 22 Table XIII-1 Organ Specific Exposure Limits [57] .................................................................................... 29 Table XIII-2: Career Exposure Limits by Age and Gender [56] ................................................................ 29 Table XV-1: Cost Analysis (All values in $MM USD) .............................................................................. 31 Table XV-2: Cost Summary ....................................................................................................................... 31 Table XVII-1: Probability-Impact Scale ..................................................................................................... 32 Table XVII-2: Risk Matrix ......................................................................................................................... 33 Table XVII-3: Risk Analysis for Launch/Deployment Systems ................................................................. 33 Table XVII-4: Risk Analysis for Power/Thermal Systems......................................................................... 34 Table XVII-5: Risk Analysis for ECLSS/Human Factors Systems ............................................................ 34 Table XVII-6: Risk Analysis for Avionics, Controls, and Navigation Systems ......................................... 35 Table XVII-7: Risk Analysis for Spacecraft Structure ............................................................................... 35 List of Figures Figure II-1: Concept of operations diagram showing the integration of all components. ............................ 4 Figure III-2: Diagrams showing the location of all components within their payload fairings. ................... 6 Figure IV-1: STK Model displaying the orbital track of the flyby mission. ................................................. 7 Figure V-1: Diagram of the Delta Cryogenic Second Stage [4]. [Courtesy: ULA] ...................................... 8 Figure V-2: Subsystem interfaces for a typical Cryogenic Fuel Management System............................... 10 Figure V-3: Cross section of VDMLI demonstrating spacing gradient between layers. ............................ 12 Figure VII-1: Graph describing optimal habitat volume [11]. [Courtesy: NASA MSFC] .......................... 14 3 I. Abstract The University of Illinois’ Illini Mars Mission for the Opportunity to Revitalize the American Legacy (IMMORTAL) is a practical proposal for the chance of achieving a once in a generation opportunity. The alignment of the planets in January of 2018 offers a unique chance for America to take the next bold step in mankind’s continuing endeavors to reach farther into the space: the opportunity to send a man and a woman to fly past Mars and return to Earth quickly and safely. By taking advantage of an orbital alignment that will not reappear until 2031, it is possible to send human beings beyond the Moon for the first time since the Apollo program. Because this unique orbital alignment requires a launch date close to three and a half years from the present day, the IMMORTAL mission is built around an accelerated timeline. Consequently, the only way to achieve the mission directive of a manned fly-by mission around Mars, is to construct the mission architecture around innovated use of existing technologies. Through the use of heavy launch vehicles, chemical propulsive units, modern heat shielding, commercial deep space capsules, retrofitted living habitat, and solar power, human beings will sail around the red planet for the first time. II. Concept of Operations The IMMORTAL mission architecture requires two launches. The first launch will utilize the SpaceX Falcon Heavy rocket and will consist of the following Dragon capsule that will carry the crew into space Cygnus habitat module where the crew will spend most of the 501 day journey Service module that holds life support systems for the crew This launch carries significantly less payload than the estimated lift capacity of the Falcon Heavy to Low Earth Orbit (LEO). As a result, the Falcon Heavy Upper Stage (FHUS) will have a significant amount of propellant leftover at burnout. This stage will be retained to help perform part of the trans-Mars injection (TMI) burn. Shortly following this launch, a 4 m Delta Cryogenic Second Stage (DCSS) propulsion module will be launched using a Delta IV Heavy. Subsequently, the DCSS will dock with the Dragon-Cygnus assembly in LEO. After a series of checkouts, the FHUS will ignite and transfer the assembly into a highly elliptical orbit around Earth. The spacecraft will then discard this stage and reorient to perform the second half of the burn using the DCSS. The DCSS will burn at perigee of the next orbit, setting the craft on its free return trajectory which will take the assembly to Mars. After the DCSS stage is discarded, the Dragon capsule will detach from the top of the Cygnus module and perform a maneuver similar to that required by the Apollo missions. This maneuver will