Chang'e 5 Samples (Mexag) (Head-Final)

Total Page:16

File Type:pdf, Size:1020Kb

Chang'e 5 Samples (Mexag) (Head-Final) Chang’E 5 Lunar Sample Return Mission Update James w. Head Department of Earth, Environmental and Planetary Sciences Brown University Providence, RI 02912 USA Extraterrestrial Materials Analysis Group (ExMAG) Spring Meeting: April 7 - 8, 2021. Extraterrestrial Materials Analysis Group (ExMAG) Spring Meeting Barbara Cohen, ExMAG Chair. 2/10/21 • 1. Please provide an update on the Chang'e 5 Sample Return Mission. • 2. What is known of the collection so far? • 3. Please provide an overview of allocation procedures. • 4. Since US federally-funded researchers cannot work directly with China - Who outside of China is working with the mission team? • 5. We'd also appreciate your thoughts on: What NASA might be able to do to enable the US analysis community to collaborate on this sample collection? Extraterrestrial Materials Analysis Group (ExMAG) Spring Meeting Barbara Cohen, ExMAG Chair. 2/10/21 • 1. Some Myths and Realities. • 2. Organization of the Chinese Space Program. • 3. Chinese Lunar Exploration Program (CLEP) context for Chang’e 5. • 4. Chang’e 5 Landing Site Selection, Global Context, Key Questions, Mission Operations and Sample Return. • 5. Returned Sample Location, Storage, Preliminary Analysis and Distribution. • 6. Opportunities for International Cooperation. Extraterrestrial Materials Analysis Group (ExMAG) Spring Meeting Barbara Cohen, ExMAG Chair. 2/10/21 • 1. Some Myths and Realities. • 2. Organization of the Chinese Space Program. • 3. Chinese Lunar Exploration Program (CLEP) context for Chang’e 5. • 4. Chang’e 5 Landing Site Selection, Global Context, Key Questions, Mission Operations and Sample Return. • 5. Returned Sample Location, Storage, Preliminary Analysis and Distribution. • 6. Opportunities for International Cooperation. 1. Some Myths and Realities. • 1. The Chinese Space Program is secretive, you • 1. Like the NASA program, there is a complex organizational structure involving government, can’t get any information about missions, and industry and academia; they have a PDS. they don’t release the data. • 2. Their program is founded on “decadal • 2. Like the USSR, they are more interested in survey” scientific documents and implemented “space spectaculars/firsts” than in the science. by 5-10 year PRC Party Congress national priorities. • 3. Their program is very nationalistic and they • 3. International cooperation is a cornerstone of don’t participate in international meetings the Chinese Space Program. (LPSC, etc.). • 4. The long view: The “Peaceful Rise of China” • 4. The Chinese are in a “Space Race” with the the “Belt and Road Initiative” and the “Silk Road to Space”. United States. • 5. Technology “osmosis” is always a national • 5. The Chinese acquire all their technology problem, but China’s “home-grown” through “stealth”. technology is impressive. Extraterrestrial Materials Analysis Group (ExMAG) Spring Meeting Barbara Cohen, ExMAG Chair. 2/10/21 • 1. Some Myths and Realities. • 2. Organization of the Chinese Space Program. • 3. Chinese Lunar Exploration Program (CLEP) context for Chang’e 5. • 4. Chang’e 5 Landing Site Selection, Global Context, Key Questions, Mission Operations and Sample Return. • 5. Returned Sample Location, Storage, Preliminary Analysis and Distribution. • 6. Opportunities for International Cooperation. Human and Robotic Chinese Exploration Programs The People’s Republic of China (PRC) Space Program -Administrative Level of Different Organizations- Central Military Prime Minister Commission (LI Keqiang) (XI Jinping) Stock Market Ministry of Industry and Chinese Academy Ministry of Ministry of Natural China PLA Information Technology of Science Education Resources Aerospace Science and Technology Corporation State Administration of l National Space Center l China University of China Geological Science, Technology and l National Astronomical Geosciences Survey Astronaut Industry for National Observatories l Shandong University Defense l Institute of Geology and (Weihai) l Geophysics Wuhan University Chinese Academy of Beijing Spacecrafts l Institute of Geochemistry l Peking University Geological Science l Aerospace Information l Nanjing University Research Institute l Jilin University l Purple Mountain l Guilin University of CASTC has China National Space Observatory Technology Other Universities hundreds of Administration l Guangzhou Institute of l etc. l Macao University of companies, Geochemistry (ZHANG Kejian) Science and many of them l Shanghai Astronomical l All of them are Technology are in the Observatory independent of each l The Hong Kong l etc. market. other Polytechnic l Most students are in University l All of them are l The University of universities Hong Kong independent of each other l Few students, no undergraduates The People’s Republic of China (PRC) Space Program -Administrative Level of Different Organizations- Central Military Prime Minister Commission (LI Keqiang) (XI Jinping) Stock Market Ministry of Industry and Chinese Academy Ministry of Ministry of Natural China PLA Information Technology of Science Education Resources Aerospace Science and Technology Corporation State Administration of l National Space Center l China University of China Geological Science, Technology and l National Astronomical Geosciences Survey Astronaut Industry for National Observatories l Shandong University Defense l Institute of Geology and (Weihai) l Geophysics Wuhan University Chinese Academy of Beijing Spacecrafts l Institute of Geochemistry l Peking University Geological Science l Aerospace Information l Nanjing University Research Institute l Jilin University l Purple Mountain l Guilin University of CASTC has China National Space Observatory Technology Other Universities hundreds of Administration l Guangzhou Institute of l etc. l Macao University of companies, Geochemistry (ZHANG Kejian) Science and many of them l Shanghai Astronomical l All of them are Technology are in the Observatory independent of each l The Hong Kong l etc. market. other Polytechnic l Most students are in University l All of them are l The University of universities Hong Kong independent of each other l Few students, no undergraduates People’s Liberation Army GAD (General Armaments Department) (CMSEO) (CMCEDD) The People’s Republic of China (PRC) Space Program -Administrative Level of Different Organizations- Central Military Prime Minister Commission (LI Keqiang) (XI Jinping) Stock Market Ministry of Industry and Chinese Academy Ministry of Ministry of Natural China PLA Information Technology of Science Education Resources Aerospace Science and Technology Corporation State Administration of l National Space Center l China University of China Geological Science, Technology and l National Astronomical Geosciences Survey Astronaut Industry for National Observatories l Shandong University Defense l Institute of Geology and (Weihai) l Geophysics Wuhan University Chinese Academy of Beijing Spacecrafts l Institute of Geochemistry l Peking University Geological Science l Aerospace Information l Nanjing University Research Institute l Jilin University l Purple Mountain l Guilin University of CASTC has China National Space Observatory Technology Other Universities hundreds of Administration l Guangzhou Institute of l etc. l Macao University of companies, Geochemistry (ZHANG Kejian) Science and many of them l Shanghai Astronomical l All of them are Technology are in the Observatory independent of each l The Hong Kong l etc. market. other Polytechnic l Most students are in University l All of them are l The University of universities Hong Kong independent of each other l Few students, no undergraduates The People’s Republic of China (PRC) Space Program -Administrative Level of Different Organizations- Central Military Prime Minister Commission (LI Keqiang) (XI Jinping) Stock Market Ministry of Industry and Chinese Academy Ministry of Ministry of Natural China PLA Information Technology of Science Education Resources Aerospace Science and Technology Corporation State Administration of l National Space Center l China University of China Geological Science, Technology and l National Astronomical Geosciences Survey Astronaut Industry for National Observatories l Shandong University Defense l Institute of Geology and (Weihai) l Geophysics Wuhan University Chinese Academy of Beijing Spacecrafts l Institute of Geochemistry l Peking University Geological Science l Aerospace Information l Nanjing University Research Institute l Jilin University l Purple Mountain l Guilin University of CASTC has China National Space Observatory Technology Other Universities hundreds of Administration l Guangzhou Institute of l etc. l Macao University of companies, Geochemistry (ZHANG Kejian) Science and many of them l Shanghai Astronomical l All of them are Technology are in the Observatory independent of each l The Hong Kong l etc. market. other Polytechnic l Most students are in University l All of them are l The University of universities Hong Kong independent of each other l Few students, no undergraduates The People’s Republic of China (PRC) Space Program -Administrative Level of Different Organizations- Central Military Prime Minister Commission (LI Keqiang) (XI Jinping) Stock Market Ministry of Industry and Chinese Academy Ministry of Ministry of Natural China PLA Information Technology of Science Education Resources Aerospace Science and Technology Corporation State Administration of l National Space Center l China University of China Geological Science, Technology and l National Astronomical Geosciences Survey Astronaut
Recommended publications
  • Conference Programme Europe’S Premier Microwave, Rf, Wireless and Radar Event
    SIX DAYS THREE CONFERENCES THREE FORUMS ONE EXHIBITION EUROPEAN MICROWAVE WEEK 2020 JAARBEURS CONVENTION CENTRE UTRECHT – THE NETHERLANDS 10 – 15 JANUARY 2021 10-15 JANUARY 2021 EUROPEAN MICROWAVE WEEK 2020 CONFERENCE PROGRAMME EUROPE’S PREMIER MICROWAVE, RF, WIRELESS AND RADAR EVENT THE ART OF MICROWAVES Register online at: www.eumweek.com 2 – WWW.EUMWEEK.COM SPONSORS TABLE OF CONTENTS WWW.EUMWEEK.COM – 3 Promoting Table of Contents European Microwaves WELCOME MESSAGES STUDENT ACTIVITIES AND WiM Welcome to the 23rd European Microwave Week · · · · · 5 Welcome from the Student Activities Chair · · · · · · 38 Welcome from the President of the European Student Design Competitions · · · · · · · · · · · · 39 Microwave Association ·· · · · · · · · · · · · · · 6 Women in Microwaves · · · · · · · · · · · · · · 39 Welcome to the 15th European Microwave Integrated Career Platform · · · · · · · · · · · · · · · · · 40 Circuits Conference · · · · · · · · · · · · · · · · 7 5th European Microwave Student School · · · · · · · 42 Archiving through Editing the International Journal Welcome to the 50th European Microwave Conference · · 8 Tom Brazil Doctoral School of Microwaves · · · · · · · 43 the Knowledge Centre of Microwave and Wireless Welcome to the 17th European Radar Conference · · · · · 9 Welcome from the General TPC Chair · · · · · · · · ·10 Records papers written by the best Technologies CONFERENCE PROGRAMME international scientists in our secure database. The Journal solicits original and review Sunday 10th January 2021 · · · · · · · · · · ·
    [Show full text]
  • THE PLANETARY REPORT FAREWELL, SEPTEMBER EQUINOX 2017 VOLUME 37, NUMBER 3 CASSINI Planetary.Org CELEBRATING a LEGACY of DISCOVERIES
    THE PLANETARY REPORT FAREWELL, SEPTEMBER EQUINOX 2017 VOLUME 37, NUMBER 3 CASSINI planetary.org CELEBRATING A LEGACY OF DISCOVERIES ATMOSPHERIC CHANGES C DYNAMIC RINGS C COMPLICATED TITAN C ACTIVE ENCELADUS ABOUT THIS ISSUE LINDA J. SPILKER is Cassini project scientist at the Jet Propulsion Laboratory. IN 2004, Cassini, the most distant planetary seafloor. As a bonus, it has revealed jets of orbiter ever launched by humanity, arrived at water vapor and ice particles shooting out of Saturn. For 13 years, through its primary and fractures at the moon’s south pole. two extended missions, this spacecraft has These discoveries have fundamentally been making astonishing discoveries, reshap- altered many of our concepts of where life ing and changing our understanding of this may be found in our solar system. Cassini’s unique planetary system within our larger observations at Enceladus and Titan have made system of unique worlds. A few months ater exploring these ocean worlds a major focus for arrival, Cassini released Huygens, European planetary science. New insights from these dis- Space Agency’s parachuted probe built to coveries also have implications for potentially study the atmosphere and surface of Titan habitable worlds beyond our solar system. and image its surface for the very first time. In this special issue of The Planetary Report, a handful of Cassini scientists share some results from their studies of Saturn and its moons. Because there’s no way to fit every- thing into this slim volume, they’ve focused on a few highlights. Meanwhile, Cassini continues performing its Grand Finale orbits between the rings and the top of Saturn’s atmosphere, circling the planet once every 6.5 days.
    [Show full text]
  • China's Space Program
    China’s Space Program An Introduction China’s Space Program ● Motivations ● Organization ● Programs ○ Satellites ○ Manned Space flight ○ Lunar Exploration Program ○ International Relations ● Summary China’s Space Program Motivations Stated Purpose ● Explore outer space and to enhance understanding of the Earth and the cosmos ● Utilize outer space for peaceful purposes, promote human civilization and social progress, and to benefit the whole of mankind ● Meet the demands of economic development, scientific and technological development, national security and social progress ● Improve the scientific and cultural knowledge of the Chinese people ● Protect China's national rights and interests ● Build up China’s national comprehensive strength National Space Motivations • Preservation of its political system is overriding goal • The CCP prioritizes investments into space technology ○ Establish PRC as an equal among world powers ○ Space for international competition and cooperation ○ Manned spaceflight ● Foster national pride ● Enhance the domestic and international legitimacy of the CCP. ○ Space technology is metric of political legitimacy, national power, and status globally China’s Space Program Organization The China National Space Administration (CNSA) ● The China National Space Administration (CNSA, GuóJiā HángTiān Jú,) ○ National space agency of the People's Republic of China ○ Responsible for the national space program. ■ Planning and development of space activities. The China National Space Administration ● CNSA and China Aerospace
    [Show full text]
  • Planetary Defence Activities Beyond NASA and ESA
    Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world.
    [Show full text]
  • India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.
    [Show full text]
  • 7. Operations
    7. Operations 7.1 Ground Operations The Exploration Systems Architecture Study (ESAS) team addressed the launch site integra- tion of the exploration systems. The team was fortunate to draw on expertise from members with historical and contemporary human space flight program experience including the Mercury, Gemini, Apollo, Skylab, Apollo Soyuz Test Project, Shuttle, and International Space Station (ISS) programs, as well as from members with ground operations experience reaching back to the Redstone, Jupiter, Pershing, and Titan launch vehicle programs. The team had a wealth of experience in both management and technical responsibilities and was able to draw on recent ground system concepts and other engineering products from the Orbital Space Plane (OSP) and Space Launch Initiative (SLI) programs, diverse X-vehicle projects, and leadership in NASA/Industry/Academia groups such as the Space Propulsion Synergy Team (SPST) and the Advanced Spaceport Technology Working Group (ASTWG). 7.1.1 Ground Operations Summary The physical and functional integration of the proposed exploration architecture elements will occur at the primary launch site at the NASA Kennedy Space Center (KSC). In order to support the ESAS recommendation of the use of a Shuttle-derived Cargo Launch Vehicle (CaLV) and a separate Crew Launch Vehicle (CLV) for lunar missions and the use of a CLV for ISS missions, KSC’s Launch Complex 39 facilities and ground equipment were selected for conversion. Ground-up replacement of the pads, assembly, refurbishment, and/or process- ing facilities was determined to be too costly and time-consuming to design, build, outfit, activate, and certify in a timely manner to support initial test flights leading to an operational CEV/CLV system by 2011.
    [Show full text]
  • Master Thesis
    Master’s Thesis 2018 30 ECTS Department of International Environment and Development Studies Katharina Glaab Dividing Heaven: Investigating the Influence of the U.S. Ban on Cooperation with China on the Development of Global Outer Space Governance Robert Ronci International Relations LANDSAM The Department of International Environment and Development Studies, Noragric, is the international gateway for the Norwegian University of Life Sciences (NMBU). Established in 1986, Noragric’s contribution to international development lies in the interface between research, education (Bachelor, Master and PhD programmes) and assignments. The Noragric Master’s theses are the final theses submitted by students in order to fulfil the requirements under the Noragric Master’s programmes ‘International Environmental Studies’, ‘International Development Studies’ and ‘International Relations’. The findings in this thesis do not necessarily reflect the views of Noragric. Extracts from this publication may only be reproduced after prior consultation with the author and on condition that the source is indicated. For rights of reproduction or translation contact Noragric. © Robert Ronci, May 2018 [email protected] Noragric Department of International Environment and Development Studies The Faculty of Landscape and Society P.O. Box 5003 N-1432 Ås Norway Tel.: +47 67 23 00 00 Internet: https://www.nmbu.no/fakultet/landsam/institutt/noragric i ii Declaration I, Robert Jay Ronci, declare that this thesis is a result of my research investigations and findings. Sources of information other than my own have been acknowledged and a reference list has been appended. This work has not been previously submitted to any other university for award of any type of academic degree.
    [Show full text]
  • Cubex: a Compact X-Ray Telescope Enables Both X-Ray Fluorescence Imaging Spectroscopy and Pulsar Timing Based Navigation
    SSC18-V-05 CubeX: A compact X-Ray Telescope Enables both X-Ray Fluorescence Imaging Spectroscopy and Pulsar Timing Based Navigation Jan Stupl, Monica Ebert, David Mauro SGT / NASA Ames NASA Ames Research Center, Moffett Field, CA; 650-604-4032 [email protected] JaeSub Hong Harvard University Cambridge, MA Suzanne Romaine, Almus Kenter, Janet Evans, Ralph Kraft Smithsonian Astrophysical Observatory Cambridge, MA Larry Nittler Carnegie Institution of Washington Washington, DC Ian Crawford Birkbeck College London, UK David Kring Lunar and Planetary Institute Houston, TX Noah Petro, Keith. Gendreau, Jason Mitchell, Luke Winternitz NASA Goddard Space Flight Center Greenbelt, MD Rebecca. Masterson, Gregory Prigozhin Massachusetts Institute of Technology Cambridge, MA Brittany Wickizer NASA Ames Research Center Moffett Field, CA Kellen Bonner, Ashley Clark, Arwen Dave, Andres Dono-Perez, Ali Kashani, Daniel Larrabee, Samuel Montez, Karolyn Ronzano, Tim Snyder MEI / NASA Ames Research Center Joel Mueting, Laura Plice Metis / NASA Ames Research Center NASA Ames Research Center, Moffett Field, CA Yueh-Liang Shen, Duy Nguyen Booz Allen Hamilton / NASA Ames NASA Ames Research Center, Moffett Field, CA Stupl 1 32nd Annual AIAA/USU Conference on Small Satellites ABSTRACT This paper describes the miniaturized X-ray telescope payload, CubeX, in the context of a lunar mission. The first part describes the payload in detail, the second part summarizes a small satellite mission concept that utilizes its compact form factor and performance. This instrument can be used for both X-ray fluorescence (XRF) imaging spectroscopy and X-ray pulsar timing-based navigation (XNAV). It combines high angular resolution (<1 arcminutes) Miniature Wolter-I X-ray optics (MiXO) with a common focal plane consisting of high spectral resolution (<150 eV at 1 keV) CMOS X-ray sensors and a high timing resolution (< 1 µsec) SDD X-ray sensor.
    [Show full text]
  • 2019 AIM Program
    A Message from ASABE President Maury Salz Welcome to the 2019 Annual International Meeting (AIM) of the American Society of Agricultural and Biological Engineers in Boston, Massachusetts. I extend a special welcome to first time participants, international attendees and pre-professionals. I am confident you will find the meeting a welcoming and stimulating investment of your time. AIM offers a wide array of opportunities for you to gain knowledge in technical sessions, make new or catch-up with old friends at social events, contribute to the ongoing growth efforts in technical communities, and to celebrate the accomplishments of peers in the awards ceremonies. I highly encourage you to engage in the opening keynote session by GreenBiz’s Joel Makower and the following panel discussion on sustainability and the need for a national strategy, which could alter how we live. We as individuals, and collectively as ASABE, will be challenged to think about how this broader vision of sustainability could fundamentally change our lives and the profession. I want to thank our friends at Cornell University for serving as local hosts and the volunteer coordinators. Students work as volunteers to enhance the experience for all meeting participants and you can locate them by their blue shirts. Please thank them when you have the chance. Boston is rich in history and be sure to take some time to experience what this unique area has to offer. I also encourage you to participate actively in AIM and reflect on how you can advance the Society goals to benefit yourself personally and the people of the world.
    [Show full text]
  • OCEANUS (Organisms and Compounds of Europa – an Analysis Under the Surface) – Concept Mission De- Sign
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 1871.pdf OCEANUS (Organisms and Compounds of Europa – an Analysis Under the Surface) – Concept Mission De- sign. M.V. Heemskerk1, G. de Zeeuw1, W. van Westrenen1, B. H. Foing1,2. 1VU University Amsterdam, de Boelelaan 1105, 1081 HZ Amsterdam, The Netherlands, ([email protected], [email protected], [email protected]) 2ESA ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands ([email protected]) Introduction: 1. Buildup of the ice crust and its ocean; Un- In 2022, ESA (European Space Agency) will launch derstanding how recent and/or current tidal an orbiter – JUICE (JUpiter ICy moon Explorer) – and geological processes are formed. which will collect atmospheric data of Jupiter and 2. Chemical composition; Characterizing the three of its Galilean moons; Ganymede, Europa and properties of the ocean and its crust to de- Callisto [1]. As this is but an orbiter, further explora- scry the origin of organic compounds. tion of the (sub)surface remains out of reach. As of 3. Geomorphology; Understanding the for- today, the most suitable prospect for the occurrence of extra-terrestrial life forms appears to be Europa. mation of surface features Europa contains liquid water [2], simple organic B. Model Instrument Payload: The lander payload compounds [3], a subsurface power source [4] and a consists of two high-definition reconnaissance camer- lot of ice. Convection and tidal flexure could also as, a magnetometer, an altimeter, a short-wave infra- give way to a possible zone for the emergence of life, red spectrometer, a gamma and X-ray detector, a ra- for the bottom of this subsurface ocean may house diation shielding, the ESS, and the ECMD.
    [Show full text]
  • Mars= Oceanus Borealis, Ancient Glaciers, and the Megaoutflo Hypothesis
    Lunar and Planetary Science XXXI 1863.pdf MARS= OCEANUS BOREALIS, ANCIENT GLACIERS, AND THE MEGAOUTFLO HYPOTHESIS. V.R. Baker1, 2, R.G. Strom2, J.M. Dohm1, V.C. Gulick3, J.S. Kargel4, G. Komatsu5, G.G. Ori5, and J.W. Rice, Jr.2; 1Dept. Of Hydrology and Water Res., Univ. of Arizona, Tucson, AZ 85721-0011, 2Lunar and Planetary Laboratory, Univ. of Arizona, Tucson, AZ 85721-0092, 3NASA-Ames Research Center, MS 245-3, Moffett Field, CA 94035, 4U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001; 5Dipartimento di Scienze, Universitad d=Annunzio, Viale Pindaro 42, 65127 Pescara, Italy. ([email protected]) Introduction: Recent results from the Mars Orbiter (~108+ years), during which the Mars surface had ex- Laser Altimeter (MOLA) instrument of Mars Global tremely cold, dry conditions similar to those prevailing Surveyor [1, 2] corroborate the existence of a vast today, terminated by short-duration (~104 to 105 years) ocean on the northern plains of Mars. Named Oceanus episodes of much warmer, wetter conditions associated Borealis [3], this great ponding of water, documented with a transient greenhouse climate. These quasi-stable by several investigators over the past 15 years [4, 5, 6, episodes resulted in glaciation [21, 22] and valley net- 7, 8], formed and reformed episodically during later work formation [8, 23] late in Martian history, coinci- Mars history, after cessation of the late heavy bom- dent with the great outflow channel discharges that bardment [3]. Among the many geological indicators formed Oceanus Borealis. The processes are cyclic of this ocean, several interpreted shoreline features [7, with the long epochs of cold-dry conditions alternating 9] are disputed by one study of a small number of Mars with very short episodes of cool-wet conditions associ- Orbiter Camera (MOC) images [10].
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]