Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italic denote figures. Page numbers in bold denote tables. accretion 86, 93, 100, 101, 102 black schist/shale 58, 62 Moldanubian 9, 24, 28–30 blueschist 17, 24, 90, 91, 92, 118, 170 Allochthonous units 82–97, 141 Bohemian Massif 2, 7, 13, 62, 67, 68 Iberia 229, 231–233, 237, 238 tectonic domains 14–19, 172 Portugal 118, 121–122 tectonic re-interpretation 26–31 Alpine overprinting 249–251 Bohemian Massif, plate model 169–184 Alps 380–381 deformation and plutonism 180–184 convergence–extension 368–375 lithotectonic units 170–175 geology 365–368 timing and kinematics 175–180, 182 magmatism 375–378 boudin 13, 17, 23, 24, 235, 289, 321, 370, 373 metamorphism 369–375 Bouguer gravity anomaly 230, 334, 335 numerical model predictions 379–389 Bouillouses gneiss dome 268, 269 tectonic map 365, 366, 374 Bre´venne Unit 11, 14, 24, 29, 65 Ancenis Basin 141, 142–143, 147, 152, 154, 155 Bristol Channel–Bray Fault 47 age of sedimentation 158–161 Brunia continent 17–18, 19, 25, 176, 181, 183 Andorra pluton 274–275 Brunovistulian Unit 172–173, 175 Ar/Ar age 322–323, 348–351, 355 Ibero-Armorican 83, 86, 87, 92, 93, 237, 238 Cadomian block 138, 161, 169, 170 Pyrenees 273, 280 Calabria, reconstruction 334, 351 Vosges 54, 55, 200 calc-alkaline composition 49, 83, 87, 91, 127, 155 Ar/Ar analysis, white mica 3, 137–138, 141 Alps 375, 377, 378 age groups 145, 148–149, 151–154 granitoids 183, 335 methodology and samples 143–144 plutons 11, 15, 24, 254, 257, 272 arc setting 54, 68, 95, 97, 184 Bohemian Massif 171, 176, 179, 180 Armorican Massif 2, 99, 158 Vosges 51, 198, 200–203, 210–215 Allochthon, Lower–Upper 83–97 Canigou–Caranc¸a` gneiss dome 268, 269, 272 comparison with southern belt 325 Cantabrian Orocline 282, 283 correlation 81 Cantabrian Zone 230, 231, 233, 242, 249, 257, 259 geology 139–142 Caranc¸a` dykes 274, 277, 279 pressure–temperature path 85 carbonate 50, 60, 118, 142, 158, 181, 378 relief and erosion 137–162 platform/reef 47, 62, 97, 99–100, 138 Aston gneiss dome 266, 268, 269–272, 281 Carboniferous position, Corsica 352 Asturian Phase 1, 77, 102 Catalan Coastal Ranges 250, 253, 257, 273, aureole 52–53, 275, 371 282–283 Austroalpine Domain 367–368, 375–377, 379, 382, Cauterers–Panticosa plutons 275–276, 278 384–387 Central Bohemian Plutonic Complex 176, 177, 181 Autochthonous units, Iberia 229–233, 237, 239, 240 Central Iberian Arc 226, 282 Portugal 116–118 Central Iberian Zone 225, 240, 241, 282–283 Avalonia 28–39, 83, 98, 169, 175, 356 metamorphism 230, 232, 234–237 passive margin 197–220 NE Portugal 115–118, 128, 129 subduction 216, 218–219 Chalonnes Formation 141, 147, 152, 157, 161 Ax-les-Thermes pluton 273–274 Champ du Feu 9, 21, 51 age 276–277, 279, 280 Champ du Feu Massif 198, 199, 200, 203, 218 Champtoceaux Complex 83, 86, 87, 93, 143, 153 back-arc basin 14, 24–25, 157, 161 Devonian–Carboniferous events 159 opening 65–66, 68, 98 erosion 155, 160–162 model sections 29, 30, 63, 65, 217 Lower–Middle Allochthon 141 back-thrusting 315, 325, 326, 327 chert 97, 122, 142 Bande Me´diane, volcanics 204, 214, 217, 218 cleavage 56–59, 64, 66 geochronology 198–202 slaty 233, 241, 254, 255, 259 Barrovian metamorphism 15, 29–30, 64, 154, 315, coal-bearing basin 141–143, 155, 158–161 323–325 collision 2, 3, 4, 26, 28–30, 239, 387, 389 Barrovian zones 234, 235, 236 Devonian 62–66 Basal Lower Parautochthon Detachment 128, 129 Iberia and Eurasian plates 250 bathymetry 334, 335, 349, 351 numerical modelling 382, 383 Bay of Biscay, formation of 252 Variscan 100–101 Belmont granite 198–204, 210–212, 215–216, 218 conglomerate 142, 147 Black Forest 19, 45, 47, 60, 64, 67, 68 contact metamorphism 52–53 402 INDEX convergence–extension, Alps 368–375, 380–381 Pyrenees 266, 268, 269, 272, 337, 339, 346 numerical modelling 383 Vosges 58–60 Corsica–Sardinia 316–318, 321–322, 324 foliation, magnetic 339 palaeomagnetic data 333–356 France, north–south comparison 313, 325 crust 2, 9–12, 30, 385 France see also Vosges deformation 249, 261, 265, 269–272 Lower Allochthon 83–89 rheological parameters 384 Middle Allochthon 92–94 structure 229–234, 239–242 Upper Allochthon 95–97 Culm 101, 253, 272 French Massif Central 7–31 deformation 141, 159, 160, 181, 182 gabbro 94, 95, 371, 376–378 Iberia 232, 251–252, 254–259 Galicia–Massif Central ocean 14 Pyrenees 267–268, 269–272, 280, 281, 283 Galicia–Tra´s-os-Montes Zone 115, 128, 129 deformation events 56, 61, 325 Allochthon 118, 121–122 dehydration melting 216, 218, 236 HT/LP metamorphism 85, 225, 230, 233, 237, delamination 3, 4, 183–184, 242, 283, 335 239, 241 detachment zone 67, 68 Galicia, geology 82 detrital zircon Armorican Massif 137–138 garnet, Sm–Nd dating 301, 302 age groups 151–155 geochemistry 202–211 methodology and samples 143–144 gabbros 376, 377 sample results 144–151 volcanics 122–130 source identification 155–162 geochronology 238 dome, thermal 254–259, 257 analytical procedure 276 doming 234, 293, 306, 308, 326, 327 multimethod dating 298–302 durbachite 18, 21, 24, 54, 173, 181 Vosges 54–55, 198–204 dykes 91, 95, 98, 274, 277, 279, 337, 377 geothermal relaxation 67–68 magnetism 344, 346–349 geotherms 384, 386 Gfo¨hl Unit 15, 18, 19, 24, 172, 176, 184 East Variscan Shear Zone 324 glaciation, Hirnantian 99 Ebro Basin 249, 250 glaciomarine sequence 97, 100 eclogite 4, 96, 141, 154 gneiss complex 22–24 Alps 370, 371, 373 gneiss dome Iberia 87, 94, 100, 118, 235 Iberia 228, 229, 240, 241 Maures–Tanneron Massif 321, 322, 324 metamorphism 234, 235, 254 Moldanubian Zone 7, 11–12, 15, 17–18, 23, Pyrenees 265–268, 279–280 171–172 Gondwana 4, 28–29, 60, 62 eclogites, Massif Central 289–290, 294–296, 307 collision 225–226, 260 multimethod dating 298–302 crustal thickening 239–240 Sm/Nd isochron plot 302–305 indentation 66–67 U–Pb data 297, 299–301 Gondwana margin 169, 289 Eisgarn granite 175, 180 Ibero-Armorican Arc 78, 79, 83, 90–91, 94, 97, 101 Elbe Shear Zone 179–180, 181 terrane dispersal 98–100, 102, 116 elements, major 202–211 see also trace volcanism, age 118, 127–129 equations, crust–mantle system 379, 382 Gondwana–Laurussia 183, 260, 356 erosion and mountain building 138, 155–161 granite 12, 14, 17, 21–23, 170, 181 Essarta Unit 96, 98 age 237, 238, 276–283 European Variscides 46, 65, 170, 314, 364, 368 Cloos 178–179 geochronology 322–323 Pyrenees 265, 268, 272–283, 293 southern belt 316–324 time–temperature path 281 exhumation Vosges 51, 52, 55, 203–204, 214 Alps 371, 373 granitoid 377 Bohemian Massif 172, 173, 176, 177, 181, 183 Bohemian Massif 169–184 Iberia 235–237 Corsica–Sardinia 335, 337–339, 343, 346, 348, 350, Massif Central 266, 289, 306, 308, 309 354, 356 Mauges Unit 160, 162 Iberia 228, 229, 240–242, 251, 253, 254 Maures–Tanneron Massif 322, 324, age 236–239 325, 326 granulite 289, 370 Ibero-Armorican arc 94, 95, 98 flysch 17, 22, 50–51, 78, 101, 229, 272 Moldanubian Zone 13, 17–19, 21, 23, 24 folding 254, 272, 294 Vosges 54, 55, 62, 68 folds, Iberia 227, 233–234, 236, 241, 255 gravitational dynamics 101, 181, 237, 239, 266, 387 foliation 66, 176 numerical modelling 382, 383 Alps 370, 373 gravitational flow 230, 231, 233 Iberia 233, 234, 237, 254, 257, 260 gravity 230, 334, 335, 349 INDEX 403 Helvetic Domain 367–368, 373, 375, 378, magma mixing 52, 215, 218 385–387 magmatic fabric 179, 180 overview 381 magmatic pulses, Vosges 197–220 Hf isotope data 92 geochemistry 202–203, 204–214 hornfels 53, 95 geochronology 198, 200, 201, 203–206, 214 Hospitalet gneiss dome 268, 269, 270–271, 272 magmatism 3 Cambro-Ordovician 153 Iapetus 98, 100 Carboniferous 159, 171 Iberia Corsica–Sardinia 334, 335, 337 Lower Allochthon 79–83, 84–86 Iberia 232, 237, 253, 254, 257 Middle Allochthon 90–94 Portugal, NE 126–129 Upper Allochthon 94–95 Pyrenees 271, 283, 333 Iberia (central) metamorphism 225–242 Saxothuringian domain 197–198, 217 age 236–237 Vosges 50–52, 54–56, 68 conditions 234–239 magnetic foliation 56, 59, 179 geological setting 228–229 magnetic overprint 344, 346–351 Iberian (NE) Variscan tectonics 249–261 magnetic susceptibility 257, 293, 338, 339, 342 Ibero-Armorican arc 138, 226, 240, 242 magnetization, timing of 347–351 correlation 81 Main Tras-os-Montes Thrust 116, 119, 122, geodynamic evolution 97–102 128, 129 geology 78, 226 manganiferous nodules 92 Lower Allochthon 79–87, 88–89 mantle 7, 17, 23, 25, 26, 52, 171, 175 Middle Allochthon 90–94 delamination 3, 4, 183, 184, 242 Upper Allochthon 94–97 depleted 91, 214, 377 igneous activity see magmatism heat 237, 239 imbrication 90, 91, 230, 231, 233 hydration 386, 387, 389 imprints 368 rheological parameters 384 metamorphic 373, 375, 377 source 92, 214–218, 377, 378 Permian–Triassic 384 wedge 83, 386, 387 indentor 3, 19, 66–67, 242 Massif Central 2, 7–31, 153, 154 Ingrandes Formation 141, 142, 147, 152, 154, 160 comparison with southern belt 325 inversion 22, 24, 65, 159, 325 geochronology 289–309 isotopic composition 51, 52, 213–214 tectonometamorphism 9–19, 139, 290–293 isotopic ratio, measurement 124 tectonic re-interpretation 26–31 Mauges Unit 97, 99–100, 154, 161 Joyeuse–Grimauld Fault 315, 324, 327 Upper Allochthon 141–142 Maures–Este´rel–Corsica–Sardinia 333–356 K–Ar age 200, 273, 348, 351 geology 335–338 Kagenfels granite 199, 200, 201, 210–214, 216–218 palaeomagnetism 339–351 kink folds 255 tectonic evolution 351–356 kinzigite 294, 295, 303, 304, 307, 375 Maures–Tanneron Massif, orogenic wedge klippen 8, 12, 18, 176, 233 313–327 Klippen Belt 50–51, 58, 60, 64, 68 comparison with N France 325 Krkonosˇe–Jizera Plutonic Complex 178–179 geology 313–316 metamorphism 320–324 Lalaye–Lubine Fault Zone 46, 58, 63, 64, 67, 197
Recommended publications
  • The Iberian Variscan Orogen
    CHAPTER 1 THE IBERIAN VARISCAN OROGEN Aerial view of the tectonic repetition of limestone beds in the Láncara Formation, Primajas duplex structure of the Esla thrust (photo by J.L. Alonso) Martínez Catalán, J.R. Aller, J. Alonso, J.L. Bastida, F. Rocks of Upper Proterozoic to Carboniferous age - forming the Variscan or Hercynian orogen - crop out widely in the western part of the Iberian Peninsula, in what is called the Iberian or Hesperian Massif. These deformed rocks, often metamorphosed and intruded by different types of granitoids, were witness to the great mountain range formed in the late Paleozoic, basically in the Late Devonian and Carboniferous (between 370 and 290 million years ago), by the convergence and collision of two major continents: Laurasia and Gondwana. The Iberian Massif constitutes a geological framework of global interest. It is unique due to the continuity of its exposures and because it displays excellent records allowing the analysis of continental crust features, the tectonic, metamorphic and magmatic evolution of orogens, and therefore provides enormously relevant data about the lithospheric dynamics during the latest Precambrian and the Paleozoic. The Variscan orogen forms the basement of the Figure 1. Scheme showing the position of the Iberian Iberian Peninsula and of most of western and central Peninsula in relation to the Appalachians and the Europe. A crustal basement is the result of an orog- Caledonian and Variscan belts. Modified from eny, that is, the consequence of a deep remobilization Neuman and Max (1989). of the continental crust caused by the convergence of plates, and is associated to uplift and the creation of relief.
    [Show full text]
  • World Geomorphological Landscapes
    World Geomorphological Landscapes Series Editor: Piotr Migoń For further volumes: http://www.springer.com/series/10852 Monique Fort • Marie-Françoise André Editors Landscapes and Landforms o f F r a n c e Editors Monique Fort Marie-Françoise André Geography Department, UFR GHSS Laboratory of Physical CNRS UMR 8586 PRODIG and Environmental Geography (GEOLAB) University Paris Diderot-Sorbonne-Paris-Cité CNRS – Blaise Pascal University Paris , France Clermont-Ferrand , France Every effort has been made to contact the copyright holders of the fi gures and tables which have been reproduced from other sources. Anyone who has not been properly credited is requested to contact the publishers, so that due acknowledgment may be made in subsequent editions. ISSN 2213-2090 ISSN 2213-2104 (electronic) ISBN 978-94-007-7021-8 ISBN 978-94-007-7022-5 (eBook) DOI 10.1007/978-94-007-7022-5 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013944814 © Springer Science+Business Media Dordrecht 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Detrital Zircons from the Ordovician Rocks of the Pyrenees: Geochronological Constraints and Provenance
    TECTO-127007; No of Pages 11 Tectonophysics xxx (2016) xxx–xxx Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Detrital zircons from the Ordovician rocks of the Pyrenees: Geochronological constraints and provenance Aina Margalef a,⁎, Pedro Castiñeiras b, Josep Maria Casas c,MarinaNavidadb, Montserrat Liesa d, Ulf Linnemann e, Mandy Hofmann e, Andreas Gärtner e a Centre d'Estudis de la Neu i de la Muntanya d'Andorra, Institut d'Estudis Andorrans, Andorra b Departamento de Petrología y Geoquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain c Departament de Geodinàmica i Geofísica-Institut de Recerca GEOMODELS, Universitat de Barcelona (UB), Martí i Franquès s/n, Barcelona 08028, Spain d Departament de Geoquímica, Petrologia i Prospecció Geològica, Universitat de Barcelona (UB), Martí i Franquès s/n, Barcelona 08028, Spain e Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Königsbrücker Landstraße 159, D-01109 Dresden, Germany article info abstract Article history: The first LA-ICP-MS U–Pb detrital zircon ages from quartzites located below (three samples) and above (one Received 31 August 2015 sample) the Upper Ordovician unconformity in the Central Pyrenees (the Rabassa Dome, Andorra) were investi- Received in revised form 9 March 2016 gated. The maximum depositional age for the Jújols Group, below the unconformity, based on the youngest Accepted 14 March 2016 detrital zircon population, is around 475 Ma (Early Ordovician), whereas for the Bar Quartzite Fm., above the Available online xxxx unconformity, the presence of only two zircons of 442 and 443 Ma precludes obtaining a precise maximum sed- Keywords: imentation age.
    [Show full text]
  • Palaeozoic Geography and Palaeomagnetism of the Central European Variscan and Alpine Fold Belts
    Palaeozoic Geography and Palaeomagnetism of the Central European Variscan and Alpine Fold Belts Inaugural-Dissertation zur Erlangung des Doktorgrades der Fakultät für Geo- und Umweltwissenschaften der Ludwig-Maximilians-Universität München vorgelegt von Dipl.-Geol. Michael Rupert Schätz am 17. Mai 2004 Promoter: PD Dr. Jennifer Tait Co-Promoter: Prof. Dr. Valerian Bachtadse Tag der mündlichen Prüfung: 13. Juli 2004 Contents Glossary ........................................................................................................................... 3 Bibliography ........................................................................................................................... 5 Zusammenfassung ................................................................................................................. 6 Chapter 1 Introduction.................................................................................................... 10 1.1 Palaeomagnetism ................................................................................................... 10 1.2 General geodynamic and tectonic framework of Central Europe.................... 11 1.3 Aim of this work.............................................................................................. 21 1.4 Geological setting of the selected sampling areas ........................................... 24 Chapter 2 Sampling and methods ................................................................................. 36 2.1 Sampling and Laboratory procedure...............................................................
    [Show full text]
  • Multiple Crust Reworking in the French Armorican Variscan Belt
    Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites Christophe Ballouard, Marc Poujol, Armin Zeh To cite this version: Christophe Ballouard, Marc Poujol, Armin Zeh. Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites. International Journal of Earth Sciences, Springer Verlag, 2018, 107 (7), pp.2317-2336. 10.1007/s00531-018-1600-3. insu- 01717290 HAL Id: insu-01717290 https://hal-insu.archives-ouvertes.fr/insu-01717290 Submitted on 26 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Click here to download Manuscript Ms_Ballouard et al__IJES_R1.docx Click here to view linked References Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites 1 C. Ballouarda,b*, M. Poujolb, A. Zehc 2 aDepartment of Geology, University of Johannesburg, PO Box 254, Auckland Park 2006, 3 South Africa 4 b Univ Rennes, CNRS, Géosciences Rennes
    [Show full text]
  • Large Scale Variscan Granitoid Intrusion Throughout Europe: a Lateral Geochronological Trend? K
    Large scale Variscan granitoid intrusion throughout Europe: a lateral geochronological trend? K. Oud BSc Thesis, Faculty of Earth Sciences, Utrecht University, July 2006 Abstract Large-scale granitoid intrusion during the Variscan orogeny (370 to 250 Ma) in Europe above subduction zones of that time is assumed to be the result of a heat pulse due to slab detachment. This would show from a lateral trend in age of emplacement of all granitic bodies, migrating through the complete Variscan fold belt, and thus, a younging direction perpendicular to the former subduction zones. To test this, an inventory of intrusion ages (on the basis of U-Pb, Rb-Sr and K-Ar analysis), typology (I- or S-type) and location of 70 granitic bodies in the European Variscan fold belt, from the Armorican Massif to the Bohemian Massif, was made. From the collected data, no lateral trend in age is observed. However, a trend in age parallel to former subduction zones is shown in most massifs, with a younging direction towards the thrusting vergence. This is probably the result of nappe stacking. In the Armorican Massif and Massif Central, granites are all S-type, which is probably the cause of continental subduction. In central Europe, the typology is mixed S- and I-type, which can be caused by subduction of either continental or oceanic lithosphere. 1. Introduction result of the ‘usual’ heat and melt generation attributed to subduction The Variscan orogeny yielded a large processes. However, there is another number of granitoid intrusions throughout possibility of granite emplacement that all of the European Variscides.
    [Show full text]
  • 13 Geological Features of Variscan Pyrenees
    Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 23 Valencia 2017 International Conodont Symposium 4 Valencia, 25-30th June 2017 Geological features of Variscan Pyrenees Pilar Clariana1 1Instituto Geológico y Minero de España, Unidad de Zaragoza; c/ Manuel Lasala 44, 9ºB; E-50006 Zaragoza, Spain; [email protected] Introduction The Pyrenees are an ESE – WNW trending, Alpine cordillera built after the collision between the Iberian and Euro-Asian plates from Late Cretaceous to Early Miocene. This mountain belt extends 450 km between the Mediterranean Sea and the Atlantic Ocean but from a geological point of view the Pyrenean Orogen extends for more than 1000 km from Provenza (France) to the Cantabrian Mountains and their continental platform under the Cantabrian Sea (Alonso et al., 1996; Pulgar et al., 1996, 1997; Gallastegui, 2000). Neo-proterozoic to Cenozoic, rocks appear in this Alpine orogen. The pre-Cambrian and Paleozoic rocks are affected by variscan deformation and metamorphism and are outcropping in a large belt in the core of the cordillera. These rocks are flanked to the south and to the north by large outcrops of Mesozoic and Cenozoic rocks. The Alpine deformation gave rise to the development of E – W trend thrusts, which involved previously deformed pre-Cambrian and Paleozoic basement rocks. These thrusts caused shifts and rotations of large blocks of basement rocks with an Alpine deformation restricted to narrow bands and the development of a tectonic foliation represented mainly to west of the Pyrenees (Choukroune & Seguret, 1973; Autran y García-Sansegundo, 1996; Izquierdo-Llaval, 2014). This situation makes necessary to carry out a revision about main features of the Alpine Orogen as well as of Paleozoic of the Pyrenees and The Variscan Orogen of which pre- Mesozoic rocks were part.
    [Show full text]
  • Maps -- by Region Or Country -- Eastern Hemisphere -- Europe
    G5702 EUROPE. REGIONS, NATURAL FEATURES, ETC. G5702 Alps see G6035+ .B3 Baltic Sea .B4 Baltic Shield .C3 Carpathian Mountains .C6 Coasts/Continental shelf .G4 Genoa, Gulf of .G7 Great Alföld .P9 Pyrenees .R5 Rhine River .S3 Scheldt River .T5 Tisza River 1971 G5722 WESTERN EUROPE. REGIONS, NATURAL G5722 FEATURES, ETC. .A7 Ardennes .A9 Autoroute E10 .F5 Flanders .G3 Gaul .M3 Meuse River 1972 G5741.S BRITISH ISLES. HISTORY G5741.S .S1 General .S2 To 1066 .S3 Medieval period, 1066-1485 .S33 Norman period, 1066-1154 .S35 Plantagenets, 1154-1399 .S37 15th century .S4 Modern period, 1485- .S45 16th century: Tudors, 1485-1603 .S5 17th century: Stuarts, 1603-1714 .S53 Commonwealth and protectorate, 1660-1688 .S54 18th century .S55 19th century .S6 20th century .S65 World War I .S7 World War II 1973 G5742 BRITISH ISLES. GREAT BRITAIN. REGIONS, G5742 NATURAL FEATURES, ETC. .C6 Continental shelf .I6 Irish Sea .N3 National Cycle Network 1974 G5752 ENGLAND. REGIONS, NATURAL FEATURES, ETC. G5752 .A3 Aire River .A42 Akeman Street .A43 Alde River .A7 Arun River .A75 Ashby Canal .A77 Ashdown Forest .A83 Avon, River [Gloucestershire-Avon] .A85 Avon, River [Leicestershire-Gloucestershire] .A87 Axholme, Isle of .A9 Aylesbury, Vale of .B3 Barnstaple Bay .B35 Basingstoke Canal .B36 Bassenthwaite Lake .B38 Baugh Fell .B385 Beachy Head .B386 Belvoir, Vale of .B387 Bere, Forest of .B39 Berkeley, Vale of .B4 Berkshire Downs .B42 Beult, River .B43 Bignor Hill .B44 Birmingham and Fazeley Canal .B45 Black Country .B48 Black Hill .B49 Blackdown Hills .B493 Blackmoor [Moor] .B495 Blackmoor Vale .B5 Bleaklow Hill .B54 Blenheim Park .B6 Bodmin Moor .B64 Border Forest Park .B66 Bourne Valley .B68 Bowland, Forest of .B7 Breckland .B715 Bredon Hill .B717 Brendon Hills .B72 Bridgewater Canal .B723 Bridgwater Bay .B724 Bridlington Bay .B725 Bristol Channel .B73 Broads, The .B76 Brown Clee Hill .B8 Burnham Beeches .B84 Burntwick Island .C34 Cam, River .C37 Cannock Chase .C38 Canvey Island [Island] 1975 G5752 ENGLAND.
    [Show full text]
  • Analysis of the Mw = 4.3 Lorient Earthquake Sequence : a Multidisciplinary Approach to the Geodynamics of the Armorican Massif, Westernmost France Julie Perrot, P
    Analysis of the Mw = 4.3 Lorient earthquake sequence : a multidisciplinary approach to the geodynamics of the Armorican Massif, Westernmost France Julie Perrot, P. Arroucau, J. Guilbert, Jacques Déverchère, Y. Mazabraud, Joël Rolet, A. Mocquet, M. Mousseau, L. Matias To cite this version: Julie Perrot, P. Arroucau, J. Guilbert, Jacques Déverchère, Y. Mazabraud, et al.. Analysis of the Mw = 4.3 Lorient earthquake sequence : a multidisciplinary approach to the geodynamics of the Armorican Massif, Westernmost France. Geophysical Journal International, Oxford University Press (OUP), 2005, 162, pp.935-950. 10.1111/j.1365-246X.2005.02706.x. hal-00116048 HAL Id: hal-00116048 https://hal.archives-ouvertes.fr/hal-00116048 Submitted on 19 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophys. J. Int. (2005) 162, 935–950 doi: 10.1111/j.1365-246X.2005.02706.x Analysis of the Mw 4.3 Lorient earthquake sequence: amultidisciplinary approach to the geodynamics of the Armorican Massif, westernmost France J. Perrot,1 P. Arroucau,2 J. Guilbert,3 J. D´everch`ere,1 Y. Mazabraud,4 J. Rolet,1 A. Mocquet,2 M. Mousseau1 and L.
    [Show full text]
  • Caledonian-Appalachian Orogen Palaeomagnetic Constraints on The
    Downloaded from http://sp.lyellcollection.org/ at Columbia University on January 17, 2012 Geological Society, London, Special Publications Palaeomagnetic constraints on the evolution of the Caledonian-Appalachian orogen J. C. Briden, D. V. Kent, P. L. Lapointe, J. L. Roy, R. A. Livermore, A. G. Smith, M. K. Seguin, R. Van der Voo and D. R. Watts Geological Society, London, Special Publications 1988, v.38; p35-48. doi: 10.1144/GSL.SP.1988.038.01.03 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2012 Downloaded from http://sp.lyellcollection.org/ at Columbia University on January 17, 2012 Palaeomagnetic constraints on the evolution of the Caledonian- Appalachian orogen J. C. Briden, D. V. Kent, P. L. Lapointe, R. A. Livermore, J. L. Roy, M. K. Seguin, A. G. Smith, R. Van der Voo & D. R. Watts SUMMARY: Late Proterozoic and Palaeozoic (pre-Permian) palaeomagnetic data from all regions involved in, or adjacent to, the Caledonian-Appalachian orogenic belt are reviewed. Between about 1100 and about 800 Ma the Laurentian and Baltic shields were close together, prior to the opening phase of the Caledonian-Appalachian Wilson cycle. The problems of tectonic interpretation of Palaeozoic palaeomagnetic data from within and around the belt derive mostly from differences of typically 10°-20° between the pole positions. These can variously be interpreted in terms of (i) relative displacements between different continents or terranes, (ii) differences in ages of remanence and (iii) aberrations due to inadequacy of data or geomagnetic complexity, and it is not always easy to discriminate between these alternatives.
    [Show full text]
  • Images of Lithospheric Heterogeneities in the Armorican Segment of the Hercynian Range in France
    Tectonophysics 358 (2002) 121–134 www.elsevier.com/locate/tecto Images of lithospheric heterogeneities in the Armorican segment of the Hercynian Range in France S. Judenherca,*, M. Graneta, J.-P. Brunb, G. Poupinetc, J. Plomerova´ d, A. Mocquete, U. Achauera a Ecole et Observatoire des Sciences de la Terre, UMR 7516, Strasbourg, France b Ge´osciences Rennes UPR 4661, Rennes, France c Laboratoire de Ge´ophysique Interne et de Tectonique, UMR 5559, Grenoble, France d Geophysical Institute, Czech Academy of Sciences, Prague, Czech Republic e Laboratoire de Plane´tologie et de Ge´ophysique, FRE-CNRS 2129, Nantes, France Received 4 September 2000; received in revised form 4 April 2001; accepted 15 June 2002 Abstract The Armorican Massif is located in western France. It is a part of the Hercynian Range formed in several phases of SE–NW compression from Devonian to Carboniferous time (ca. 400–300 Ma). The main tectonic features are the North and South Armorican shear zones with WNW–ESE strike. In the framework of the Ge´oFrance3D program, we have installed 35 seismological stations along two NS lines crossing the main Hercynian WNW–ESE fault systems. The data set collected during the experiment allows us to compute a 3D P-velocity model and to map S-wave seismic anisotropy at depth using teleseismic shear waves splitting measurements. The South Armorican shear zone (SASZ) is characterized by a strong (4–5%) velocity contrast and a fast shear wave azimuth parallel to its strike. The North Armorican shear zone (NASZ) does not show any significant lithospheric signature. The tomographic image and anisotropy results suggest that the Armorican lithosphere consists of the juxtaposition of distinct lithospheric blocks assembled in a subduction type process predating the Hercynian Orogeny.
    [Show full text]
  • Flow of Partially Molten Crust Controlling Construction, Growth and Collapse of the Variscan Orogenic Belt: the Geologic Record of the French Massif Central
    Research Collection Review Article Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central Author(s): Vanderhaeghe, Olivier; Laurent, Oscar; Gardien, Véronique; Moyen, Jean-François; Gébelin, Aude; Chelle- Michou, Cyril; Couzinié, Simon; Villaros, Arnaud; Bellanger, Mathieu Publication Date: 2020-09-23 Permanent Link: https://doi.org/10.3929/ethz-b-000446216 Originally published in: Bulletin de la Société Géologique de France 191(1), http://doi.org/10.1051/bsgf/2020013 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library BSGF - Earth Sciences Bulletin 2020, 191, 25 © O. Vanderhaeghe et al., Published by EDP Sciences 2020 https://doi.org/10.1051/bsgf/2020013 Available online at: Chaîne varisque, O. Averbuch, J.M. Lardeaux (Guest editors) www.bsgf.fr Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central Olivier Vanderhaeghe1,*, Oscar Laurent1,2, Véronique Gardien3, Jean-François Moyen4, Aude Gébelin5, Cyril Chelle-Michou2, Simon Couzinié4,6, Arnaud Villaros7,8 and Mathieu Bellanger9 1 GET, UPS, CNRS, IRD, 14, avenue E. Belin, F-31400 Toulouse, France 2 ETH Zürich, Institute for Geochemistry and Petrology, Clausiusstrasse 25, CH-8038 Zürich, Switzerland 3 Université Lyon
    [Show full text]