Structure and Tectonic Evolution of the Armorican Massif

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Tectonic Evolution of the Armorican Massif Downloaded from http://jgs.lyellcollection.org/ by guest on September 29, 2021 J. geol. Soc. London, Vol. 137, 1980, pp. 211-216. Printed in Northern Ireland. Conference Report Structure and tectonic evolution of the Armorican Massif R. A. Roach Report of a meeting of the Tectonic Studies Group held onthe foliated granodiorites and quartz-diorites, to at Burlington House, 14 March 1979. The meeting was helpdistinguishto Pentevrian andCadomian organized by Dr A. J. Barber and Dr P. R. Cobbold. magmatic-metamorphic episodes. Whiledeformation, metamorphic and magmatic The papers presented provided a timely review of the episodes occurring between 670 and 490 Ma are well major advances during the last decade in understand- establishedfor the northern part of theMassif, the ing the structure and tectonic evolutionof the Armori- significance of Cadomian structures in central Brittany canMassif. The establishment of specialresearch has been recently questioned. According to Hanmer, groups at the Universities of Rennes, Brest, Caen and Le Corre & Bertht,who presented a considerable Nantes, supported by the CNRS, has been the prime amount of supporting data, the main syn-metamorphic factor in this development. As a result, the geological deformation recognized within the Upper Brioverian evolution of this region is probably better understood of central Brittany is Hercynian in age. Less certain, thanthat of otherNercynian Massifs in central and however, is their conclusion that the Upper Brioverian western Europe. is thepost-tectonic molasse to the main phases of Thegeological evolution of the Armorican Massif Cadomianorogeny. CognC,in his model,envisaged canbe traced back more than 2000 Ma, beginning deposition of thecentral Brittany Brioverian on the withthe deposition of aLower Proterozoic or late southerncontinental slope of thePentevrian micro- Archaean supracrustal sequence which was polyphase continent, whereas Auvray & Lefort suggested deposi- deformed,metamorphosed, and intruded by granitic tion within a marginal sea. andquartz-dioritic magmas between 2500 Ma and Anothermajor advance in understandingthe tec- 1900Ma to produce the Pentevrian basement of the tonic evolution of the central and northern partsof the northernpart of theMassif. Professor CognC por- Massif has been the recent identification of important trayedthe Pentevrian as a fragment of continental deformation episodes in late Devonian to early Car- crust originally closely related to the W African Cra- boniferous times, corresponding to the Bretonic phase ton,which similarly exhibits magmatism around of the Hercynian orogeny. Details of these episodes, 2200 Ma to 1900 Ma (Eburnian event). whichcomprise folding, thrusting and tear-faulting, Itwas upon this basement and within adjacent were given for W Brittany and Finistkre by Darboux et oceanicdomains thatUpperthe Proterozoic al., Rolet,and Cabanis. These authors were able to Brioverian Supergroup was deposited. The closure of demonstrate polyphase folding of Devonian and very a portion of this ocean, the segment lying NW of the earlyCarboniferous successions and a comparatively Capde laHague-Tregor Pentevrian axis and S of simpler structural chronology for the post-Tournaisian continentalcrust represented by thePrecambrian of succession. The nature and importance of Hercynian southern Britain, was, according to the model prop- and pre-Hercynian shear belts within N Brittany was osed by Auvray & Lefort, the result of south-easterly demonstrated by Williams & Watts in a detailed and subductionunder the northern part of the Massif illuminating study of the Bourbriac-Quintin sector of between 750 and 550 Ma. This closure resulted in the the Molkne-Moncontour lineament. Cadomian orogenic event. Such features as the nature S of theWNW-ESE trending S ArmoricanShear of theCadomian igneous activity and the proposed Zone (Zone BroyCe Sud-Armoricaine), the Massif ap- existence of alate Precambrian ophiolite body at pears to have been partof a zone of continuous crustal depth under the western part of the English Channel mobilityfrom Ordovician to Upper Carboniferous are essential ingredients of this model. Details of the times. Within this zone the two most critical units in nature of thePentevrian basement, the Brioverian interpretations of the evolution of this region are the successionand the Cadomian orogenic event as en- blueschist facies rocks of the Ile de Groix and the S countered in the Channel Islands, Cap de La Hague Brittany I,P-HT migmatites.According to CognC’s and Tregor were given by Bishop, Power, and Auvray model, further separation of the central and northern & Lefort respectively. The former two speakers stres- parts of the Massif frommore southerly continental sed the need for more isotopic age determinations on massescommenced in latePrecambrian to early rocks from the Pentevrian basement areas, particularly Phanerozoic times with the formation of a Palaeozoic 0016-7649/80/0300-0211$02.00 @ 1980 The Geological Society Downloaded from http://jgs.lyellcollection.org/ by guest on September 29, 2021 212 R. A. Roach Proto-Tethysto the S of Brittany.Closure of this could be traced some 40 km inland, perpendicular to ocean during Silurian-Devonian times (420-375 Ma) the regional structural trend. A model was then pre- led to the development of the blueschist facies rocks sented whereby the porphyroids lay structurally below withinanortherly dipping subduction zone above higher grade rocks within a pile of nappes formed and which the highly elongated S Brittany migmatite belt subsequently folded in mid-late Carboniferous times. was developed within an active margin. Closureof this The gneiss-migmatite terrains in the S of the Massif ocean terminated with continental collision during the were, in this case, not elongated domes, as generally Carboniferous. There is uncertainty as to whether the thought, but formed synforms within the folded nap- Groixblueschist facies rocks are products of apre- pes. This model, which Sougy suggested could also be Hercynian (Ligerian) or an Hercynian metamorphism. appliedto S Brittany,is amajor departure from The main period of migmatization has been dated at previous models on the evolution of the region, and approximately 370 Ma. It has not yet been established, will certainly be the focus of considerable debate in therefore, if therewas atruly synchronous paired the near future. metamorphic belt developed in S Brittany. Quinquis described the deformation accompanying ROBERTAINSLEY ROACH,Department of Geology, Univer- the HP-LT metamorphism on Groix as one of intense sity of Keele, Keele, Staffordshire, ST5 5BG. progressive shear along shallow-dipping surfaces. The recognition of inverted metamorphic zones on Groix Principal stages in the creation and evolution of Annorican was explained in terms of northerly obduction of the continental crust in the context of Western Europe J. Cognt blueschist facies rocks subsequent to continental colli- sion. Richards, from a comparative structural study of Two principal stagesmark the crustal evolution of Ar- the Groix rocks with those of the adjacent mainland morica: (1) The first stage is thecreation of new crust of area(the Pouldu Series), concluded that both sequ- Upper Proterozoic (Brioverian)age (Cog1161970), a consequ- ences were part of the same crustal unit. Audren & ence of the development of an oceanic domain and its closure Peucat gave details of the metamorphic and structural dunng the Cadomianorogeny, between the Precambrian N Atlantic continent and the more southerly continentalmasses histories for the rocks on Groix and for the migmatites of ‘Gondwana’ affinity. Theopening in S Armorica (and of theGolfe du Morbihan. In the latter area the southernEurope) of the Palaeozoic Proto-Tethys,begun syntectonicGneiss de Roguedas has been used to during the latest Brioverian (Infra-Cambrian), terminatesthis date the D1 episode isotopically at 463 Ma. The main evolution. The result is the attachment to the southern mar- migmatization is broadly synchronous with DZ/D3, the gin of the N Atlantic continent of a ‘piece of Africa’ rep- closely associated anatectic granites crystallizing about resented by the Cadomian belt (cf. Panafrican) and nuclei of 370 Ma. A later episode observed in mica-schists is Pentevrian rocks (cf. Eburnian). (2) The Cambro-Ordovician associated with the emplacement of numerous leuco- opening of Proto-Tethys is followed duringthe Siluro- granites during Carboniferous times and is related by Devonian by a period of closure (the Ligerian orogeny) and subsequentcontinental collision (theHercynian belt), evi- CognC to continental collision. Brown, Friend & Top- dence of whichis located along thesouthern margin of ley, in their account of the mineral chemistry of the Armorica and the length of the Moldanubian Zone of the Morbihan migmatites, were able to estimate a temper- Variscan belt S.[. (Cognt 1976). This collision of northward ature of 700°C at5 kb for theLP-HT metamorphism. moving Gondwanancontinental masses, against the then Itis now established that the S ArmoricanShear sub-equatorial Europe, occurred at the end of the Devonian, Zone isa major structural lineament separating reg- resulting in thedevelopment of theHercynian chain s.s., ions of contrasting Palaeozoic development. Jegouzo characterizedduring the Carboniferous by majorcrustal traced the development of this shear belt from mid to thrusting and shearing and the ensialic reactivation (anatexis, late Palaeozoic times. It was suggested that,
Recommended publications
  • The Iberian Variscan Orogen
    CHAPTER 1 THE IBERIAN VARISCAN OROGEN Aerial view of the tectonic repetition of limestone beds in the Láncara Formation, Primajas duplex structure of the Esla thrust (photo by J.L. Alonso) Martínez Catalán, J.R. Aller, J. Alonso, J.L. Bastida, F. Rocks of Upper Proterozoic to Carboniferous age - forming the Variscan or Hercynian orogen - crop out widely in the western part of the Iberian Peninsula, in what is called the Iberian or Hesperian Massif. These deformed rocks, often metamorphosed and intruded by different types of granitoids, were witness to the great mountain range formed in the late Paleozoic, basically in the Late Devonian and Carboniferous (between 370 and 290 million years ago), by the convergence and collision of two major continents: Laurasia and Gondwana. The Iberian Massif constitutes a geological framework of global interest. It is unique due to the continuity of its exposures and because it displays excellent records allowing the analysis of continental crust features, the tectonic, metamorphic and magmatic evolution of orogens, and therefore provides enormously relevant data about the lithospheric dynamics during the latest Precambrian and the Paleozoic. The Variscan orogen forms the basement of the Figure 1. Scheme showing the position of the Iberian Iberian Peninsula and of most of western and central Peninsula in relation to the Appalachians and the Europe. A crustal basement is the result of an orog- Caledonian and Variscan belts. Modified from eny, that is, the consequence of a deep remobilization Neuman and Max (1989). of the continental crust caused by the convergence of plates, and is associated to uplift and the creation of relief.
    [Show full text]
  • World Geomorphological Landscapes
    World Geomorphological Landscapes Series Editor: Piotr Migoń For further volumes: http://www.springer.com/series/10852 Monique Fort • Marie-Françoise André Editors Landscapes and Landforms o f F r a n c e Editors Monique Fort Marie-Françoise André Geography Department, UFR GHSS Laboratory of Physical CNRS UMR 8586 PRODIG and Environmental Geography (GEOLAB) University Paris Diderot-Sorbonne-Paris-Cité CNRS – Blaise Pascal University Paris , France Clermont-Ferrand , France Every effort has been made to contact the copyright holders of the fi gures and tables which have been reproduced from other sources. Anyone who has not been properly credited is requested to contact the publishers, so that due acknowledgment may be made in subsequent editions. ISSN 2213-2090 ISSN 2213-2104 (electronic) ISBN 978-94-007-7021-8 ISBN 978-94-007-7022-5 (eBook) DOI 10.1007/978-94-007-7022-5 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013944814 © Springer Science+Business Media Dordrecht 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Detrital Zircons from the Ordovician Rocks of the Pyrenees: Geochronological Constraints and Provenance
    TECTO-127007; No of Pages 11 Tectonophysics xxx (2016) xxx–xxx Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Detrital zircons from the Ordovician rocks of the Pyrenees: Geochronological constraints and provenance Aina Margalef a,⁎, Pedro Castiñeiras b, Josep Maria Casas c,MarinaNavidadb, Montserrat Liesa d, Ulf Linnemann e, Mandy Hofmann e, Andreas Gärtner e a Centre d'Estudis de la Neu i de la Muntanya d'Andorra, Institut d'Estudis Andorrans, Andorra b Departamento de Petrología y Geoquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain c Departament de Geodinàmica i Geofísica-Institut de Recerca GEOMODELS, Universitat de Barcelona (UB), Martí i Franquès s/n, Barcelona 08028, Spain d Departament de Geoquímica, Petrologia i Prospecció Geològica, Universitat de Barcelona (UB), Martí i Franquès s/n, Barcelona 08028, Spain e Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Königsbrücker Landstraße 159, D-01109 Dresden, Germany article info abstract Article history: The first LA-ICP-MS U–Pb detrital zircon ages from quartzites located below (three samples) and above (one Received 31 August 2015 sample) the Upper Ordovician unconformity in the Central Pyrenees (the Rabassa Dome, Andorra) were investi- Received in revised form 9 March 2016 gated. The maximum depositional age for the Jújols Group, below the unconformity, based on the youngest Accepted 14 March 2016 detrital zircon population, is around 475 Ma (Early Ordovician), whereas for the Bar Quartzite Fm., above the Available online xxxx unconformity, the presence of only two zircons of 442 and 443 Ma precludes obtaining a precise maximum sed- Keywords: imentation age.
    [Show full text]
  • Palaeozoic Geography and Palaeomagnetism of the Central European Variscan and Alpine Fold Belts
    Palaeozoic Geography and Palaeomagnetism of the Central European Variscan and Alpine Fold Belts Inaugural-Dissertation zur Erlangung des Doktorgrades der Fakultät für Geo- und Umweltwissenschaften der Ludwig-Maximilians-Universität München vorgelegt von Dipl.-Geol. Michael Rupert Schätz am 17. Mai 2004 Promoter: PD Dr. Jennifer Tait Co-Promoter: Prof. Dr. Valerian Bachtadse Tag der mündlichen Prüfung: 13. Juli 2004 Contents Glossary ........................................................................................................................... 3 Bibliography ........................................................................................................................... 5 Zusammenfassung ................................................................................................................. 6 Chapter 1 Introduction.................................................................................................... 10 1.1 Palaeomagnetism ................................................................................................... 10 1.2 General geodynamic and tectonic framework of Central Europe.................... 11 1.3 Aim of this work.............................................................................................. 21 1.4 Geological setting of the selected sampling areas ........................................... 24 Chapter 2 Sampling and methods ................................................................................. 36 2.1 Sampling and Laboratory procedure...............................................................
    [Show full text]
  • Multiple Crust Reworking in the French Armorican Variscan Belt
    Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites Christophe Ballouard, Marc Poujol, Armin Zeh To cite this version: Christophe Ballouard, Marc Poujol, Armin Zeh. Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites. International Journal of Earth Sciences, Springer Verlag, 2018, 107 (7), pp.2317-2336. 10.1007/s00531-018-1600-3. insu- 01717290 HAL Id: insu-01717290 https://hal-insu.archives-ouvertes.fr/insu-01717290 Submitted on 26 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Click here to download Manuscript Ms_Ballouard et al__IJES_R1.docx Click here to view linked References Multiple crust reworking in the French Armorican Variscan belt: implication for the genesis of uranium-fertile leucogranites 1 C. Ballouarda,b*, M. Poujolb, A. Zehc 2 aDepartment of Geology, University of Johannesburg, PO Box 254, Auckland Park 2006, 3 South Africa 4 b Univ Rennes, CNRS, Géosciences Rennes
    [Show full text]
  • Large Scale Variscan Granitoid Intrusion Throughout Europe: a Lateral Geochronological Trend? K
    Large scale Variscan granitoid intrusion throughout Europe: a lateral geochronological trend? K. Oud BSc Thesis, Faculty of Earth Sciences, Utrecht University, July 2006 Abstract Large-scale granitoid intrusion during the Variscan orogeny (370 to 250 Ma) in Europe above subduction zones of that time is assumed to be the result of a heat pulse due to slab detachment. This would show from a lateral trend in age of emplacement of all granitic bodies, migrating through the complete Variscan fold belt, and thus, a younging direction perpendicular to the former subduction zones. To test this, an inventory of intrusion ages (on the basis of U-Pb, Rb-Sr and K-Ar analysis), typology (I- or S-type) and location of 70 granitic bodies in the European Variscan fold belt, from the Armorican Massif to the Bohemian Massif, was made. From the collected data, no lateral trend in age is observed. However, a trend in age parallel to former subduction zones is shown in most massifs, with a younging direction towards the thrusting vergence. This is probably the result of nappe stacking. In the Armorican Massif and Massif Central, granites are all S-type, which is probably the cause of continental subduction. In central Europe, the typology is mixed S- and I-type, which can be caused by subduction of either continental or oceanic lithosphere. 1. Introduction result of the ‘usual’ heat and melt generation attributed to subduction The Variscan orogeny yielded a large processes. However, there is another number of granitoid intrusions throughout possibility of granite emplacement that all of the European Variscides.
    [Show full text]
  • 13 Geological Features of Variscan Pyrenees
    Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 23 Valencia 2017 International Conodont Symposium 4 Valencia, 25-30th June 2017 Geological features of Variscan Pyrenees Pilar Clariana1 1Instituto Geológico y Minero de España, Unidad de Zaragoza; c/ Manuel Lasala 44, 9ºB; E-50006 Zaragoza, Spain; [email protected] Introduction The Pyrenees are an ESE – WNW trending, Alpine cordillera built after the collision between the Iberian and Euro-Asian plates from Late Cretaceous to Early Miocene. This mountain belt extends 450 km between the Mediterranean Sea and the Atlantic Ocean but from a geological point of view the Pyrenean Orogen extends for more than 1000 km from Provenza (France) to the Cantabrian Mountains and their continental platform under the Cantabrian Sea (Alonso et al., 1996; Pulgar et al., 1996, 1997; Gallastegui, 2000). Neo-proterozoic to Cenozoic, rocks appear in this Alpine orogen. The pre-Cambrian and Paleozoic rocks are affected by variscan deformation and metamorphism and are outcropping in a large belt in the core of the cordillera. These rocks are flanked to the south and to the north by large outcrops of Mesozoic and Cenozoic rocks. The Alpine deformation gave rise to the development of E – W trend thrusts, which involved previously deformed pre-Cambrian and Paleozoic basement rocks. These thrusts caused shifts and rotations of large blocks of basement rocks with an Alpine deformation restricted to narrow bands and the development of a tectonic foliation represented mainly to west of the Pyrenees (Choukroune & Seguret, 1973; Autran y García-Sansegundo, 1996; Izquierdo-Llaval, 2014). This situation makes necessary to carry out a revision about main features of the Alpine Orogen as well as of Paleozoic of the Pyrenees and The Variscan Orogen of which pre- Mesozoic rocks were part.
    [Show full text]
  • Maps -- by Region Or Country -- Eastern Hemisphere -- Europe
    G5702 EUROPE. REGIONS, NATURAL FEATURES, ETC. G5702 Alps see G6035+ .B3 Baltic Sea .B4 Baltic Shield .C3 Carpathian Mountains .C6 Coasts/Continental shelf .G4 Genoa, Gulf of .G7 Great Alföld .P9 Pyrenees .R5 Rhine River .S3 Scheldt River .T5 Tisza River 1971 G5722 WESTERN EUROPE. REGIONS, NATURAL G5722 FEATURES, ETC. .A7 Ardennes .A9 Autoroute E10 .F5 Flanders .G3 Gaul .M3 Meuse River 1972 G5741.S BRITISH ISLES. HISTORY G5741.S .S1 General .S2 To 1066 .S3 Medieval period, 1066-1485 .S33 Norman period, 1066-1154 .S35 Plantagenets, 1154-1399 .S37 15th century .S4 Modern period, 1485- .S45 16th century: Tudors, 1485-1603 .S5 17th century: Stuarts, 1603-1714 .S53 Commonwealth and protectorate, 1660-1688 .S54 18th century .S55 19th century .S6 20th century .S65 World War I .S7 World War II 1973 G5742 BRITISH ISLES. GREAT BRITAIN. REGIONS, G5742 NATURAL FEATURES, ETC. .C6 Continental shelf .I6 Irish Sea .N3 National Cycle Network 1974 G5752 ENGLAND. REGIONS, NATURAL FEATURES, ETC. G5752 .A3 Aire River .A42 Akeman Street .A43 Alde River .A7 Arun River .A75 Ashby Canal .A77 Ashdown Forest .A83 Avon, River [Gloucestershire-Avon] .A85 Avon, River [Leicestershire-Gloucestershire] .A87 Axholme, Isle of .A9 Aylesbury, Vale of .B3 Barnstaple Bay .B35 Basingstoke Canal .B36 Bassenthwaite Lake .B38 Baugh Fell .B385 Beachy Head .B386 Belvoir, Vale of .B387 Bere, Forest of .B39 Berkeley, Vale of .B4 Berkshire Downs .B42 Beult, River .B43 Bignor Hill .B44 Birmingham and Fazeley Canal .B45 Black Country .B48 Black Hill .B49 Blackdown Hills .B493 Blackmoor [Moor] .B495 Blackmoor Vale .B5 Bleaklow Hill .B54 Blenheim Park .B6 Bodmin Moor .B64 Border Forest Park .B66 Bourne Valley .B68 Bowland, Forest of .B7 Breckland .B715 Bredon Hill .B717 Brendon Hills .B72 Bridgewater Canal .B723 Bridgwater Bay .B724 Bridlington Bay .B725 Bristol Channel .B73 Broads, The .B76 Brown Clee Hill .B8 Burnham Beeches .B84 Burntwick Island .C34 Cam, River .C37 Cannock Chase .C38 Canvey Island [Island] 1975 G5752 ENGLAND.
    [Show full text]
  • Analysis of the Mw = 4.3 Lorient Earthquake Sequence : a Multidisciplinary Approach to the Geodynamics of the Armorican Massif, Westernmost France Julie Perrot, P
    Analysis of the Mw = 4.3 Lorient earthquake sequence : a multidisciplinary approach to the geodynamics of the Armorican Massif, Westernmost France Julie Perrot, P. Arroucau, J. Guilbert, Jacques Déverchère, Y. Mazabraud, Joël Rolet, A. Mocquet, M. Mousseau, L. Matias To cite this version: Julie Perrot, P. Arroucau, J. Guilbert, Jacques Déverchère, Y. Mazabraud, et al.. Analysis of the Mw = 4.3 Lorient earthquake sequence : a multidisciplinary approach to the geodynamics of the Armorican Massif, Westernmost France. Geophysical Journal International, Oxford University Press (OUP), 2005, 162, pp.935-950. 10.1111/j.1365-246X.2005.02706.x. hal-00116048 HAL Id: hal-00116048 https://hal.archives-ouvertes.fr/hal-00116048 Submitted on 19 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophys. J. Int. (2005) 162, 935–950 doi: 10.1111/j.1365-246X.2005.02706.x Analysis of the Mw 4.3 Lorient earthquake sequence: amultidisciplinary approach to the geodynamics of the Armorican Massif, westernmost France J. Perrot,1 P. Arroucau,2 J. Guilbert,3 J. D´everch`ere,1 Y. Mazabraud,4 J. Rolet,1 A. Mocquet,2 M. Mousseau1 and L.
    [Show full text]
  • Caledonian-Appalachian Orogen Palaeomagnetic Constraints on The
    Downloaded from http://sp.lyellcollection.org/ at Columbia University on January 17, 2012 Geological Society, London, Special Publications Palaeomagnetic constraints on the evolution of the Caledonian-Appalachian orogen J. C. Briden, D. V. Kent, P. L. Lapointe, J. L. Roy, R. A. Livermore, A. G. Smith, M. K. Seguin, R. Van der Voo and D. R. Watts Geological Society, London, Special Publications 1988, v.38; p35-48. doi: 10.1144/GSL.SP.1988.038.01.03 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2012 Downloaded from http://sp.lyellcollection.org/ at Columbia University on January 17, 2012 Palaeomagnetic constraints on the evolution of the Caledonian- Appalachian orogen J. C. Briden, D. V. Kent, P. L. Lapointe, R. A. Livermore, J. L. Roy, M. K. Seguin, A. G. Smith, R. Van der Voo & D. R. Watts SUMMARY: Late Proterozoic and Palaeozoic (pre-Permian) palaeomagnetic data from all regions involved in, or adjacent to, the Caledonian-Appalachian orogenic belt are reviewed. Between about 1100 and about 800 Ma the Laurentian and Baltic shields were close together, prior to the opening phase of the Caledonian-Appalachian Wilson cycle. The problems of tectonic interpretation of Palaeozoic palaeomagnetic data from within and around the belt derive mostly from differences of typically 10°-20° between the pole positions. These can variously be interpreted in terms of (i) relative displacements between different continents or terranes, (ii) differences in ages of remanence and (iii) aberrations due to inadequacy of data or geomagnetic complexity, and it is not always easy to discriminate between these alternatives.
    [Show full text]
  • Images of Lithospheric Heterogeneities in the Armorican Segment of the Hercynian Range in France
    Tectonophysics 358 (2002) 121–134 www.elsevier.com/locate/tecto Images of lithospheric heterogeneities in the Armorican segment of the Hercynian Range in France S. Judenherca,*, M. Graneta, J.-P. Brunb, G. Poupinetc, J. Plomerova´ d, A. Mocquete, U. Achauera a Ecole et Observatoire des Sciences de la Terre, UMR 7516, Strasbourg, France b Ge´osciences Rennes UPR 4661, Rennes, France c Laboratoire de Ge´ophysique Interne et de Tectonique, UMR 5559, Grenoble, France d Geophysical Institute, Czech Academy of Sciences, Prague, Czech Republic e Laboratoire de Plane´tologie et de Ge´ophysique, FRE-CNRS 2129, Nantes, France Received 4 September 2000; received in revised form 4 April 2001; accepted 15 June 2002 Abstract The Armorican Massif is located in western France. It is a part of the Hercynian Range formed in several phases of SE–NW compression from Devonian to Carboniferous time (ca. 400–300 Ma). The main tectonic features are the North and South Armorican shear zones with WNW–ESE strike. In the framework of the Ge´oFrance3D program, we have installed 35 seismological stations along two NS lines crossing the main Hercynian WNW–ESE fault systems. The data set collected during the experiment allows us to compute a 3D P-velocity model and to map S-wave seismic anisotropy at depth using teleseismic shear waves splitting measurements. The South Armorican shear zone (SASZ) is characterized by a strong (4–5%) velocity contrast and a fast shear wave azimuth parallel to its strike. The North Armorican shear zone (NASZ) does not show any significant lithospheric signature. The tomographic image and anisotropy results suggest that the Armorican lithosphere consists of the juxtaposition of distinct lithospheric blocks assembled in a subduction type process predating the Hercynian Orogeny.
    [Show full text]
  • Flow of Partially Molten Crust Controlling Construction, Growth and Collapse of the Variscan Orogenic Belt: the Geologic Record of the French Massif Central
    Research Collection Review Article Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central Author(s): Vanderhaeghe, Olivier; Laurent, Oscar; Gardien, Véronique; Moyen, Jean-François; Gébelin, Aude; Chelle- Michou, Cyril; Couzinié, Simon; Villaros, Arnaud; Bellanger, Mathieu Publication Date: 2020-09-23 Permanent Link: https://doi.org/10.3929/ethz-b-000446216 Originally published in: Bulletin de la Société Géologique de France 191(1), http://doi.org/10.1051/bsgf/2020013 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library BSGF - Earth Sciences Bulletin 2020, 191, 25 © O. Vanderhaeghe et al., Published by EDP Sciences 2020 https://doi.org/10.1051/bsgf/2020013 Available online at: Chaîne varisque, O. Averbuch, J.M. Lardeaux (Guest editors) www.bsgf.fr Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central Olivier Vanderhaeghe1,*, Oscar Laurent1,2, Véronique Gardien3, Jean-François Moyen4, Aude Gébelin5, Cyril Chelle-Michou2, Simon Couzinié4,6, Arnaud Villaros7,8 and Mathieu Bellanger9 1 GET, UPS, CNRS, IRD, 14, avenue E. Belin, F-31400 Toulouse, France 2 ETH Zürich, Institute for Geochemistry and Petrology, Clausiusstrasse 25, CH-8038 Zürich, Switzerland 3 Université Lyon
    [Show full text]