A Revision of Australian River Prawns, Macrobrachium (Crustacea: Decapoda: Palaemonidae)

Total Page:16

File Type:pdf, Size:1020Kb

A Revision of Australian River Prawns, Macrobrachium (Crustacea: Decapoda: Palaemonidae) Hydrobiologia 525: 1–100, 2004. Ó 2004 Kluwer Academic Publishers. Printed in the Netherlands. 1 Taxonomic revision A revision of Australian river prawns, Macrobrachium (Crustacea: Decapoda: Palaemonidae) J. W. Short Queensland Centre for Biodiversity, Queensland Museum, P.O. Box 3300, South Brisbane, Queensland 4101, Australia Present address: BioAccess Australia, P.O. Box 10281, Adelaide St, Brisbane, Queensland 4000, Australia (Fax: +61-7-38869684, E-mail: [email protected]) Received 8 September 2003; in revised form 2 February 2004; accepted 9 February 2004 Key word: Crustacea, Decapoda, Palaemonidae, Macrobrachium, Australia, Taxonomy Abstract A taxonomic revision of Australian Macrobrachium identified three species new to the Australian fauna – two undescribed species and one new record, viz. M. auratum sp. nov., M. koombooloomba sp. nov., and M. mammillodactylus (Thallwitz, 1892). Eight taxa previously described by Riek (1951) are recognised as new junior subjective synonyms, viz. M. adscitum adscitum, M. atactum atactum, M. atactum ischnomorphum, M. atactum sobrinum, M. australiense crassum, M. australiense cristatum, M. australiense eupharum of M. australiense Holthuis, 1950, and M. glypticum of M. handschini Roux, 1933. Apart from an erroneous type locality for a junior subjective synonym, there were no records to confirm the presence of M. australe (Gue´rin-Me´neville, 1838) on the Australian continent. In total, 13 species of Macrobrachium are recorded from the Australian continent. Keys to male developmental stages and Australian species are provided. A revised diagnosis is given for the genus. A list of 31 atypical species which do not appear to be based on fully developed males or which require re-evaluation of their generic status is provided. Terminology applied to spines and setae is revised. Introduction River prawns of the genus Macrobrachium are a the 50 or so years since the last major revisionary conspicuous and important component of fresh- works on the group (Holthuis, 1950, 1952a). water and estuarine ecosystems throughout tropi- Typically, Macrobrachium are epigeal, epibenthic cal and warm temperate areas of the world. and largely nocturnal, although several hypogeal Although members of the genus are also com- cave species have also been described. Unlike most monly referred to as ‘freshwater’ prawns, some are related palaemonine genera, members of the genus entirely restricted to estuaries and many typically have well-developed agonistic behaviour require marine influence during larval develop- and a solitary lifestyle. ment. Many species grow to a sufficient size to be Most members of the genus are easily recog- used for human consumption. Holthuis (1980) nisable by the well developed, often elongated listed 49 species of interest to fisheries throughout second chelipeds, which in the males of many the world. The Giant River Prawn, M. rosenbergii, species may exceed the body length. Approxi- has been farmed commercially both within and mately 210 species of Macrobrachium are presently outside its natural range in localities such as Asia, recognised, with nearly half of these described in Hawaii, the Americas, and New Zealand. 2 From a taxonomic point of view, the genus is Lee (1979) re-evaluated Riek’s subspecies of one of the more challenging decapod crustacean M. australiense using morphological characters groups (Holthuis, 1950, 1952a; Chace & Bruce, and a study of F1 progeny reared in the laboratory 1993). The two main morphological features which and concluded that the differences found ‘do not have traditionally provided characters for sepa- appear to be sufficiently large or consistent enough rating species, the rostrum and the second pere- to warrant dividing the species into 4 sub-species’. iopods, are often highly variable within species Fincham (1987) described a new species, (Holthuis, 1950). The second pereiopods in par- M. bullatum, from Magela Ck and the Alligator ticular show a very high level of developmental Rivers region, N.T. He also provided a key to and sexual variation, including allometric growth Australian species based largely on the key of Riek in males. (1951). However, he also questioned the validity of Another major factor contributing to the dif- Riek’s subspecies of M. australiense, ‘the mor- ficulty of working on the genus is the influence of phological characters separating many of Riek’s social dominance on male morphology. In the subspecies were small and often involved length past it has often been assumed that all sexually ratios of pereiopod segments, which may change mature, fully grown males have developed second during development’. Furthermore, Fincham no- pereiopods. However, the importance of ted that the holotype of M. tolmerum Riek was a behavioural dominance in the morphology of non-ovigerous female rather than a male. male M. rosenbergii was demonstrated by Kuris In addition to recognised problems with the et al. (1987). Secondary sexual characters such as Riek’s classification, some of the material in the the form of the second pereiopods are most Queensland Museum collection appeared outside developed in dominant males and their develop- the range of variation recorded for Australian ment is not strictly dependent on size and age. species. This material appeared to represent three Although fully developed dominant males are new Australian records, viz., M. equidens (Dana, usually among the largest individuals, a signifi- 1852), M. idae (Heller, 1862a, b) and M. mam- cant percentage of large subordinate males with millodactylus (Thallwitz, 1892), and two unde- undeveloped or developing second pereiopods scribed species. The first two of the new records, may be present at any given locality. This is M. equidens and M. idae, have been published particularly the case where food resources are elsewhere (Bruce & Coombes, 1997; Short, 2000) limited e.g. a drying lagoon on an episodic whereas the third is reported in this paper. watercourse. The problem of correctly distin- One of the undescribed species was first guishing fully developed males when describing recognised by Kneipp (1979) in an unpublished new species was well illustrated by the taxonomy Ph.D. thesis. This species was also well represented of the Australian fauna prior to this study. A in the QM collection through field expeditions to number of nominal Australian taxa appeared to northeast Queensland during the last decade. The have been based on large subordinate males other new species was originally collected by Dr S. without fully developed chelipeds. Bunn and Mr M. Bray (Griffith University) during Taxonomic records of Macrobrachium from a limnological study for the proposed Tully-Mill- Australia date back to the early carcinological lit- stream hydroelectric scheme in 1990. A Queens- erature. The first record was by Olivier (1811) who land Museum expedition to the upper Tully River reported Palaemon ornatus (= Macrobrachium area in November 1992 yielded detailed habitat lar). Over the next 140 years the Australian fauna data and a good representative range of specimens received little attention, apart from several single including the first fully developed males. species descriptions, new records and synonyms (Heller, 1865; Ortmann, 1891; De Man, 1908; Roux, 1933; Holthuis, 1950). The first revisionary Methods and materials study of the Australian fauna was by Riek (1951). Riek’s study increased the number of known spe- A taxonomic revision of Australian Macro- cies from six (Holthuis, 1950) to ten. He also de- brachium was undertaken using external morpho- scribed six new subspecies. logical characters supplemented with biological 3 and ecological data. The study area was limited to from descriptions, diagnoses, keys, notes and the Australian continent and associated continen- illustrations of Macrobrachium in the literature. tal islands. External Australian territories such as This was refined and expanded after a detailed Christmas Island were not investigated. Extensive examination of the Macrobrachium collection in collections of preserved material housed in the the Queensland Museum and non-Australian Queensland Museum, Northern Territory Mu- Macrobrachium in several major European muse- seum of Arts and Sciences, Australian Museum, ums. A schematic drawing of a generalised Mac- Museum of Victoria and South Australian Mu- robrachium showing the main morphological seum were studied. A field collecting program in features is illustrated in Figure 1. Queensland and the Northern Territory provided Biological characters, such as habitat, life hi- additional distributional records and new infor- story, and behavioural traits were also compiled mation on behaviour, habitat ecology, and live from the literature. These were expanded and re- colouration. In total over 5000 specimens and 1000 fined during field expeditions in northern Austra- registered museum lots were examined. lia. Abbreviations used: AM, Australian Museum; Ck/s, creek, creeks; CL, postrostral carapace Delimitation of species length in mm measured from orbital margin to dorsolateral invagination of posterior margin; Species were delimited using unique character CSIRO, Commonwealth Scientific and Industrial states or character state combinations. In the case Organisation; CYPLUS, Cape York Peninsula of well-established taxa, previous diagnoses and Land Utilisation Study; diam., diameter; ERISS, known limits of variation were also used. Repro- Environmental Research Institute of the Super- ductive isolation was inferred from the
Recommended publications
  • Amphidromy in Shrimps: a Life Cycle Between Rivers and the Sea
    Lat. Am. J. Aquat. Res., 41(4): 633-650, 2013 Amphidromy in shrimps: a life cycle 633 “Studies on Freshwater Decapods in Latin America” Ingo S. Wehrtmann & Raymond T. Bauer (Guest Editors) DOI: 103856/vol41-issue4-fulltext-2 Review Amphidromy in shrimps: a life cycle between rivers and the sea Raymond T. Bauer1 1Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-2451 USA ABSTRACT. Amphidromy is a diadromous life history pattern, common in tropical and subtropical freshwater caridean shrimps, in which adults live, breed and spawn small-sized embryos in freshwater but have extended larval development (ELD) in marine waters. Most completely freshwater species spawn large embryos with either direct or abbreviated larval development (ALD). An important benefit of amphidromy is dispersal among river systems via marine larvae, which increases their access to alternative habitats. Thus, amphidromous species have much broader geographic distributions than closely related completely freshwater ones with ALD. ALD and freshwater ELD species appear to have evolved from amphidromous species with marine ancestors. Delivery of larvae to the sea in many amphidromous species is accomplished by upstream hatching and river drift of larvae to the sea. In other species, the females themselves apparently migrate down to marine waters to spawn. After development, the postlarvae must find a river mouth and migrate upstream to the adult habitat. Migrations occur at night, with juveniles swimming or crawling along the river or stream bank. Larvae are released during the wet or flood season of the year, while juvenile migrations take place during the dry or low-flow season.
    [Show full text]
  • Restricted Water Ski Areas in Queensland
    Restricted Water Ski areas in Queensland Watercourse Date of Gazettal Any person operating a ship towing anyone by a line attached to the ship (including for example a person water skiing or riding on a toboggan or tube) within the waters listed below endangers marine safety. Brisbane River 20/10/2006 South Brisbane and Town Reaches of the Brisbane River between the Merivale Bridge and the Story Bridge. Burdekin River, Charters Towers 13/09/2019 All waters of The Weir on the Burdekin River, Charters Towers. Except: • commencing at a point on the waterline of the eastern bank of the Burdekin River nearest to location 19°55.279’S, 146°16.639’E, • then generally southerly along the waterline of the eastern bank to a point nearest to location 19°56.530’S, 146°17.276’E, • then westerly across Burdekin River to a point on the waterline of the western bank nearest to location 19°56.600’S, 146°17.164’E, • then generally northerly along the waterline of the western bank to a point on the waterline nearest to location 19°55.280’S, 146°16.525’E, • then easterly across the Burdekin River to the point of commencement. As shown on the map S8sp-73 prepared by Maritime Safety Queensland (MSQ) which can be found on the MSQ website at www.msq.qld.gov.au/s8sp73map and is held at MSQ’s Townsville Office. Burrum River .12/07/1996 The waters of the Burrum River within 200 metres north from the High Water mark of the southern river bank and commencing at a point 50 metres downstream of the public boat ramp off Burrum Heads Road to a point 200 metres upstream of the upstream boundary of Lions Park, Burrum Heads.
    [Show full text]
  • Black River Flood Study
    City Wide Flood Constraints Project Townsville City Council 24-Jun-2014 Black River Flood Study Base-line Flooding Assessment J:\MMPL\60285746\8. Issued Docs\8.6 Clerical\flooding assessment\final copy\report.docx Revision A – 24-Jun-2014 Prepared for – Townsville City Council – ABN: 44 741 992 072 AECOM City Wide Flood Constraints Project Black River Flood Study Black River Flood Study Base-line Flooding Assessment Client: Townsville City Council ABN: 44 741 992 072 Prepared by AECOM Australia Pty Ltd 21 Stokes Street, PO Box 5423, Townsville QLD 4810, Australia T +61 7 4729 5500 F +61 7 4729 5599 www.aecom.com ABN 20 093 846 925 24-Jun-2014 Job No.: 60285746 AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001. © AECOM Australia Pty Ltd (AECOM). All rights reserved. AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client’s description of its requirements and AECOM’s experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified.
    [Show full text]
  • Cultural Heritage Series
    VOLUME 4 PART 1 MEMOIRS OF THE QUEENSLAND MUSEUM CULTURAL HERITAGE SERIES © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qmuseum.qld.gov.au National Library of Australia card number ISSN 1440-4788 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qmuseum.qld.gov.au/resources/resourcewelcome.html A Queensland Government Project Typeset at the Queensland Museum DR ERIC MJÖBERG’S 1913 SCIENTIFIC EXPLORATION OF NORTH QUEENSLAND’S RAINFOREST REGION ÅSA FERRIER Ferrier, Å. 2006 11 01: Dr Eric Mjöberg’s 1913 scientific exploration of North Queensland’s rainforest region. Memoirs of the Queensland Museum, Cultural Heritage Series 4(1): 1-27. Brisbane. ISSN 1440-4788. This paper is an account of Dr Eric Mjöberg’s travels in the northeast Queensland rainforest region, where he went, what observations he made, and what types of Aboriginal material culture items he collected and returned with to Sweden in 1914. Mjöberg, a Swedish entomologist commissioned by the Swedish government to document rainforest fauna and flora, spent seven months in the tropical rainforest region of far north Queensland in 1913, mainly exploring areas around the Atherton Tablelands.
    [Show full text]
  • Submission DR130
    To: Commissioner Dr Jane Doolan, Associate Commissioner Drew Collins Productivity Commission National Water Reform 2020 Submission by John F Kell BE (SYD), M App Sc (UNSW), MIEAust, MICE Date: 25 March 2021 Revision: 3 Summary of Contents 1.0 Introduction 2.0 Current Situation / Problem Solution 3.0 The Solution 4.0 Dam Location 5.0 Water channel design 6.0 Commonwealth of Australia Constitution Act – Section 100 7.0 Federal and State Responses 8.0 Conclusion 9.0 Acknowledgements Attachments 1 Referenced Data 2A Preliminary Design of Gravity Flow Channel Summary 2B Preliminary Design of Gravity Flow Channel Summary 3 Effectiveness of Dam Size Design Units L litres KL kilolitres ML Megalitres GL Gigalitres (Sydney Harbour ~ 500GL) GL/a Gigalitres / annum RL Relative Level - above sea level (m) m metre TEL Townsville Enterprise Limited SMEC Snowy Mountains Engineering Corporation MDBA Murray Darling Basin Authority 1.0 Introduction This submission is to present a practical solution to restore balance in the Murray Daring Basin (MDB) with a significant regular inflow of water from the Burdekin and Herbert Rivers in Queensland. My background is civil/structural engineering (BE Sydney Uni - 1973). As a fresh graduate, I worked in South Africa and UK for ~6 years, including a stint with a water consulting practice in Johannesburg, including relieving Mafeking as a site engineer on a water canal project. Attained the MICE (UK) in Manchester in 1979. In 1980 returning to Sydney, I joined Connell Wagner (now Aurecon), designing large scale industrial projects. Since 1990, I have headed a manufacturing company in the specialised field of investment casting (www.hycast.com.au) at Smithfield, NSW.
    [Show full text]
  • Upper Goulburn River Catchment Local Management Rules
    UPPER GOULBURN RIVER CATCHMENT LOCAL MANAGEMENT RULES 1. Catchment Information 3. Compliance Point The Goulburn River flows into Lake Eildon near the There is a surface water monitoring station located township of Jamieson and encompasses an area of upstream of Jamieson on the Mansfield-Woods Point approximately 750 km2. The mean annual flow at the Road. The site is called the Goulburn River @ Dohertys. bottom of the Upper Goulburn River catchment is approximately 357,000 ML/yr, which flows into the 4. Licences headwaters of Eildon. The Goulburn Broken Regional Licence Allocation in the Upper Goulburn River and River Health Strategy lists the Goulburn River above Tributaries Eildon as a high value asset as it is classed as an Licence Type Number of Volume (ML) ecologically healthy river containing Macquarie Perch, Licences Barred Galaxias, and the Spotted Tree Frog. Irrigation 59 130 Total 59 130 The catchment is bound to the west by the Big River catchment, the east by the Macalister River and the 5. Additional Information north by the Jamieson River catchment. Significant Stream codes and sustainable diversion limit zones are tributaries of the upper Goulburn include the Snake, provided within this document for identification Webber, Gaffneys, Moonlight, Edwards and Pheasant purposes when discussing the catchment diversion Creeks and the Black River. The main townships in the management with Goulburn-Murray Water Officers. catchment include Kevington, Knockwood, and Woods Point. The catchment is predominantly a forested Stream Codes catchment with small pockets of cleared land around Stream codes used in the management of the Upper the townships within the valleys.
    [Show full text]
  • Cryphiops Caementarius (Molina, 1782)
    FICHA DE ANTECEDENTES DE ESPECIE Id especie: Nombre Científico: Cryphiops caementarius (Molina, 1782) Nombre Común: Camarón de río del Norte de Chile Reino: Animalia Orden: Decapoda Phyllum/División: Arthropoda Familia: Palaemonidae Clase: Malacostraca Género: Cryphiops Sinonimia: Cancer caementarius , Molina Palaemon Gaudichaudii , Poeppig Cryphiops spinuloso-manus , Dana Bithynis longimana , Philippi Bithynis gaudichaudii , Ortman Bithynis caementarius , Ortman Antecedentes Gen erales: ASPECTOS MORFOLÓGICOS: Animal robusto, de abdomen tan largo y grueso como el cefalotórax, rostrum con cresta dorsal adornada por fila de 6 a 7 dientes gruesos, puede tener dientes a lo largo del borde ventral o carecer completamente de ellos, existiendo ejemplares con todos los estados intermedios relativos a estos extremos (Jara 1994). Primer y segundo par de patas caminadoras con quela o tenaza terminal; el segundo par mucho más grande que el primero y una de las patas de mayor tamaño que la opuesta (Jara 1994). El segundo par de patas del macho es distinto del de la hembra; la mayor anchura de los extremos del segundo segmento abdominal, en proporción a la longitud del abdomen y la relación cefalotoráxica, nos dan la evidencia de un dimorfismo sexual (Castro 1966). El espécimen macho más grande medido en la Colección del Instituto de Zoología (UACh) alcanzó a 59 mm, mientras que el más grande registrado en la literatura alcanzó 67 mm (Jara 1994). Rasgos distintivos ASPECTOS REPRODUCTIVOS: La mayor parte de los ejemplares migran activamente hacia la desembocadura de los ríos para la reproducción , liberar las larvas en los estuarios o zonas del potamon. En cuevas los machos tienen varias hembras que fertilizan después de la muda.
    [Show full text]
  • The Burdekin River
    The Burdekin River In March 1846, the Burdekin River was named by German During the wet season there is no shortage of water explorer and scientist, Ludwig Leichhardt after Mrs Thomas or wildlife surrounding the Burdekin River. As the wet Burdekin, who assisted Mr Leichhardt during his expedition. season progresses the native wildlife flourishes and the dry country comes alive with all types of flora and fauna. In 1859, George Dalrymple explored the area in search of good pastoral land. Two years later, in 1861, the land One of the major river systems in Australia, the along the Burdekin River was being settled and cattle Burdekin has a total catchment area of 130,000 sq km, properties and agricultural farms were established. which is similar in size to England or Greece. The Burdekin River is 740km long and the centrepiece to an entire network of rivers. Most of the water that flows through the Burdekin Ludwig River starts its journey slowly flowing through Leichhardt creeks and tributaries picking up more volume as it heads towards the Pacific Ocean. Information and photos courtesy of Lower Burdekin Water, CSIRO, SunWater and Lower Burdekin Historical Society Inc. Burdekin Falls Dam The site chosen for the Dam was the Burdekin Throughout the construction phase the As well as being a fantastic spot for camping, Falls, 159km from the mouth of the river. The weather had been very kind. There had this lake is also popular for fishing with Burdekin Dam required a huge volume of not been a wet season in the 2 ½ years schools of grunter, sleepy cod, silver perch concrete; it took 630,000 cubic metres for it had taken to construct the dam.
    [Show full text]
  • YELLOW CHAT (Alligator Rivers Subspecies) Epthianura Crocea Tunneyi
    Threatened Species of the Northern Territory YELLOW CHAT (Alligator Rivers subspecies) Epthianura crocea tunneyi Conservation status Australia: Vulnerable Northern Territory: Endangered Yellow chat. (Photo: M. Armstrong) Description The yellow chat is a small bird that typically forages on the ground, in dense grass or in low shrubs. The male is a bright golden- yellow, with a prominent black chest band. The female is pale lemon yellow, and has no chest band. Distribution Yellow chats occur patchily across northern Australia, most typically in chenopod shrublands and grasslands around water sources in semi-arid areas. However, the subspecies Epthianura crocea tunneyi is Known locations of the yellow chat (Alligator Rivers restricted to a small geographic area subspecies). encompassing the floodplains from the = pre 1970; • = post 1970. Adelaide River to the East Alligator River (Schodde and Mason 1999), and within this Ecology area it is known from only a small number of sites (Armstrong 2004). There have been Yellow chats have been reported from tall recent (2005, 2006) records from Harrison grasslands and samphire shrublands (on Dam. coastal saltpans). Conservation reserves where reported: Most records of the Alligator Rivers subspecies are from floodplain depressions Harrison Dam reserve, Kakadu National Park, and channels, concentrating around wetter Mary River National Park. areas at the end of the dry season (Armstrong 2004). The diet is mostly invertebrates (Higgins et al. 2001). Yellow chats typically occur in small groups of 2-10 individuals. For more information visit www.denr.nt.gov.au Conservation assessment preference and response to the putative threatening processes. For this endemic Northern Territory subspecies, Garnett and Crowley (2000) Management priorities are to: estimated the extent of occurrence as 500 km2, area of occupancy at 100 km2, and the (i) maintain extensive areas of total number of breeding birds as 500.
    [Show full text]
  • A Short History of Thuringowa
    its 0#4, Wdkri Xdor# of fhurrngoraa Published by Thuringowa City Council P.O. Box 86, Thuringowa Central Queensland, 4817 Published October, 2000 Copyright The City of Thuringowa This book is copyright. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright Act no part may be reproduced by any process without written permission. Inquiries should be addressed to the Publishers. All rights reserved. ISBN: 0 9577 305 3 5 kk THE CITY of Centenary of Federation i HURINGOWA Queensland This publication is a project initiated and funded by the City of Thuringowa This project is financially assisted by the Queensland Government, through the Queensland Community Assistance Program of the Centenary of Federation Queensland Cover photograph: Ted Gleeson crossing the Bohle. Gleeson Collection, Thuringowa Conienis Forward 5 Setting the Scene 7 Making the Land 8 The First People 10 People from the Sea 12 James Morrill 15 Farmers 17 Taking the Land 20 A Port for Thuringowa 21 Travellers 23 Miners 25 The Great Northern Railway 28 Growth of a Community 30 Closer Settlement 32 Towns 34 Sugar 36 New Industries 39 Empires 43 We can be our country 45 Federation 46 War in Europe 48 Depression 51 War in the North 55 The Americans Arrive 57 Prosperous Times 63 A great city 65 Bibliography 69 Index 74 Photograph Index 78 gOrtvard To celebrate our nations Centenary, and the various Thuringowan communities' contribution to our sense of nation, this book was commissioned. Two previous council publications, Thuringowa Past and Present and It Was a Different Town have been modest, yet tantalising introductions to facets of our past.
    [Show full text]
  • A New Freshwater Catfish (Pisces: Ariidae) from Northern Australia
    Rec. West. Aust. Mus. 1988,14(1): 73-89 A new freshwater catfish (Pisces: Ariidae) from northern Australia PatriciaJ. Kailola* and Bryan E. Pierce* Abstract A new species of fork-tailed catfish is described on the basis of 31 specimens collected in northern Australia between the Fitzroy River (Western Australia) and the Mitchell River (Queensland). Arius midgleyi sp. novo grows to at least 1.3 m TL and is distinguished from other Australo-Papuan ariids by a combination of charac­ ters including snout shape, barbel length, eye size, tooth arrangement and gill raker number and position. Comparison is made with other ariid species occurring in northern Australian rivers, including the morphologically similar A. leptaspis (Bleeker). Introduction The Timor Sea and Gulf of Carpentaria drainage systems (Lake 1971) approx­ imately represent the Leichhardtian zoogeographic region of Whitley (1947). The rainfall pattern in this region is dominated by the wet monsoon (occurring within the period November to April). Most rivers here traverse a flat coastal plain about 15 km wide before reaching the sea (Lake 1971). These rivers commonly possess wide flood plains and low gradients, often contracting to a chain of waterholes during the dry season; some (Gregory River; Fitzroy to Daly Rivers) have reaches of rapids or very deep gorges. The average annual discharge from this region is 69000 billion litres (Lake 1971), most of it occurring during the wet season. Five of Australia's 18 species of fork-tailed catfishes (Ariidae) are common in this northern region, yet were overlooked by Whitley (1947) and Iredale and Whitley (1938). The members of this family, which is distributed circumglobally in the tropics and subtropics, may inhabit the sea, rivers within tidal influence, or fresh waters.
    [Show full text]
  • Rivers and Streams Special Investigation Final Recommendations
    LAND CONSERVATION COUNCIL RIVERS AND STREAMS SPECIAL INVESTIGATION FINAL RECOMMENDATIONS June 1991 This text is a facsimile of the former Land Conservation Council’s Rivers and Streams Special Investigation Final Recommendations. It has been edited to incorporate Government decisions on the recommendations made by Order in Council dated 7 July 1992, and subsequent formal amendments. Added text is shown underlined; deleted text is shown struck through. Annotations [in brackets] explain the origins of the changes. MEMBERS OF THE LAND CONSERVATION COUNCIL D.H.F. Scott, B.A. (Chairman) R.W. Campbell, B.Vet.Sc., M.B.A.; Director - Natural Resource Systems, Department of Conservation and Environment (Deputy Chairman) D.M. Calder, M.Sc., Ph.D., M.I.Biol. W.A. Chamley, B.Sc., D.Phil.; Director - Fisheries Management, Department of Conservation and Environment S.M. Ferguson, M.B.E. M.D.A. Gregson, E.D., M.A.F., Aus.I.M.M.; General Manager - Minerals, Department of Manufacturing and Industry Development A.E.K. Hingston, B.Behav.Sc., M.Env.Stud., Cert.Hort. P. Jerome, B.A., Dip.T.R.P., M.A.; Director - Regional Planning, Department of Planning and Housing M.N. Kinsella, B.Ag.Sc., M.Sci., F.A.I.A.S.; Manager - Quarantine and Inspection Services, Department of Agriculture K.J. Langford, B.Eng.(Ag)., Ph.D , General Manager - Rural Water Commission R.D. Malcolmson, M.B.E., B.Sc., F.A.I.M., M.I.P.M.A., M.Inst.P., M.A.I.P. D.S. Saunders, B.Agr.Sc., M.A.I.A.S.; Director - National Parks and Public Land, Department of Conservation and Environment K.J.
    [Show full text]