Speaker Abstracts
Appendix E: Speaker Abstracts 100 Years of Progress in Boundary-Layer Meteorology: A look to the past, questions for the future Margaret A. LeMone NCAR (with contributions from Wayne Angevine, Fei Chen, Jimy Dudhia, Kristina Katsaros, Larry Mahrt, Jielun Sun, and Michael Tjernstrom)1 and input from Chris Fairall, Jim Fleming, Ned Patton, Shuyi Chen, and Peter Sullivan2 We define the atmospheric boundary-layer (ABL) as that layer of air directly influenced by exchange of heat and energy with the surface. Our story of the ABL begins with surface fluxes, which are dependent on surface roughness and the exchange of energy between the surface and atmosphere. The ABL is typically divided into a surface layer, through which shear production of turbulence kinetic energy is as important as buoyancy production, a well-mixed inner layer, and a transition layer that is alternately occupied by turbulent and free-atmosphere air. This division is most straightforward for a cloudless, steady-state, unstable ABL. Our history begins with the classical-physics roots from the 18th and 19th Centuries and their early applications to the atmospheric boundary layer, and the contributions from the early turbulence/boundary layer community, who developed the concept of the boundary layer and applied it to flow through wind tunnels, past aircraft wings, and sometimes in the atmosphere itself, with some reference to early discoveries from those more interested in agricultural applications. From there, we examine the boundary layer from the surface on up, through a look at our understanding of the surface energy budget, exchange coefficients and flux-profile relationships in the surface layer over land and ocean, and the study of the entire cloud-free ABL under unstable and stable conditions.
[Show full text]