Geologic Time Scale

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Time Scale ICS GEOLOGIC TIME SCALE PHANEROZOIC CENOZOIC MESOZOIC PALEOZOIC AGE Period Epoch Stage Polarity AGE Duration AGE Polarity AGE Duration AGE Period Epoch Stage Polarity AGE Duration (Ma) Chron (Ma) m.y. (Ma) Period Epoch Stage Chron (Ma) m.y. (Ma) Chron (Ma) m.y. 0 Holocene Changhsingian 251.0 2.8 C30 65.5 255 253.8 Pleisto- C1 1.81 Maastrichtian 5.1 Lopingian Wuchiapingian 6.6 cene 70 C31 1.81 70.6 260 260.4 e Gelasian 0.78 C32 Guada- Capitanian 5.4 n L 2.59 265 n 265.8 e Piacenzian C2 1.01 75 lupian Wordian 2.2 a 268.0 c 3.60 Roadian 2.6 270 i 270.6 o 12.9 i Campanian l Kungurian 5 E Zanclean 1.73 C33 275 m 5 P 5.33 80 275.6 C3 280 r Artinskian 8.8 1.92 Late e Messinian 83.5 284.4 85 Santonian C34 2.3 285 Cisuralian n 7.25 85.8 P a e 290 Sakmarian i 10.2 n 3.5 Coniacian n h o o s r e 89.3 z h L C4 90 y 295 r 294.6 C - e 4.2 Asselian m 4.4 r n Turonian ) p 4.35 a e Tortonian " t 299.0 e 300 u p e 10 r t 93.5 n e u n Gzhelian 4.9 s a S a o - a 95 S 303.9 i K L Z Kasimovian y 305 n 2.6 g t t u 6.1 n Cenomanian i 306.5 r e n i n a a Middle s e l 11.61 u Moscovian e 5.2 o a e o 310 i o v Q n l 99.6 v 311.7 100 P n P u o - s l e e y 2.05 e u Serravallian Early z a 315 Bashkirian s 6.4 r s o e t o l m e e c r c a 318.1 N 13.65 p c r o e a 320 b t t M u 105 N a e e a o C5 Serpukhovian r 12.4 S 8.3 s Albian e L t i D u 2.32 C 325 f 15 Langhian " o ( i e n 326.4 e c M a 110 a 330 r t i 15.97 n e e l r 112.0 p d C o 335 p C e d i Visean n 18.9 i n s a 115 b i M 340 o M"-1r" s n i z r Burdigalian 4.46 i r s (ISEA) v 345 e s a Aptian 13.0 h 345.3 i p k 120 i u E y M l 20 Early 350 T S C r 20.43 a Tournaisian 13.9 M0r 355 E 125 125.0 Aquitanian C6 2.6 M1 360 359.2 ) a 5.0 i Barremian c l M3 i t 365 a r 23.03 130 130.0 a Famennian t 15.3 s M5/ m 370 u 6.4 mixed e Hauterivian A M10 polarity h Late c 135 - 375 n 374.5 C7 mixed s 136.4 polarity ( M11 W 25 380 a Frasnian " 10.8 Chattian 5.37 Valanginian M12/ 3.8 i L n e C8 140 M15 140.2 o n 385 r 385.3 n M16 mixed polarity h c M17 5.3 o Givetian 6.5 Berriasian r e 390 C9 145 Middle e v c M18/ 145.5 p 391.8 395 Eifelian y 5.7 h o M21 e 28.4 Tithonian 5.3 397.5 C10 ) g 400 n i 150 M22 D l Emsian R 9.5 30 150.8 ( C11 M23/ 405 3.7 O Late Kimmeridgian M25 Early n 407.0 155 410 Pragian a 4.2 E Rupelian 5.5 M26/ 155.7 y 411.2 C12 Lochkovian a 4.8 M32 415 S Oxfordian 6.7 " 416.0 160 M33/ Pridoli 418.7 2.7 420 Ludfordian 2.6 M37 161.2 n Ludlow Gorstian 421.3 1.6 33.9 England 3.5 Homerian 422.9 C13/ Callovian 425 a Wenlock 3.3 i 426.2 165 c France 164.7 Sheinwoodian 2 i 35 C16 Bathonian 3.0 430 r 428.2 3.3 s Southern L Priabonian 167.7 u Telychian 7.8 Spain l s Middle 435 170 Bajocian 3.9 i Llandovery Aeronian 436.0 no 3 C17 37.2 a Southern 171.6 440 data 439.0 S r Rhuddanian Switzer- 4.0 443.7 4.7 Aalenian land 445 Hirnantian 1.9 175 u 445.6 d 175.6 3.2 n Bartonian , , J C18 a e l n 450 i c r n 10.2 a n e e Late z p 40 a 7.4 Toarcian t r 180 i S 455 a 40.4 F w n 455.8 i C19 S - 5.1 r 183.0 e 460 c e 460.9 y , l i z t d 185 a i t g n I Darriwilian 7.2 w 465 - 6.6 v Pliensbachian a l Middle S Early N - o M 468.1 S e C20 470 o 190 189.6 3.7 e 471.8 n d l 475 6.8 r e Lutetian 8.2 6.9 45 a Sinemurian western 478.6 c 195 480 Early Austria O P o 196.5 Tremadocian 9.7 3.1 485 E C21 Hettangian 200 199.6 490 488.3 Rhaetian 4.0 48.6 E24/ 203.6 495 Furongian 14.7 205 Paibian C22 E18 500 501 50 n 505 210 E17 12.9 a Middle 10 Norian E16 i C23 510 r E15 513 Ypresian 7.2 b E 215 Late E14 515 216.5 E13 520 m c i C24 220 E12/ 525 a 55 s E10 11.5 Early 29 Carnian 530 C 55.8 s E9 225 a E8 535 i 2.9 r 228.0 L Thanetian C25 E7 540 542.0 230 T e E6/E2 58.7 9.0 n Ladinian Greece, 60 e 235 Italy, For details see "A Geologic Time Scale 2004" by F. M. c M Selandian C26 3.0 Middle Austria 237.0 Gradstein, J. G. Ogg, A. G. Smith, et al. (2004) with o and Turkey e 61.7 240 Cambridge University Press, and the official website of l Anisian Albania, 8.0 a C27 Greece, the International Commission on Stratigraphy (ICS) P Poland 245 245.0 under www.stratigraphy.org . E Danian C28 3.8 Canadian Olenekian Arctic 4.7 This chart is copyright protected; no reproduction of any 65 Early 249.7 parts may take place without written permission by the ICS. C29 65.5 250 Induan 251.0 1.3 Neogene Paleogene Cretaceous Jurassic Triassic Permian Carboniferous Devonian Silurian Ordovician Cambrian 0 23 65.5 145.5 199.6 251 299 359.2 416 443.7 488.3 542 Ma Copyright © 2004 International Commission on Stratigraphy.
Recommended publications
  • Brachiopod Phylogeny in the Cambrian Guliforms, Obolellates and Rhynchonelliforms (E.G., Zhang Et Al., 2009, 2014, 2015; Holmer Et Al., 2018A)
    Permophiles Issue #66 Supplement 1 pods which may further address these questions. Glenn A. Brock The world’s oceans are changing. IPCC (2013) predictions Department of Biological Sciences, Macquarie University, NSW suggest that by the end of the current century our seas will be 2109, Australia ZDUPHUDQGWKHLUS+VLJQL¿FDQWO\ORZHU$OWKRXJKWKLVZLOOEH a challenge to all organisms, how will it impact brachiopods? Leonid E. Popov Given that they have a higher proportion of mineralised tissue 'HSDUWPHQWRI*HRORJ\1DWLRQDO0XVHXPRI:DOHV&DUGL൵ than virtually any other invertebrate group what will be the CF10 3NP, UK WKUHDWWRWKHPHLWKHULQWHUPVRIJURZLQJWKHLUVKHOOVLQWKH¿UVW Brachiopods are richly represented in the rock record and instance or repairing and maintaining that shell once it is made? as early as the Cambrian, where they show an impressive diver- In this talk I will review a series of experiments and historical sity of form and in shell morphology (e.g., Harper et al., 2017). studies undertaken with Emma Cross and Lloyd Peck (Cross et 3UHVHQWO\ WKH JURXS LV ¿UPO\ URRWHG ZLWKLQ WKH ORSKRWURFKR- al., 2015, 2016, 2018) that seek to explore the answers to these zoan branch of the bilaterian tree based on molecular data. Our questions. UHVHDUFKKDVLGHQWL¿HGVRPHPHPEHUVRIWKHHQLJPDWLF(DUO\ References Cambrian organophosphatic tommotiids as belonging to the &URVV(/3HFN/6 +DUSHU(02FHDQDFLGL¿FD- brachiopod stem (e.g., Holmer et al., 2002). Subsequent discov- tion does not impact shell growth or repair of the Antarctic HULHVRIWKH¿UVWHYHUDUWLFXODWHGVFOHULWRPHVRIEccentrotheca, brachiopod Liothyrella uva (Broderip, 1833). Journal of Paterimitra, and the inferred bivalved scleritome of Micrina f rom Experimental Marine Biology and Ecology, 462, 29–35. the lower Cambrian of South Australia reveals these three tom- Cross, E.L., Peck, L.S., Lamare, M.D.
    [Show full text]
  • On the Barremian - Lower Albian Stratigraphy of Colombia
    On the Barremian - lower Albian stratigraphy of Colombia Philip J. Hoedemaeker Hoedemaeker, Ph.J. 2004. On the Barremian-lower Albian stratigraphy of Colombia. Scripta Geologica, 128: 3-15, 3 figs., Leiden, December 2004. Ph.J. Hoedemaeker, Department of Palaeontology, Nationaal Natuurhistorisch Museum, P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]). Key words – stratigraphy, Barremian, Aptian, depositional sequences, Colombia. The biostratigraphy and sequence stratigraphy of the Barremian deposits, and the biostratigraphy of the Aptian deposits in the Villa de Leyva area in Colombia are briefly described. Contents Introduction ....................................................................................................................................................... 3 Barremian ............................................................................................................................................................ 4 Barremian sequence stratigraphy ............................................................................................................ 6 Aptian ................................................................................................................................................................. 11 Lowermost Albian ........................................................................................................................................ 13 Conclusions ....................................................................................................................................................
    [Show full text]
  • A New Species of Saurichthys from the Middle Triassic (Anisian)
    第56卷 第4期 古 脊 椎 动 物 学 报 pp. 273–294 2018年10月 VERTEBRATA PALASIATICA figs. 1–9 DOI: 10.19615/j.cnki.1000-3118.171023 A new species of Saurichthys from the Middle Triassic (Anisian) of southwestern China WU Fei-Xiang1,2 SUN Yuan-Lin3* FANG Geng-Yu4 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 * Corresponding author: [email protected]) (4 School of Public Health, Peking University Beijing 100191) Abstract The saurichthyiform fishes were effective predators and hence the significant consumers in the aquatic ecosystems during the Early Mesozoic. They showed a notable diversification in the Anisian (Middle Triassic) Lagerstätten of southwestern China. In this contribution, we report a new species of Saurichthys from the Anisian of Yunnan, China, that displays some peculiar modifications of the axial skeleton and the longate body of the group. This new species, Saurichthys spinosa is a small-sized saurichthyid fish characterized by a very narrow interorbital region of the skull roof, an anteriorly expansive and ventrally arched cleithrum, proportionally large abdominal vertebrae lacking neural spines and alternately bearing laterally- stretching paraneural plates, few fin rays in the median fins, and two paralleling rows of needle- like flank scales with strong thorns. This fish has slimmed down the body by reducing the depth of the head and the epaxial part of the trunk.
    [Show full text]
  • Palaeogene Marine Stratigraphy in China
    LETHAIA REVIEW Palaeogene marine stratigraphy in China XIAOQIAO WAN, TIAN JIANG, YIYI ZHANG, DANGPENG XI AND GUOBIAO LI Wan, X., Jiang, T., Zhang, Y., Xi, D. & Li G. 2014: Palaeogene marine stratigraphy in China. Lethaia, Vol. 47, pp. 297–308. Palaeogene deposits are widespread in China and are potential sequences for locating stage boundaries. Most strata are non-marine origin, but marine sediments are well exposed in Tibet, the Tarim Basin of Xinjiang, and the continental margin of East China Sea. Among them, the Tibetan Tethys can be recognized as a dominant marine area, including the Indian-margin strata of the northern Tethys Himalaya and Asian- margin strata of the Gangdese forearc basin. Continuous sequences are preserved in the Gamba–Tingri Basin of the north margin of the Indian Plate, where the Palaeogene sequence is divided into the Jidula, Zongpu, Zhepure and Zongpubei formations. Here, the marine sequence ranges from Danian to middle Priabonian (66–35 ma), and the stage boundaries are identified mostly by larger foraminiferal assemblages. The Paleocene/Eocene boundary is found between the Zongpu and Zhepure forma- tions. The uppermost marine beds are from the top of the Zongpubei Formation (~35 ma), marking the end of Indian and Asian collision. In addition, the marine beds crop out along both sides of the Yarlong Zangbo Suture, where they show a deeper marine facies, yielding rich radiolarian fossils of Paleocene and Eocene. The Tarim Basin of Xinjiang is another important area of marine deposition. Here, marine Palae- ogene strata are well exposed in the Southwest Tarim Depression and Kuqa Depres- sion.
    [Show full text]
  • 1. Shatsky Rise: Seismic Stratigraphy and Sedimentary Record of Pacific Paleoceanography Since the Early Cretaceous1
    Natland, J.H., Storms, M.A., et al., 1993 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 132 1. SHATSKY RISE: SEISMIC STRATIGRAPHY AND SEDIMENTARY RECORD OF PACIFIC PALEOCEANOGRAPHY SINCE THE EARLY CRETACEOUS1 William V. Sliter2 and Glenn R. Brown3 ABSTRACT Shatsky Rise consists of three highs arranged in a linear trend more than 1300 km long. Shatsky Plateau, the southernmost and largest of three highs is represented by an exposed basement high of presumed Late Jurassic age flanked by a sedimentary sequence of at least Cretaceous and Cenozoic age that reaches a maximum thickness of more than 1100 m. Drilling on Shatsky Rise is restricted to eight DSDP and ODP sites on the southern plateau that partially penetrated the sedimentary sequence. Leg 132 seismic profiles and previous seismic records from Shatsky Plateau reveal a five-part seismic section that is correlated with the drilling record and used to interpret the sedimentary history of the rise. The seismic sequence documents the transit of Shatsky Plateau beneath the equatorial divergence in the Late Cretaceous by horizontal plate motion from an original location in the Southern Hemisphere. Unconformities and lithologic changes bounding several of the seismic units are correlated with pale- oceanographic changes that resulted in erosional events near the Barremian/Aptian, Cenomanian/Turonian, and Paleogene/Neo- gene boundaries. INTRODUCTION Plateau, is the largest with a length of about 700 km and a width of about 300 km. All previous DSDP and ODP drill sites are located on Shatsky Rise, the second largest oceanic plateau in the Pacific the southern plateau (Fig.
    [Show full text]
  • Albertiana 45 39 a CANDIDATE GSSP for the BASE of the ANISIAN from KÇIRA, ALBANIA
    Albertiana 45 39 Research Article A CANDIDATE GSSP FOR THE BASE OF THE ANISIAN FROM KÇIRA, ALBANIA Giovanni Muttoni1*, Alda Nicora1, Marco Balini1, Miriam Katz2, Morgan Schaller2, Dennis V. Kent3, Matteo Maron1, Selam Meço4, Roberto Rettori5, Viktor Doda6, and Shaquir Nazaj4 1Dipartimento di Scienze della Terra ‘Ardito Desio’, via Mangiagalli 34, 20133 Milan, Italy. 2Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA. 3Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, USA and Paleomagnetics Lab, Lamont-Doherty Earth Observatory, Palisades New York 10964, USA. 4Faculty of Geology and Mining, Tiranë, Albania. 5Dipartimento di Scienze della Terra, Piazza Università, 06100 Perugia, Italy. 6Albanian Geological Survey, Myslym Keta, Tiranë, Albania. *Corresponding author, Email: [email protected] Abstract– We present a summary of previously published Olenekian–Anisian boundary magnetostratigraphic and biostratigraphic results from the Kçira area of northern Albania. We focus on the stratigraphically complete Kçira-A section that represents a potential candidate Global Boundary Stratotype Section and Point (GSSP) for the base of the Anisian Stage of the Triassic System. The previously published conodont biostratigraphy from Kçira-A and ancillary sections located nearby has been updated using modern taxonomic criteria and correlated to the available ammonoid and benthic foraminifera biostratigraphy. Previously published magnetobiostratigraphic data reveal the occurrence at Kçira-A, and ancillary sections, of a well-defined magnetic polarity reversal pattern of primary origin that allows global correlations ensuring the exportability of biostratigraphic datums (e.g., the first occurrence of conodontChiosella timorensis) falling close to the Kclr/Kc2n polarity transition. A suite of pilot samples has also been studied for bulk carbon and oxygen isotopes stratigraphy, yielding reasonable values that suggest good preservation of primary material.
    [Show full text]
  • Lower Jurassic to Lower Middle Jurassic Succession at Kopy Sołtysie and Płaczliwa Skała in the Eastern Tatra Mts (Western
    Volumina Jurassica, 2013, Xi: 19–58 Lower Jurassic to lower Middle Jurassic succession at Kopy Sołtysie and Płaczliwa Skała in the eastern Tatra Mts (Western Carpathians) of Poland and Slovakia: stratigraphy, facies and ammonites Jolanta IWAŃCZUK1, Andrzej IWANOW1, Andrzej WIERZBOWSKI1 Key words: stratigraphy, Lower to Middle Jurassic, ammonites, microfacies, correlations, Tatra Mts, Western Carpathians. Abstract. The Lower Jurassic and the lower part of the Middle Jurassic deposits corresponding to the Sołtysia Marlstone Formation of the Lower Subtatric (Krížna) nappe in the Kopy Sołtysie mountain range of the High Tatra Mts and the Płaczliwa Skała (= Ždziarska Vidla) mountain of the Belianske Tatra Mts in the eastern part of the Tatra Mts in Poland and Slovakia are described. The work concentrates both on their lithological and facies development as well as their ammonite faunal content and their chronostratigraphy. These are basinal de- posits which show the dominant facies of the fleckenkalk-fleckenmergel type and reveal the succession of several palaeontological microfacies types from the spiculite microfacies (Sinemurian–Lower Pliensbachian, but locally also in the Bajocian), up to the radiolarian microfacies (Upper Pliensbachian and Toarcian, Bajocian–Bathonian), and locally the Bositra (filament) microfacies (Bajocian– Bathonian). In addition, there appear intercalations of detrital deposits – both bioclastic limestones and breccias – formed by downslope transport from elevated areas (junction of the Sinemurian and Pliensbachian, Upper Toarcian, and Bajocian). The uppermost Toarcian – lowermost Bajocian interval is represented by marly-shaly deposits with a marked admixture of siliciclastic material. The deposits are correlated with the coeval deposits of the Lower Subtatric nappe of the western part of the Tatra Mts (the Bobrowiec unit), as well as with the autochthonous-parachthonous Hightatric units, but also with those of the Czorsztyn and Niedzica successions of the Pieniny Klippen Belt, in Poland.
    [Show full text]
  • Paleontology, Stratigraphy, Paleoenvironment and Paleogeography of the Seventy Tethyan Maastrichtian-Paleogene Foraminiferal Species of Anan, a Review
    Journal of Microbiology & Experimentation Review Article Open Access Paleontology, stratigraphy, paleoenvironment and paleogeography of the seventy Tethyan Maastrichtian-Paleogene foraminiferal species of Anan, a review Abstract Volume 9 Issue 3 - 2021 During the last four decades ago, seventy foraminiferal species have been erected by Haidar Salim Anan the present author, which start at 1984 by one recent agglutinated foraminiferal species Emirates Professor of Stratigraphy and Micropaleontology, Al Clavulina pseudoparisensis from Qusseir-Marsa Alam stretch, Red Sea coast of Egypt. Azhar University-Gaza, Palestine After that year tell now, one planktic foraminiferal species Plummerita haggagae was erected from Egypt (Misr), two new benthic foraminiferal genera Leroyia (with its 3 species) Correspondence: Haidar Salim Anan, Emirates Professor of and Lenticuzonaria (2 species), and another 18 agglutinated species, 3 porcelaneous, 26 Stratigraphy and Micropaleontology, Al Azhar University-Gaza, Lagenid and 18 Rotaliid species. All these species were recorded from Maastrichtian P. O. Box 1126, Palestine, Email and/or Paleogene benthic foraminiferal species. Thirty nine species of them were erected originally from Egypt (about 58 %), 17 species from the United Arab Emirates, UAE (about Received: May 06, 2021 | Published: June 25, 2021 25 %), 8 specie from Pakistan (about 11 %), 2 species from Jordan, and 1 species from each of Tunisia, France, Spain and USA. More than one species have wide paleogeographic distribution around the Northern and Southern Tethys, i.e. Bathysiphon saidi (Egypt, UAE, Hungary), Clavulina pseudoparisensis (Egypt, Saudi Arabia, Arabian Gulf), Miliammina kenawyi, Pseudoclavulina hamdani, P. hewaidyi, Saracenaria leroyi and Hemirobulina bassiounii (Egypt, UAE), Tritaxia kaminskii (Spain, UAE), Orthokarstenia nakkadyi (Egypt, Tunisia, France, Spain), Nonionella haquei (Egypt, Pakistan).
    [Show full text]
  • Subcommission on Permian Stratigraphy International
    Number 30 June 1997 A NEWSLETTER OF THE SUBCOMMISSION ON PERMIAN STRATIGRAPHY SUBCOMMISSION ON PERMIAN STRATIGRAPHY INTERNATIONAL COMMISSION ON STRATIGRAPHY INTERNATIONAL UNION OF GEOLOGICAL SCIENCES (IUGS) Table of Contents Notes from the SPS Secretary...................................................................................................................-1- Claude Spinosa Note from the SPS Chairman....................................................................................................................-2- Bruce R. Wardlaw Proposed new chronostratigraphic units for the Upper Permian ..............................................................-3- Amos Salvador Comments on Subdivisions of the Permian and a Standard World Scale ................................................-4- Neil W. Archbold and J. Mac Dickins Permian chronostratigraphic subdivisions ................................................................................................-5- Jin Yugan, Bruce R. Wardlaw, Brian F. Glenister and Galina V. Kotlyar The Permian Time-scale ...........................................................................................................................-6- J. B. Waterhouse Sequence Stratigraphy along Aidaralash Creek and the Carboniferous/Permian GSSP ..........................-8- Walter S. Snyder and Dora M. Gallegos Upper Paleozoic Fusulinacean Biostratigraphy of the Southern Urals ...................................................-11- Vladimir I. Davydov, Walter S. Snyder and Claude Spinosa Cordaitalean
    [Show full text]
  • Appendix 3.Pdf
    A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin Item Type Thesis or dissertation Authors Nicholls, Keith H. Citation Nicholls, K. (2019). A Geoconservation perspective on the trace fossil record associated with the end – Ordovician mass extinction and glaciation in the Welsh Basin. (Doctoral dissertation). University of Chester, United Kingdom. Publisher University of Chester Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 26/09/2021 02:37:15 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/622234 International Chronostratigraphic Chart v2013/01 Erathem / Era System / Period Quaternary Neogene C e n o z o i c Paleogene Cretaceous M e s o z o i c Jurassic M e s o z o i c Jurassic Triassic Permian Carboniferous P a l Devonian e o z o i c P a l Devonian e o z o i c Silurian Ordovician s a n u a F y r Cambrian a n o i t u l o v E s ' i k s w o Ichnogeneric Diversity k p e 0 10 20 30 40 50 60 70 S 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 Number of Ichnogenera (Treatise Part W) Ichnogeneric Diversity 0 10 20 30 40 50 60 70 1 3 5 7 9 11 13 15 17 19 21 n 23 r e 25 d 27 o 29 M 31 33 35 37 39 T 41 43 i 45 47 m 49 e 51 53 55 57 59 61 c i o 63 z 65 o e 67 a l 69 a 71 P 73 75 77 79 81 83 n 85 a i r 87 b 89 m 91 a 93 C Number of Ichnogenera (Treatise Part W)
    [Show full text]
  • Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
    Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units 13 and d Ccarb chemostratigraphy BRADLEY D. CRAMER, CARLTON E. BRETT, MICHAEL J. MELCHIN, PEEP MA¨ NNIK, MARK A. KLEFF- NER, PATRICK I. MCLAUGHLIN, DAVID K. LOYDELL, AXEL MUNNECKE, LENNART JEPPSSON, CARLO CORRADINI, FRANK R. BRUNTON AND MATTHEW R. SALTZMAN Cramer, B.D., Brett, C.E., Melchin, M.J., Ma¨nnik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R. & Saltzman, M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global 13 and regional chronostratigraphic units and d Ccarb chemostratigraphy. Lethaia,Vol.44, pp. 185–202. Recent revisions to the biostratigraphic and chronostratigraphic assignment of strata from the type area of the Niagaran Provincial Series (a regional chronostratigraphic unit) have demonstrated the need to revise the chronostratigraphic correlation of the Silurian System of North America. Recently, the working group to restudy the base of the Wen- lock Series has developed an extremely high-resolution global chronostratigraphy for the Telychian and Sheinwoodian stages by integrating graptolite and conodont biostratigra- 13 phy with carbonate carbon isotope (d Ccarb) chemostratigraphy. This improved global chronostratigraphy has required such significant chronostratigraphic revisions to the North American succession that much of the Silurian System in North America is cur- rently in a state of flux and needs further refinement. This report serves as an update of the progress on recalibrating the global chronostratigraphic correlation of North Ameri- can Provincial Series and Stage boundaries in their type area.
    [Show full text]
  • Calcareous Nannofossil Zonation and Sequence Stratigraphy of the Jurassic System, Onshore Kuwait
    GeoArabia, 2015, v. 20, no. 4, p. 125-180 Gulf PetroLink, Bahrain Calcareous nannofossil zonation and sequence stratigraphy of the Jurassic System, onshore Kuwait Adi P. Kadar, Thomas De Keyser, Nilotpaul Neog and Khalaf A. Karam (with contributions from Yves-Michel Le Nindre and Roger B. Davies) ABSTRACT This paper presents the calcareous nannofossil zonation of the Middle and Upper Jurassic of onshore Kuwait and formalizes current stratigraphic nomenclature. It also interprets the positions of the Jurassic Arabian Plate maximum flooding surfaces (MFS J10 to J110 of Sharland et al., 2001) and sequence boundaries in Kuwait, and correlates them to those in central Saudi Arabia outcrops. This study integrates data from about 400 core samples from 11 wells representing a nearly complete Middle to Upper Jurassic stratigraphic succession. Forty-two nannofossil species were identified using optical microscope techniques. The assemblage contains Tethyan nannofossil markers, which allow application of the Jurassic Tethyan nannofossil biozones. Six zones and five subzones, ranging in age from Middle Aalenian to Kimmeridgian, are established using first and last occurrence events of diagnostic calcareous nannofossil species. A chronostratigraphy of the studied formations is presented, using the revised formal stratigraphic nomenclature. The Marrat Formation is barren of nannofossils. Based on previous studies it is dated as Late Sinemurian–Early Aalenian and contains Middle Toarcian MFS J10. The overlying Dhruma Formation is Middle or Late Aalenian (Zone NJT 8c) or older, to Late Bajocian (Subzone NJT 10a), and contains Lower Bajocian MFS J20. The overlying Sargelu Formation consists of the Late Bajocian (Subzone NJT 10b) Sargelu-Dhruma Transition, and mostly barren Sargelu Limestone in which we place Lower Bathonian MFS J30 near its base.
    [Show full text]