Extended Producer Responsibility, Case Studies on Batteries, End-Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five Principles of Waste Product Redesign Under the Upcycling Concept
International Forum on Energy, Environment Science and Materials (IFEESM 2015) Five Principles of Waste Product Redesign under the Upcycling Concept Jiang XU1 & Ping GU1 1School of Design, Jiangnan University, Wuxi, China KEYWORD: Upcycling; Redesign principle; Green design; Industrial design; Product design ABSTRACT: It explores and constructs the principles of waste product redesign which are based on the concept of upcycling. It clarifies the basic concept of upcycling, briefly describes its current development, deeply discusses its value and significance, combines with the idea of upcycling which behinds regeneration design principle from the concept of “4R” of green design, and takes real-life case as example to analyze the principles of waste product redesign. It puts forward five principles of waste product redesign: value enhancement, make the most use of waste, durable and environmental protection, cost control and populace's aesthetic. INTRODUCTION Recently, environmental problems was becoming worse and worse, while as a developing country, China is facing dual pressures that economical development and environmental protection. However, large numbers of goods become waste every day all over the world, but the traditional recycling ways, such as melting down and restructuring, not only produce much CO2, but also those restruc- tured parts or products cannot mention in the same breath with raw ones. As a result, the western countries started to center their attention to the concept of “upcycling” of green design, which can transfer the old and waste things into more valuable products to vigorously develop the green econ- omy. Nevertheless, this new concept hasn’t been well known and the old notion of traditionally inef- ficient reuse still predominant in China, so it should be beneficial for our social development to con- struct the principles of waste products’ redesign which are based on the concept of upcycling. -
Proposed Framework for End-Of-Life Vehicle Recycling System Implementation in Malaysia
5.6 Proposed framework for End-Of-Life vehicle recycling system implementation in Malaysia Muhammad Azmi 1, Muhamad Zameri Mat Saman 1, Safian Sharif 1, Norhayati Zakuan 2, Salwa Mahmood 1 1Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia 2Faculty of Management and Human Resource Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia Abstract Normally in Malaysia, vehicles are being used extensively regardless of its age or condition. This situation is not only in rural areas but exists in major cities. Vehicle manufacturers expected their vehicles to last in 15 years, hence vehicles exceeding this limit are considered as End-of-Life Vehicle (ELV). The extensive usage of ELV may lead to vehicle failure which threatens the safety of its user as well as other road users. ELV usage also contributes to environmental pollution. In order to overcome this, a framework for ELV management needs to be developed. Prior to that, a survey was done to study the current practice being applied in Malaysia. This paper also study the existing framework applied by other countries as adaptation for Malaysian ELV recycling implementation framework. This framework is expected to assist the government in drafting new ELV related policies. Keywords: ELV; Framework; Vehicle Recycling; Vehicle Recovery 1 INTRODUCTION Canada and Taiwan had reported success in controlling the Total number of vehicle in Malaysia had reached a number of ELV off the road. cumulative amount of 21.25 million vehicles at the end of Due to the success of countries implementing ELV law, a year 2010 with an average of 12% increase of vehicle SWOT analysis on the respective framework had also been registration each year over the period of 5 years. -
Vehicle Recycling. Focusing on Sustainability
Vehicle Recycling. Focusing on Sustainability. Sustainability is a key word at every point in the BMW Groups process chain, from the development of energy-saving alternative vehicle concepts and environmentally sound production processes to environmentally friendly recycling. The BMW Group acknowledges that used cars are a particularly important source of secondary raw materials and by closing the gaps in the material cycle through recycling, we aim to make a meaningful contribution to the conservation of natural resources. Longstanding Involvement in Environmental Protection. Sustainable Business. The BMW Group has been actively involved in efficient recycling concepts for many years. The aim of our recycling process is to reclaim resources and materials con- tained in vehicles quickly and comprehensively in order to fill the gaps in material cycles and thus to use resources as sparingly and efficiently as possible. Protecting the environment and natural resources. At the beginning of the 1970’s, the BMW Group anchored environmental protection policy within its organization. Sustainable business is a main principle in both the Group’s corporate strategy and culture. Product responsibility also entails the environmentally compatible recovery of vehicles that have reached the end of their viability. The activities of the BMW Group to continuously opti- mize recycling are centred in BMW Groups own Recycling and Dismantling Centre (RDC). This is currently the world’s leading facility of its kind and is an authorised treatment facility. In addition, the RDC also provides important information for dismantling and drainage techniques, as well as creating recycling concepts for future vehicles. Whilst in the past the recycling focus lay on the environmentally responsible recovery of end-of-life vehicles, in recent years the increased scarcity of natural resources has lead to a change in focus. -
End-Of-Life Modelling
Best Practice LCA: End-of-Life Modelling October 28, 2014 Agenda 1. Modelling EoL in LCA 2. Recycled content approach 3. Avoided burden approach 4. Value-corrected substitution 5. PE’s recommendations 6. Current PEF discussions 2 Modelling EoL in LCA 3 Modelling EoL in LCA General challenge • “Allocation” is commonly used to assign burdens associated with the upstream supply chain to each product of multi-output processes. • EoL modelling gives rise to a similar problem due to its multi-functionality – treat waste and produce valuable products (material and/or energy) • Focus on how the burden of virgin material production and the burden of EoL treatment be allocated between the first application in one product system and its subsequent application in the same or another product system. • Chosen allocation approach will affect modelling of other EoL pathways as well (e.g., landfill). 4 Modelling EoL in LCA Most common approaches • Recycled content approach (a.k.a. cut-off, 100/0) • Avoided burden approach (a.k.a. End-of-Life recycling, 0/100) • Value-Corrected Substitution 5 Recycled content approach 6 Recycled content approach General description • Scrap inputs to the product system are modelled as being free of any primary material burden (all assigned to the first life cycle). • The recycling of scrap generated by the product system is not part of the product system and the system boundary is drawn at the point of scrap generation. No credits for subsequent recycling. • When modelling other disposal processes (e.g., incineration with energy recovery, landfill with landfill gas capture), burdens are included, but no credits should be given for energy recovery. -
Subject Index
Index 2-opt 287, 288, 291, 293 arc 18, 19, 240–242, 260, 280–284, 335, 368, 369 architecture 45, 58, 61, 65, 68, 74, 75, 77, A 93, 103, 236, 274, 277, 375, 376, 422 as-good-as-new 458, 460, 462 a priori data 267, 270, 271, 273, 297, 305 assembly 25, 26, 48, 49, 55, 58, 64, 73, 74, absolute technical importance rating 84, 86, 101, 118, 229–231, 237, 239, 243, (ATIR) 131, 133–135 245, 249, 250, 256, 259, 278, 306–309, abundance 20, 218 312, 313, 316, 328, 329, 332–339, 343, accumulation 20–22, 282, 426 351, 356–361, 365, 371, 391, 416, 423, activity modeling 45, 46 424, 474, 510 actor 9, 41, 42, 54, 56, 82, 114 assembly line balancing 239, 256, 259, acquisition 93, 102, 103, 225, 232, 234, 278, 306–309, 343 291, 385, 445, 446, 449, 452, 453, 455, asset management 459, 496, 497 457, 458, 461–465, 466, 510 attitude 3, 139, 140, 219, 223, 237, 455, 457, adaptability 347, 415, 430 458, 466, 524 adaptation 16, 62, 64, 66, 67, 69, 102, 356, automotive 222, 388–391, 411, 446, 449, 368, 392, 408, 422, 442 456–458, 466, 468, 474 adaptive disassembly process planning autonomous barrier 521 363, 375 adaptive kanban 314, 329 adaptive learning 375, 378, 379 B adjacent element hill climbing (AEHC) 236, 238, 240, 242, 274, 285, 287–290 backlog cost 477, 483 after-sale product condition Basel Action Network (BAN) 500, 506 monitoring 92 Basel convention 498, 499, 501, 503 aggregation 2, 11, 16–18 Bayesian forecasting 223, 224 analytic hierarchy process (AHP) 105, Bayesian updating 105, 110, 124–129, 212 110, 115–118, 197, 205, 212, 214 beginning of life -
A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward
Venice Italy Apr 13-14, 2015, 17 (4) Part I A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward Kyungeun Sung related books have been published since 1999.1 Most books Abstract—Upcycling is a process in which used materials are (96%; 115 out of 120 books) in the sample were published converted into something of higher value and/or quality in their between 2008 and 2014 with higher publication rate between second life. It has been increasingly recognised as one promising 2012 and 2014 as 62.5% of all samples (75 books between means to reduce material and energy use, and to engender sustainable 2012 and 2014; 21 books in 2012; 28 in 2013; and 26 in production and consumption. For this reason and other foreseeable benefits, the concept of upcycling has received more attention from 2014). 53% (64/120) of the sampled books are categorised as numerous researchers and business practitioners in recent years. This ‘craft and hobbies’ whereas the other book categories show has been seen in the growing number of publications on this topic similar percentages (art & design: 10%; house & home DIY: since the 1990s. However, the overall volume of literature dealing 10%; science & technology: 9%; business & economics: 8%; with upcycling is still low and no major review has been presented. and the rest as miscellaneous).2 The theses search on Google Therefore, in order to further establish this field, this paper analyses Scholar simultaneously conducted by the author showed a and summarises the current body of literature on upcycling, focusing similar recent surge of publication: 90% (37/41) of these in the on different definitions, trends in practices, benefits, drawbacks and 3 barriers in a number of subject areas, and gives suggestions for future sample (since 2001) were published between 2009 and 2014. -
Improving End of Life Vehicle's Management Practices: An
Improving end of life vehicle’s management practices: An eco- nomic assessment through system dynamics Paolo Rosa§ and Sergio Terzi Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy § Corresponding author [email protected]; [email protected] Abstract End-of-Life Vehicles (ELVs), together with Waste from Electrical and Electronic Equipments (WEEE), are one of the most valuable sources of secondary raw materials. Their reuse for producing new goods is a well-known topic in the literature. However, End-of-Life (EoL) strategies implemented by companies remained the same since the last century, completely based on materials market prices. Progressively, this way of doing exposed the entire ELV recovery chain to a series of unwanted market risks. The purpose of this paper is proposing an alternative way to cope with the material’s mix evolution in cars through the recovery of automotive electronic components. By applying an already existing model based on the System Dynamics (SD) methodology to the Italian context, a real time comparison of several configurations (scenarios) of the national ELV recovery chain has been implemented. Results quantified the expected impact on profits of both dismantlers and shredders in about 9 and 7.6 billion euros within fifty years. This way, dismantlers should lead the new recovery process, considering the highest increase in profits. However, the level of risk related with this option has been hypothesised as higher than a scenario with shredders leading the business. Keywords: End of Life Vehicles; System Dynamics; Economic Assessment; Italian context. -
Sorting of Automotive Manufacturing Wrought Aluminum Scrap
Sorting of Automotive Manufacturing Wrought Aluminum Scrap A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree in Bachelor of Science in Mechanical Engineering By Shady J. Zummar Ghazaleh Date: 04/26/2018 Sponsoring Organization: Metal Processing Institute Approved by: ________________________________________ Professor Diran Apelian Alcoa-Howmet Professor of Engineering, Advisor Founding Director of Metal Processing Institute Abstract An increase of 250% in wrought aluminum usage in automotive manufacturing is expected by 2020. Consequently, the generation of new aluminum sheet scrap will also increase. Producing secondary aluminum only emits 5% of the CO2 compared to primary aluminum – a significant 95% decrease. With the advent of opto-electronic sorting technologies, recovery and reuse of new aluminum scrap (generated during manufacturing) is at hand. A series of interviews with industrial experts and visits to automotive stamping plants were performed in order to identify: (i) the most common wrought aluminum alloys from which scrap is generated; (ii) the present scenario — how scrap is collected today; and (iii) the types of contamination that must be accounted for during and after sortation. Recommendations are made herein that will support the development of an optimized scrap management system including sorting criteria that will enable closed loop recycling. 2 Table of Contents Abstract 2 Table of Contents 3 Acknowledgements 5 1 Introduction -
Upgrading Construction and Demolition Waste Management from Downcycling to Recycling in the Netherlands
Journal of Cleaner Production 266 (2020) 121718 Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: www.elsevier.com/locate/jclepro Upgrading construction and demolition waste management from downcycling to recycling in the Netherlands * Chunbo Zhang a, Mingming Hu a, b, , Xining Yang a, Brenda Miranda-Xicotencatl a, Benjamin Sprecher a, Francesco Di Maio c, Xiaoyang Zhong a, Arnold Tukker a, d a Institute of Environmental Sciences, Leiden University, 2300, RA, Leiden, Netherlands b School of Management Science and Real Estate, Chongqing University, Chongqing, 40045, China c Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628, CN, Delft, the Netherlands d Netherlands Organization for Applied Scientific Research TNO, 2595, DA, Den Haag, Netherlands article info abstract Article history: Urban mining from construction and demolition waste (CDW) is highly relevant for the circular economy Received 30 April 2019 ambitions of the European Union (EU). Given the large volumes involved, end-of-life (EoL) concrete is Received in revised form identified as one of the priority streams for CDW recycling in most EU countries, but it is currently largely 10 February 2020 downcycled or even landfilled. The European projects C2CA and VEEP have proposed several cost- Accepted 13 April 2020 effective technologies to recover EoL concrete for new concrete manufacturing. To understand the po- Available online 22 April 2020 tential effects of large-scale implementation of those recycling technologies on the circular construction, Handling editor: Yutao Wang this study deployed static material flow analysis (MFA) for a set of EoL concrete management scenarios in the Netherlands constructed by considering the development factors in two, technological and temporal Keywords: dimensions. -
E-Waste Management
E-waste Management "E-waste" is a popular, informal name for electronic products nearing the end of their "useful life. "E-wastes are considered dangerous, as certain components of some electronic products contain materials that are hazardous, depending on their condition and density. The hazardous content of these materials pose a threat to human health and environment. Discarded computers, televisions, VCRs, stereos, copiers, fax machines, electric lamps, cell phones, audio equipment and batteries if improperly disposed can leach lead and other substances into soil and groundwater. Many of these products can be reused, refurbished, or recycled in an environmentally sound manner so that they are less harmful to the ecosystem. This paper highlights the hazards of e-wastes, the need for its appropriate management and options that can be implemented. INTRODUCTION Industrial revolution followed by the advances in information technology during the last century has radically changed people's lifestyle. Although this development has helped the human race, mismanagement has led to new problems of contamination and pollution. The technical prowess acquired during the last century has posed a new challenge in the management of wastes. For example, personal computers (PCs) contain certain components, which are highly toxic, such as chlorinated and brominated substances, toxic gases, toxic metals, biologically active materials, acids, plastics and plastic additives. The hazardous content of these materials pose an environmental and health threat. Thus proper management is necessary while disposing or recycling ewastes. These days computer has become most common and widely used gadget in all kinds of activities ranging from schools, residences, offices to manufacturing industries. -
Improving the Competitiveness of Green Ship Recycling
Improving the Competitiveness of Green Ship Recycling Kanu Priya Jain Propositions accompanying the thesis Improving the Competitiveness of Green Ship Recycling from Kanu Priya Jain Sep 8, 2017 Delft University of Technology 1. The availability of a downstream market for second-hand goods is essential for a ship recycling yard to become competitive. (This thesis) 2. The lack of co-ordination between the stakeholders of the ship recycling industry is detrimental to cost-effective green ship recycling. (This thesis) 3. A ship cannot be called ‘futuristic’ until it is designed in such a way that it can also be recycled easily. 4. The more efficient and reliable the transportation system is, the more traumatic a deficiency will be for commuters. 5. The global climate will be better-off without UN climate change conferences. 6. Cooking is like a Chemistry experiment, quantity of each ingredient has a major influence on the end result. 7. Social media is a catalyst for exhibitionism, narcissism and depressions. 8. Assumptions are the most effective tool for a successful research. 9. The greatest hurdle to finish a thesis on time is procrastination. 10. Other than the traditional news media, daily commuting is the best way to be aware of local events. These propositions are regarded as opposable and defendable, and have been approved as such by the promotor prof. ir. J.J. Hopman and copromotor dr. ir. J.F.J. Pruyn. IMPROVING THE COMPETITIVENESS OF GREEN SHIP RECYCLING Kanu Priya Jain IMPROVING THE COMPETITIVENESS OF GREEN SHIP RECYCLING Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. -
"Sustainable Materials Management"?
Briefing Paper: What are “Sustainable Materials” and “Sustainable Materials Management”? October 4, 2011 Primary Authors: David Allaway & Peter Spendelow What is a sustainable level of material or resource consumption? The 1994 Oslo Symposium on Sustainable Consumption defined "sustainable consumption" as: "the use of services and related products which respond to basic needs and bring a better quality of life while minimizing the use of natural resources and toxic materials as well as the emissions of waste and pollutants over the life cycle of the service or product so as not to jeopardize the needs of future generations." While useful conceptually, the previous definition may be difficult to apply in practice. When it comes to materials, is it possible to define in more detail the meaning of “sustainable materials management”? How would we know if a material (and its management) actually is “sustainable”? What would be the attributes of such a material? More broadly, how would we know if any action is sustainable? Various thinkers and organizations have proposed a variety of answers to these questions – sometimes specific to materials, other times about sustainability more broadly. This paper briefly introduces six different responses, and summarizes some of the advantages and limitations of each. The six responses are: • William McDonough and Michael Braungart’s “Cradle to Cradle” and philosophy of “Waste Equals Food” • Zero Waste • The Natural Step • The Ecological Footprint • The Sustainable Packaging Coalition’s “Definition of Sustainable Packaging” • Internalizing Externalities / Least-Cost Planning Cradle to Cradle and “Waste Equals Food” Summary: Architect William McDonough and chemist Michael Braungart popularized the theory of “Cradle to Cradle,” explained in their 2002 book Cradle to Cradle: Remaking the Way We Make Things.