Micropaleontology and Sequence Stratigraphy of Middle Jurassic D4- D5 Members of Dhruma Formation, Central Saudi Arabia]

Total Page:16

File Type:pdf, Size:1020Kb

Micropaleontology and Sequence Stratigraphy of Middle Jurassic D4- D5 Members of Dhruma Formation, Central Saudi Arabia] -, SAUDI ARABIA BY MUHAMMAD HAMMAD MALIK A Thesis Presented to the DEANSHIP OF GRADUATE STUDIES KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DHAHRAN, SAUDI ARABIA In Partial Fulfillment of the Requirements for the Degree of KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DHAHRAN- 31261, SAUDI ARABIA DEANSHIP OF GRADUATE STUDIES This thesis, written by MUHAMMAD HAMMAD MALIK under the direction his thesis advisor and approved by his thesis committee, has been presented and accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN GEOLOGY. Prof. Michael A. Kaminski ar11>1� (Advisor) Dr. Abdulaziz Al-Shaibani Dr. Khalid Al-Ramadan Department Chairman (Member) - ' - ,-:· - -· v..)-UI, '__}...;_,� • :,�..... -. "'.J :- ' v ?_ _ _D__ r r a_ -al '!S,m-""-- A--. Z-u_m_m_ o � � �� Dr. Lamidi 0. Babalola Dean of Graduate Studies §1 � (Member) . e r ;:un.'l��S'/., ,2- I<\''- Date © Muhammad Hammad Malik 2016 iii Dedication This work is dedicated to ALLAH Almighty who gave me strength, courage and ability to perform all the tasks and to myself because I am the one who suffered alone. iv ACKNOWLEDGMENTS In the name of ALLAH, the most Gracious and most Merciful First of all, I want to thank ALLAH almighty who give me the courage and strength and provide me with the opportunity to study in one of the prestigious universities of the world. I would also like to thanks my parents, my father Zulfiqar Ahmed Malik and my mother whose prayers led me reach to the position I am at right now. I would also extend my thanks to Prof. Michael Kaminski for being my academic advisor from the beginning for his guidance and also for providing me with various research opportunities during my studies at KFUPM. I would also like to acknowledge my committee including Dr. Khalid Al-Ramadan and Dr. Lamidi Olabode Babalola who helped me during tough times of my research. King Fahd University of Petroleum & Minerals (KFUPM) and Ministry of Higher Education of Saudi Arabia is also thanked for providing me with the scholarship to pursue my graduate studies and supporting my research. I would also acknowledge Geosciences department and its faculty including Dr. Abdulaziz Al-Shaibani for his continuous help and guidance throughout my stay at KFUPM. A heartiest thanks to my friends at KFUPM including Waleed, Asif, Haseeb, Saad, Haroon Bhai, Ayaz, Harooni, Annas, Naveed, Omar, Septri, Hussam, Mahmood, Abduljameo, and my cousin Abrar Tanoli for being there for me when I was away from home and alone. Special thanks to Dr. Khalid Al Ramadan for being my mentor and providing me with the opportunity to compete in a world class competition of Imperial Barrel award and also for encouraging me and boosting me with the capacity to win prestigious awards globally. v TABLE OF CONTENTS Table of Contents ACKNOWLEDGMENTS ............................................................................................... V TABLE OF CONTENTS ............................................................................................... VI LIST OF FIGURES ........................................................................................................ IX ABSTRACT ................................................................................................................ XVII ARABIC ABSTRACT .............................................................................................. XVIII CHAPTER 1 INTRODUCTION ..................................................................................... 1 1.1 Introduction ................................................................................................................................... 1 1.2 Location of Study Area .................................................................................................................. 5 1.3 Geological Setting .......................................................................................................................... 7 1.3.1 Tectonic Evolution of Arabian Plate .............................................................................................. 7 1.4 Problem Statement ...................................................................................................................... 10 1.5 Objectives .................................................................................................................................... 11 CHAPTER 2 LITERATURE REVIEW ....................................................................... 13 2.1 Introduction ................................................................................................................................. 13 2.2 Stratigraphy ................................................................................................................................. 15 2.3 Biostratigraphy ............................................................................................................................ 18 2.4 Sequence Stratigraphy ................................................................................................................. 21 CHAPTER 3 METHODOLOGY .................................................................................. 25 vi 3.1 Introduction ................................................................................................................................. 25 3.2 Materials ...................................................................................................................................... 26 3.3 Methodology Applied .................................................................................................................. 27 3.3.1 Laboratory Studies ........................................................................................................................... 27 3.3.2 Petrographic Analysis ...................................................................................................................... 28 3.3.3 Instrumental Analysis ...................................................................................................................... 29 3.4 Methodology applied (Micropaleontology) ................................................................................. 30 3.4.1 Soap Disaggregation Method .......................................................................................................... 30 3.4.2 Acid Leaching Method .................................................................................................................... 31 CHAPTER 4 RESULTS (SEDIMENTOLOGY) ......................................................... 35 4.1 Introduction ................................................................................................................................. 35 4.2 Lithofacies Identified ................................................................................................................... 37 4.2.1 Coral bearing grain dominated packstone facies (Cgdp) ................................................................. 39 4.2.2 Echinoderm bearing spicule rich packstone facies (Esp) ................................................................. 42 4.2.3 Oolitic grainstone facies (Og) .......................................................................................................... 45 4.2.4 Bioclastic wackestone / packstone facies (Bw-p) ............................................................................ 48 4.2.5 Foraminiferal packstone / grainstone facies (Fp-g) ......................................................................... 51 4.2.6 Echinoderm rich mudstone / wackstone Facies (Em-w) .................................................................. 54 4.2.7 Bioclastic oolitic grainstone facies (Bog) ........................................................................................ 57 4.2.8 Foraminiferal wackestone facies (Fw) ............................................................................................. 60 4.2.9 Spicule rich pelloidal grain dominated packstone facies (Spgdp) ................................................... 63 4.2.10 Mudstone Facies (Ms) ................................................................................................................... 66 CHAPTER 5 RESULTS (MICROPALEONTOLOGY) ............................................. 69 5.1 Introduction ................................................................................................................................. 69 5.2 Extracted Microfossil Genera & Species ..................................................................................... 70 5.3 Microfossil Genera & Species distribution: ................................................................................ 74 5.3.1 Coral bearing grain dominated Packstone Facies (Cgdp) ................................................................ 74 5.3.2 Echinoderm Spiculitic Packstone Facies (Esp) ................................................................................ 78 5.3.3 Oolitic Grainstone facies (Og) ......................................................................................................... 81 5.3.4 Bioclastic Wackestone / Packstone Facies (Bw-p) .......................................................................... 84 vii 5.3.5 Foraminiferal Packstone / Grainstone Facies (Fp-g) ....................................................................... 86 5.3.6 Echinoderm Mudstone / Wackstone Facies (Em-w).......................................................................
Recommended publications
  • G. Arthur Cooper
    G. ARTHUR COOPER SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 65 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.' This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropotogy Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the h/larine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the worid. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • VOL. 28, N° 2, 2009 Revue De Paléobiologie, Genève (Décembre 2009) 28 (2) : 471-489 ISSN 0253-6730
    1661-5468 VOL. 28, N° 2, 2009 Revue de Paléobiologie, Genève (décembre 2009) 28 (2) : 471-489 ISSN 0253-6730 discussion, evolution and new interpretation of the Tornquistes Lemoine, 1910 (Pachyceratidae, Ammonitina) with the exemple of the Vertebrale Subzone sample (Middle oxfordian) of southeastern France Didier BerT*, 1 Abstract The Cheiron Mountain (Alpes-Maritimes, southeastern France) sample of Tornquistes Lemoine was collected in the Arkelli Biohorizon (Vertebrale Subzone, Plicatilis Biozone). Its study reveals its homogeneity whereas its morphology is between two nominal and classical species of literature : Tornquistes tornquisti (de LorioL) and Tornquistes oxfordiense (tornquist). It appears that the features usually taken into account to establish specific denominations in this genus (whorl section thickness, strength and density of the ornamentation, widening of the umbilicus) are in fact manifestations of the laws of covariation of the characteristics, and the extreme morphologies are interrelated by all intermediaries. There is now no taxonomical reason not to consider all the nominal taxa described in the Plicatilis Biozone as a single paleobiological species : Tornquistes helvetiae (tornquist). On the other hand, the stratigraphic polarity of the position of the primary ribs point of bifurcation (which decreases through time) is a major evolutionary feature in Tornquistes. It now allows defining at least three, maybe four, successive chronospecies : (1) (?) Tornquistes greppini (de LorioL), (2) Tornquistes leckenbyi (ArkeLL), (3) Tornquistes helveticus (JeAnnet) and (4) Tornquistes helvetiae (tornquist). Finally, although Protophites eBrAy has often been regarded as a microconch, it is clearly not the one of Tornquistes. The oldest species of Protophites now recognized is Protophites chapuisi (de LorioL) at the top of the Mariae Biozone (Praecordatum Subzone).
    [Show full text]
  • Occurrences, Age and Paleobiogeography of Rare Genera Phlycticeras and Pachyerymnoceras from South Tethys
    N. Jb. Geol. Paläont. Abh. 283/2 (2017), 119–149 Article E Stuttgart, February 2017 Occurrences, age and paleobiogeography of rare genera Phlycticeras and Pachyerymnoceras from South Tethys Sreepat Jain With 24 figures Abstract: New data on two rare genera (Phlycticeras and Pachyerymnoceras) from the Callovian (Middle Jurassic) sediments of Kachchh, western India are presented with an update on their South Tethyan occurrences. This paper documents the earliest occurrence of the genus Phlycticeras from the entire south of Tethys (P. polygonium var. polygonium [M]) from latest Early Callovian sediments (= Proximum Subzone, Gracilis Zone). Further, in light of the new taxonomic data, the previously recorded early Middle Callovian P. gr. pustulatum [M] is reevaluated as also all other Phlycticeras occurrences from the Indian subcontinent. Data suggests that in Kachchh, Phlycticeras has a long range from the latest Early to Late Callovian interval. Additionally, two new macroconch species of Pachyerymnoceras are also described and illustrated from Late Callovian sediments. A critical review of previous records suggests that in Kachchh, Pachyerymnoceras is restricted to the Submediterranean interval of the Collotiformis-Poculum subzones of the Athleta Zone. A note on the paleobiogeography and probable migratory routes of these two genera to India and elsewhere is also suggested. Key words: Kachchh, Middle Jurassic, Late Callovian, Pachyerymnoceras, Phlycticeras. 1. Introduction nent, stratigraphically precise data is scarce both for Pachyceratidae BUckMAN (WAAGEN 1873-1875; BUck- Kachchh (Fig. 1) is a prolific Jurassic ammonite area in MAN 1909-1930; SPATH 1927-1933; KRISHNA & THIErrY the Indo-Madagascan faunal Province (South Tethys) 1987; SHOME & BARDHAN 2005) and Phlycticeratinae which has been extensively studied for its taxonomic, SPATH (WAAGEN 1873-1875; SPATH 1927-1933; JAIN 1997; biochronostratigraphic and paleobiogeographic signifi- BARDHAN et al.
    [Show full text]
  • Paleontological Contributions
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations.
    [Show full text]
  • Ammonites (Phylloceratina, Lytoceratina and Ancyloceratina) and Organic-Walled Dinoflagellate Cysts from the Late Barremian in B
    Cretaceous Research 47 (2014) 140e159 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Ammonites (Phylloceratina, Lytoceratina and Ancyloceratina) and organic-walled dinoflagellate cysts from the Late Barremian in Boljetin, eastern Serbia Zdenek Vasícek a, Dragoman Rabrenovic b, Petr Skupien c, Vladan J. Radulovic d,*, Barbara V. Radulovic d, Ivana Mojsic b a Institute of Geonics, Academy of Sciences of the Czech Republic, Studentská 1768, CZ 708 00 Ostrava-Poruba, Czech Republic b Department of Historical and Dynamic Geology, Faculty of Mining and Geology, University of Belgrade, Kamenicka 6, 11000 Belgrade, Serbia c Institute of Geological Engineering, VSB e Technical University of Ostrava, 17. listopadu 15, CZ-708 33 Ostrava-Poruba, Czech Republic d Department of Palaeontology, Faculty of Mining and Geology, University of Belgrade, Kamenicka 6, 11000 Belgrade, Serbia article info abstract Article history: Late Barremian ammonite fauna from the epipelagic marlstone and marly limestone interbeds of Boljetin Received 12 December 2012 Hill (Boljetinsko Brdo) of Danubic Unit (eastern Serbia) is described. The ammonite fauna includes Accepted in revised form 29 October 2013 representatives of three suborders (Phylloceratina, Lytoceratina and Ancyloceratina), specifically Hypo- Available online 14 December 2013 phylloceras danubiense n. sp., Lepeniceras lepense Rabrenovic, Holcophylloceras avrami n. sp., Phyllo- pachyceras baborense (Coquand), Phyllopachyceras petkovici n. sp., Phyllopachyceras eichwaldi eichwaldi Keywords: (Karakash), Phyllopachyceras ectocostatum Drushchits, Protetragonites crebrisulcatus (Uhlig), Macro- Ammonites ’ fl scaphites perforatus Avram, Acantholytoceras cf. subcirculare (Avram), Dissimilites cf. trinodosus (d Or- Organic-walled dino agellates fi Palaeoenvironment bigny) and Argvethites? sp. The taxonomic composition and percent abundance of the identi ed fi Late Barremian ammonites indicate that their taxa are predominantly con ned to the Tethyan realm.
    [Show full text]
  • Ammonoid Intraspecific Variability
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Ammonoid Intraspecific Variability De Baets, Kenneth ; Bert, Didier ; Hoffmann, René ; Monnet, Claude ; Yacobucci, Margaret M;Klug, Christian Abstract: Because ammonoids have never been observed swimming, there is no alternative to seeking indirect indications of the locomotory abilities of ammonoids. This approach is based on actualistic com- parisons with the closest relatives of ammonoids, the Coleoidea and the Nautilida, and on the geometrical and physical properties of the shell. Anatomical comparison yields information on the locomotor muscu- lar systems and organs as well as possible modes of propulsion while the shape and physics of ammonoid shells provide information on buoyancy, shell orientation, drag, added mass, cost of transportation and thus on limits of acceleration and swimming speed. On these grounds, we conclude that ammonoid swim- ming is comparable to that of Recent nautilids and sepiids in terms of speed and energy consumption, although some ammonoids might have been slower swimmers than nautilids. DOI: https://doi.org/10.1007/978-94-017-9630-9_9 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-121836 Book Section Accepted Version Originally published at: De Baets, Kenneth; Bert, Didier; Hoffmann, René; Monnet, Claude; Yacobucci, Margaret M; Klug, Christian (2015). Ammonoid Intraspecific Variability. In: Klug, C; Korn, D; De Baets, K; Kruta, I; Mapes, R H. Ammonoid Paleobiology: From anatomy to ecology. Dordrecht: Springer, 359-426. DOI: https://doi.org/10.1007/978-94-017-9630-9_9 Chapter 9 Ammonoid Intraspecific Variability Kenneth De Baets, Didier Bert, René Hoffmann, Claude Monnet, Margaret M.
    [Show full text]
  • Suppressed Under the Plenary Powers for the Purposes of Rell, 1884, C.R
    GENERIC NAMES 139 Pachyceras Ratzeburg, 1844, Die Ichneumonen 1: Table facing Palaemonella Dana, 1852, Proc. Acad. nat. Sci. Philadelphia p. 40, 217 (suppressed under the plenary powers for the 6 : 17 (gender : feminine) (type species, by designation by purposes of both the Principle of Priority and the Principle Kingsley, 1880 (Proc. Acad. nat. Sci. Philadelphia 1879 : of Homonymy) 0. 437 425) : Palaemonella tenuipes Dana, 1852, Proc. Acad. nat. Sci. Philadelphia 6 : 25) (Crustacea, Decapoda) 0. 470 Pachygrapsus Randall, 1840, J. Acad. nat. Sci. Philadelphia 8 : 126 (gender : masculine) (type species, by designation by Palaemonetes Heller, 1869, Z. wiss. zool. 19 : 157, 161 (gender Kingsley, 1880 (Proc. Acad. nat. Sci. Philadelphia 1880 : : masculine) (type species, by monotypy : Palaemon varians 198) : Pachygrapsus crassipes Randall, 1840, J. Acad. nat. [Leach, 1814], in Brewster's Edinburgh Ency. 7 (2) : 432) Sci. Philadelphia 8 : 127) (Crustacea, Decapoda) 0. 712 (Crustacea, Decapoda) 0. 470 Pachylops Fieber, 1858, Wien. entomol. Monats. 2:314 (gender Palaemonias Hay, 1901, Proc. biol. Soc. Washington 14 : : masculine) (type species, by designation under the plenary 179 (gender : masculine) (type species, by monotypy : powers : Litosoma bicolor Douglas & Scott, 1868, Entomol. Palaemonias ganteri Hay, 1901, Proc. biol. Soc. Washington mon. Mag. 4 : 267) (Insecta, Hemiptera) 0. 253 14 : 180) (Crustacea, Decapoda) 0. 470 Pachymerus Lepeletier & Serville, 1825, Ency. m'eth. 10 (1) : Palaeoneilo (emend, of Palaeaneilo) Hall, 1869, Prelim. Not. 322 (a junior homonym of Pachymerus Thunberg, 1805) 0. lamellibr. Shells, Part 2 : 6 (gender : feminine) (type species, 676 by designation by Hall, 1885 (Nat. Hist. New York (Pal.) 5 (1) Lamellibr. 2 : xxvii) : Nuculites constricta Conrad, Pachyodon Stutchbury, 1842, Ann.
    [Show full text]
  • Integrated Benthic Foraminiferal and Ammonite Biostratigraphy of Middle to Late Jurassic Sediments of Keera Dome, Kachchh, Western India
    Advanced Micropaleontology Pradeep K. Kathal, Rajiv Nigam & Abu Talib (Editors) Scientific Publishers (India), 2017, 71-81 pp. Integrated Benthic Foraminiferal and Ammonite Biostratigraphy of Middle to Late Jurassic Sediments of Keera Dome, Kachchh, Western India Abu Talib1*, Sreepat Jain2 and Roohi Irshad1 1Department of Geology, Aligarh Muslim University, Aligarh 202001, India 2Department of Applied Geology, Adama Science and Technology University, Adama, Oromia, Ethiopia *Email: [email protected] Abstract Early Callovian to Middle Oxfordian foraminiferal assemblages are tagged with precise ammonite occurrences for the first time from the Jurassic sediments of Chari Formation exposed at Keera Dome, Kachchh, Western India, with precise dating and marking of the Callovo-Oxfordian boundary. Four ammonite zones and nine subzones are correlated with seven foraminiferal zones, enabling accurate and reliable regional biostratigraphic analysis. Such integrated work will lead to precise dating of the otherwise hard-to-date foraminiferal assemblages from Kachchh. Keywords: Benthic foraminifera, Ammonites, Biostratigraphy, Keera Dome, Kachchh, Western India INTRODUCTION Krishna and Westermann, 1985, 1987; Bhaumik et al., 1993; Krishna and Cariou, Kachchh is well known for its prolific 1990, 1993; Callomon, 1993; Pandey and ammonite records (Waagen, 1873-75; Callomon, 1995; Datta et al., 1996; Jain et Spath, 1924, 1927-33; Singh et al., 1982; al., 1996; Jain and Pandey, 1997, 2000; 72 Advanced Micropaleontology Jain, 1997, 1998, 2002; Krishna and Ojha, Hence, it is imperative that an 1996, 2000; Shome and Bardhan, 2005, attempt be made to identify and establish 2007, 2009; Roy et al., 2007; Krishna et marker Jurassic foraminiferal species (at al., 2009a, b; Bardhan et al., 2010, 2011; least on a regional scale) and integrate the Rai and Jain, 2012).
    [Show full text]
  • Ammonites (Phylloceratina, Lytoceratina and Ancyloceratina) and Organic-Walled Dinoflagellate Cysts from the Late Barremian in Boljetin, Eastern Serbia
    Cretaceous Research 47 (2014) 140e159 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Ammonites (Phylloceratina, Lytoceratina and Ancyloceratina) and organic-walled dinoflagellate cysts from the Late Barremian in Boljetin, eastern Serbia Zdenek Vasícek a, Dragoman Rabrenovic b, Petr Skupien c, Vladan J. Radulovic d,*, Barbara V. Radulovic d, Ivana Mojsic b a Institute of Geonics, Academy of Sciences of the Czech Republic, Studentská 1768, CZ 708 00 Ostrava-Poruba, Czech Republic b Department of Historical and Dynamic Geology, Faculty of Mining and Geology, University of Belgrade, Kamenicka 6, 11000 Belgrade, Serbia c Institute of Geological Engineering, VSB e Technical University of Ostrava, 17. listopadu 15, CZ-708 33 Ostrava-Poruba, Czech Republic d Department of Palaeontology, Faculty of Mining and Geology, University of Belgrade, Kamenicka 6, 11000 Belgrade, Serbia article info abstract Article history: Late Barremian ammonite fauna from the epipelagic marlstone and marly limestone interbeds of Boljetin Received 12 December 2012 Hill (Boljetinsko Brdo) of Danubic Unit (eastern Serbia) is described. The ammonite fauna includes Accepted in revised form 29 October 2013 representatives of three suborders (Phylloceratina, Lytoceratina and Ancyloceratina), specifically Hypo- Available online phylloceras danubiense n. sp., Lepeniceras lepense Rabrenovic, Holcophylloceras avrami n. sp., Phyllo- pachyceras baborense (Coquand), Phyllopachyceras petkovici n. sp., Phyllopachyceras eichwaldi eichwaldi Keywords: (Karakash), Phyllopachyceras ectocostatum Drushchits, Protetragonites crebrisulcatus (Uhlig), Macro- Ammonites ’ fl scaphites perforatus Avram, Acantholytoceras cf. subcirculare (Avram), Dissimilites cf. trinodosus (d Or- Organic-walled dino agellates fi Palaeoenvironment bigny) and Argvethites? sp. The taxonomic composition and percent abundance of the identi ed fi Late Barremian ammonites indicate that their taxa are predominantly con ned to the Tethyan realm.
    [Show full text]
  • Proceedings of the Dorset Natural History & Archaeological Society
    PROCEEDINGS OF THE DORSET NATURAL HISTORY & ARCHAEOLOGICAL SOCIETY FOR 19^8 VOLUME 80 Published in April, 195^9 Edited by J. STEVENS COX, F.S.A. DORCHESTER PRINTED BY LONGMANS (DORCHESTER) LTD., AT THE FRIARY PRESS ICKQ WILLIAM JOSCELYN ARKELL 1904-1958 VV. J. ARKELL, the youngest of a family of seven, was born at Highworth, Wilts., on 9 June 1904. His father, James Arkell, was junior partner with his brother Thomas in Arkell's Brewery, Kingsdown, near Swindon, a pros­ perous business founded by their father, John Arkell. Thomas Arkell died in 1919 at the age of 84, and James (the youngest of a family of 13) then became head of the firm until his death in 1926 at the age of 74. The family is believed to have immigrated at the time of William of Orange, and to have taken its name, from Arkel, in Holland; and until John Arkell started the brewery- business its members had been mostly farmers. W. J. Arkell's mother, Laura Jane Arkell, was one of four children of a London solicitor, Augustus William Rixon, all of whom attained the age of 85 or more. She was an artist of considerable ability, as was also her brother, W. A. Rixon, of Xorthleach. A deeply rooted love for the English countryside influenced Arkell from an early age. Alone or with a brother he explored every land, spinney, hedge and ditch around Highworth, collecting insects, snails, plants and fossils. The Diptera were his special interest. The family summer holidays, always spent at Swanage, afforded opportunities for the Dorset coast and interior to be explored with equal thoroughness, on foot or by bicycle.
    [Show full text]
  • Brachiopoda and Reptilian Fossils from Jurassic of Kutch, Gujarat
    Rec. zool. Surv. India: 102 (Part 3-4) : 161-175,2004 ON SOME AMMONOIDEA, PELECYPODA (MOLLUSCA), BRACHIOPODA AND REPTILIAN FOSSILS FROM JURASSIC OF KUTCH, GUJARAT M. K. NAIK AND T. K. PAL Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053 INTRODUCTION The Ammonoidea have been extinct long back but their shells in fossilized forms are seen in all the continental areas and many oceanic islands. Numbers of specimens are well preserved and their significance as a basis for lithostratigraphic interrelation has long been recognized by the palaeontologists. Hence, existing information on this group is sizeable one. The understanding about this group has eventually developed through the study of their shells and enclosing rock matrices, and occasionally of a few preserved opercula. The shells of ammonoids are comparable with those of extinct Nautilus, which are considered to be a close relative of the former. The nautiloids and ammonoids constitute the Subclass Terebranchiata. They were widespread in the past but are now represented by several species of the Genus Nautilus only. Most ammonoids had a relatively long centre of gravity. However, some forms with body chambers about a volution in length may have been able to invert themselves. The ancient Terebranchiates lived in the oceans and the seas over the globe and most of the known fossil forms have been recovered from the rocks, which represent shallow water marine deposits. In the Ordovician, they were an eminent group of animals. They continued to thrive in the Silurian, and in early Devonian the ammonoids evolved from the nautiloids. Throughout the Mesozoic period ammonoids were more abundant than the nautiloids.
    [Show full text]
  • Jurassic Gastropod Faunas of Central Saudi Arabia
    GeoArabia, Vol. 6, No. 1, 2001 Gulf PetroLink, Bahrain Jurassic Gastropod Faunas, Central Saudi Arabia Jurassic Gastropod Faunas of Central Saudi Arabia Jean-Claude Fischer Laboratoire de Paléontologie du Muséum national d’Histoire naturelle, Paris, France Yves-Michel Le Nindre, Jacques Manivit and Denis Vaslet Bureau de Recherches Géologiques et Minières, Orléans, France ABSTRACT Mapping of Phanerozoic rocks at 1:250,000 scale by joint teams from the Saudi Arabian Deputy Ministry for Mineral Resources and the Bureau de Recherches Géologiques et Minières since 1980 has covered most of the Jurassic outcrops in central Saudi Arabia. Stratigraphic, sedimentologic and paleogeographic studies provided a precise framework for collected gastropod faunas that could be calibrated against ammonite zones and sequence-stratigraphic zones. Of more than 600 samples collected, about 440 gastropod specimens could be determined on at least a generic level. Their age range is from Bajocian to Oxfordian–Kimmeridgian. They correspond to 26 genera and 35 species from the Euomphalidae, Ataphridae, Pseudomelaniidae, Coelostylinidae, Procerithiidae, Nerineidae, Purpurinidae, Aporrhaidae, Naticidae, Acteonidae, Retusidae, and Akeridae families. Twelve species are new, and three (Kosmomphalus and Bifidobasis in the Euomphalidae, and Striatoonia in the Pseudomelaniidae) were proposed for new taxa of generic or subgeneric rank. Most of the identified species are of Middle Jurassic age, mainly Bathonian and Callovian and only six are Late Jurassic. All species are typical of an internal platform environment (upper infralittoral), in a lagoonal to back-reef setting, but some also colonized the external platform in the lower infralittoral fore-reef zone. Paleogeographically, most of the species are related to European and Sinai faunas; only seven are equivalent to North African or East African faunas, and one only was reported from Madagascar.
    [Show full text]