Industry Structure and Company Strategies of Major Domestic and Foreign Wind and Solar Energy Manufacturers: Opportunities for Supply Chain Development in Appalachia

Total Page:16

File Type:pdf, Size:1020Kb

Industry Structure and Company Strategies of Major Domestic and Foreign Wind and Solar Energy Manufacturers: Opportunities for Supply Chain Development in Appalachia Industry Structure and Company Strategies of Major Domestic and Foreign Wind and Solar Energy Manufacturers: Opportunities for Supply Chain Development in Appalachia Co-Principal Investigators Gerald I. Susman, Ph.D. Smeal College of Business 210 Business Building, University Park, PA 16802 814-863-0448 Amy K. Glasmeier, Ph.D. College of Earth and Mineral Sciences 302 Walker Building, University Park, PA 16802 814-865-7323 Technical Advisors Susan K. Stewart, Ph.D. Research Associate, Energy Science and Power Systems, Applied Research Laboratory David R. Riley, Ph.D. Associate Professor, Architectural Engineering, College of Engineering The Pennsylvania State University University Park, PA 16802 Researchers Jared Freer, Graduate Assistant Barbara B. Kinne, Research Assistant Michael H. Patullo, Research Consultant Jenna P. Stites, Research Assistant Carmen Strand, Research Assistant Michael Waldhier, Graduate Assistant ARC Project Number CO-15810-07 October 1, 2007–February 27, 2009 Final Report Submitted November 20, 2009 Project Director Gerald I. Susman, Ph.D. Smeal College of Business The Pennsylvania State University 814-863-0448 TABLE OF CONTENTS Data Dictionary ................................................................................................................................5 Executive Summary .........................................................................................................................6 Phase I. Industry Market Structure, Forecast, and Potential: Part 1: The Solar Industry................................................................................................................8 Demand for Solar Energy ....................................................................................................8 Solar Energy Technologies ................................................................................................10 Markets and Applications ..................................................................................................10 Industry Participants ..........................................................................................................12 Photovoltaic (PV) Supply Chain ........................................................................................16 Competitive Strategies .......................................................................................................17 Strategic Groups.................................................................................................................21 Future Directions ...............................................................................................................25 Part 2: The Wind Industry Demand for Wind Energy ..................................................................................................27 Policies that Stimulate Demand for Wind Energy .............................................................27 Wind Energy Systems ........................................................................................................30 Markets and Applications ..................................................................................................31 Industry Participants ..........................................................................................................32 Wind System Supply Chain ...............................................................................................35 Competitive Strategies .......................................................................................................40 Industry Evolution .............................................................................................................48 Future Directions ...............................................................................................................50 Phase II: Solar and Wind Energy Industry Participation within the Appalachian Region Introduction ........................................................................................................................52 NAICS Codes to Identify Potential Firms and Employment in Solar and Wind Industries .................................................................52 Part 1. Pattern of Manufacturing Activities and Potential Employment in Appalachia ....54 Part 2. Identifying and Surveying Firms Involved in the Solar and Wind Industries ........58 Analysis of Survey Results ....................................................................................68 Part 3. Review of the Policy Landscape in the Appalachian Region .................................77 Demand-Side Incentives ....................................................................................................78 Supply-Side Incentives ......................................................................................................82 Novel Policy Strategies ......................................................................................................83 Major Findings and Observations ..................................................................................................85 Bibliography ..................................................................................................................................91 2 List of Tables Table 1 Shipments of PV Cells and Modules by Application (peak kilowatts) ...........................11 Table 2 Shipments of PV Cells and Modules by Market and Type (peak kilowatts) ...................12 Table 3 Materials, Components, and Equipment Suppliers in Appalachian Counties .......14 Table 4 Distributors/Installers in Appalachian Counties ....................................................15 Table 5 Plant Locations of Top Fifteen Cell Manufacturers ..............................................18 Table 6 Worldwide MW Additions, Plant Locations, and U.S. Installations of Top Ten Wind Turbine Manufacturers in 2008 .................................................33 Table 7 Wind Turbine Suppliers and Locations .................................................................37 Table 8 Component and Equipment Suppliers in Appalachian Counties ...........................39 Table 9 Product Line Range of the Global Top-Ten Turbine Manufacturers ....................41 Table 10 Size Distribution of Turbines from 1998–2007 .....................................................42 Table 11 R&D as a Percentage of Sales for Top-Ten Turbine Manufacturers .....................45 Table 12 NAICS 2007 Codes of Solar and Wind Industry Participants ...............................62 Table 13 Founding Years of Responding Firms ...................................................................69 Table 14 NAICS 2007 Codes of Survey Respondents .........................................................70 Table 15 Sectors Served by Founding Years of Responding Firms .....................................71 Table 16 Position in the Supply Chain..................................................................................71 Table 17 Products/Services Provided by Survey Respondents, by Sector ...........................72 Table 18 Preparedness of Employees for Participation in the Solar or Wind Industry ........75 Table 19 Renewable Portfolio Standards in Appalachian States ..........................................78 Table 20 Tax Incentives that Apply to Solar and/or Wind Installations, by State ................79 Table 21 ARC State Grant and Loan Programs Applicable to Solar and/or Wind ...............80 Table 22 Profile of Typical Established and Emergent Firms ..............................................87 List of Figures Figure 1 PV Solar Supply-Chain ..........................................................................................17 Figure 2 Strategic Groups––PV Solar Industry ....................................................................24 Figure 3 Supply-Chains for Two Major Wind System Components ...................................36 Figure 4 Strategic Groups in the Wind Industry – 2004 ......................................................49 Figure 5 Potential Renewable Energy Manufacturing Employment in ARC Counties (by State) ................................................................................................................55 Figure 6 Total Establishments with Renewable Manufacturing Potential in ARC Counties (by State) ...................................................................................55 Figure 7 Counties with Potential Solar Manufacturing Jobs over 500 .................................56 Figure 8 The Number of Firms and Components for Counties with Potential Solar Job Totals over 500 ......................................................................................56 Figure 9 Counties with Potential Wind Manufacturing Job Totals over 1,000 ....................57 Figure 10 Number of Firms and Components in Counties with Potential Wind Manufacturing Jobs over 1,000 ....................................................................57 Figure 11 Phase II––Construction of Firm Database .............................................................60 Figure 12 Collection of Firms ................................................................................................61 3 List of Maps Map 1 Potential Participants in Solar and/or Wind Industry ............................................64 Map 2 Participants in Solar and/or Wind Industry ............................................................65 Map 3 Manufacturers in Solar and/or Wind Industry .......................................................66
Recommended publications
  • US Department of Energy Wind and Hydropower Technologies: Top 10 Program Accomplishments
    U.S. Department of Energy Wind and Hydropower Technologies Top 10 Program Accomplishments U.S. Department of Energy Wind and Hydropower Technologies Top 10 Program Accomplishments Important activities or technologies developed by or with the support of the Wind Energy Program that have led to the vibrant wind energy market of today. Advancing Wind Turbines Clipper Windpower Wind Powered Electricity 2.5-MW Liberty wind Although the wind has been harnessed to deliver power for centuries, it was only as turbine, Medicine Bow, Wyoming, 2006. recently as the 1970s, through the efforts of the U.S. Department of Energy’s (DOE’s) new Wind Energy Program, that wind power evolved into a viable source for clean commercial power. During that decade, the Wind Energy Program designed, built, and tested the 100-kilowatt (kW) “Mod” series (100 kW was the benchmark for large wind at the time) of wind turbines. These early machines proved the feasibility of large turbine technology and paved the way for the multimegawatt wind turbines in use today. DOE’s MOD-5B 3.2-MW wind turbine, Kahuku, Oahu, Hawaiian GE Energy 1.5-MW wind turbine, Islands, 1987. Hagerman, Idaho, 2005. The Quintessential American Turbine Wind Energy Program researchers have worked with GE Energy and its predeces- sors, Zond and Enron Wind, since the early 1990s to test components such as blades, generators, and control systems on vari- ous generations of machines. This work led to the development of GE’s 1.5-megawatt (MW) wind turbine. By the end of 2007, more than 6,500 of these turbines, gener- ally considered the quintessential American wind turbine, had been installed worldwide.
    [Show full text]
  • Wind Powering America FY07 Activities Summary
    Wind Powering America FY07 Activities Summary Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY07 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2007, there were more than 11,500 megawatts (MW) of wind power installed across the United States, with an additional 4,000 MW projected in both 2007 and 2008. The American Wind Energy Association (AWEA) estimates that the U.S. installed capacity will exceed 16,000 MW by the end of 2007. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Seventeen states now have more than 100 MW installed. We anticipate five to six additional states will join the 100-MW club early in 2008, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders.
    [Show full text]
  • Wind Energy Production: Legal Issues and Related Liability Concerns for Landowners
    Wind Energy Production: Legal Issues and Related Liability Concerns for Landowners 2321 N. Loop Drive, Ste 200 Ames, Iowa 50010 www.calt.iastate.edu Updated June 20, 2011 ‐ by Roger A. McEowen* Overview Current Emphasis On Wind-Generated Electricity Farmers have long used the wind. Beginning in the 1800’s, farmers in the United States installed In large part, the current push for wind- several million windmills across the Midwest generated electricity (and other forms of and Plains to pump water and (later) generate “renewable” energy) is based in power for lights and radios. Those windmills fit environmentalism.4 Concerns over the nicely into the existing landscape and generally environment began to be raised in the U.S. did not create problems for others. Today, during the 1960s and the 1970s. These concerns however, the wind energy industry is using the have had a profound impact on the political wind in a different manner by virtue of large- debate surrounding the belief by some in “global scale aerogenerators1 that have a tremendous climate change.”5 Proponents of wind energy impact on the visual landscape and the rural claim that wind generated electricity reduces culture.2 In some communities, wind energy emissions of carbon dioxide, which they claim development has raised issues between (contrary to a scientific study by the U.S. neighbors, between private landowners and wind National Academy of Sciences) is a significant energy development companies, and between contributor to “global warming.”6 local officials and development companies.3 Note: The National Research Council of Some farmers and other rural landowners have the National Academies concluded in a 2007 entered into long-term agreements with wind study that even under the most optimistic energy companies for the placement and conditions, the U.S.
    [Show full text]
  • WHERE IS ELECTRIC GENERATION HEADED? Rodney Andrews, Phd
    WHERE IS ELECTRIC GENERATION HEADED? Rodney Andrews, PhD PE Director UK Center for Applied Energy Research The Annual Energy Outlook 2020 (January 29, 2020) 2 Key Takeaways from U.S. Energy Information Administration’s Annual Energy Outlook 2020 • The electricity generation mix continues to experience a rapid rate of change, with renewables the fastest‐growing source of electricity generation through 2050 because of continuing declines in the capital costs for solar and wind that are supported by federal tax credits and higher state‐level renewables targets. With slow load growth and increasing electricity production from renewables, U.S. coal‐fired and nuclear electricity generation declines; most of the decline occurs by the mid‐2020s. • The United States continues to produce historically high levels of crude oil and natural gas. Slow growth in domestic consumption of these fuels leads to increasing exports of crude oil, petroleum products, and liquefied natural gas. 3 Production grows faster than consumption with shift toward electrification Energy production (AEO2020 Reference case) Energy consumption by sector (AEO2020 Reference case) quadrillion British thermal units quadrillion British thermal units 2019 2019 50 50 history projections history projections dry natural gas 45 45 electric power 40 40 35 35 industrial 30 30 25 crude oil and lease 25 condensate transportation 20 other renewable energy 20 15 15 coal residential 10 natural gas plant 10 commercial liquids 5 nuclear 5 hydro 0 0 1990 2000 2010 2020 2030 2040 2050 1990 2000 2010 2020 2030 2040 2050 4 What is driving the energy markets nationally? • Future oil prices are highly uncertain and are subject to international market.
    [Show full text]
  • U.S. Wind Turbine Manufacturing: Federal Support for an Emerging Industry
    U.S. Wind Turbine Manufacturing: Federal Support for an Emerging Industry Updated January 16, 2013 Congressional Research Service https://crsreports.congress.gov R42023 U.S. Wind Turbine Manufacturing: Federal Support for an Emerging Industry Summary Increasing U.S. energy supply diversity has been the goal of many Presidents and Congresses. This commitment has been prompted by concerns about national security, the environment, and the U.S. balance of payments. Investments in new energy sources also have been seen as a way to expand domestic manufacturing. For all of these reasons, the federal government has a variety of policies to promote wind power. Expanding the use of wind energy requires installation of wind turbines. These are complex machines composed of some 8,000 components, created from basic industrial materials such as steel, aluminum, concrete, and fiberglass. Major components in a wind turbine include the rotor blades, a nacelle and controls (the heart and brain of a wind turbine), a tower, and other parts such as large bearings, transformers, gearboxes, and generators. Turbine manufacturing involves an extensive supply chain. Until recently, Europe has been the hub for turbine production, supported by national renewable energy deployment policies in countries such as Denmark, Germany, and Spain. However, support for renewable energy including wind power has begun to wane across Europe as governments there reduce or remove some subsidies. Competitive wind turbine manufacturing sectors are also located in India and Japan and are emerging in China and South Korea. U.S. and foreign manufacturers have expanded their capacity in the United States to assemble and produce wind turbines and components.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • Wind Power Today, 2010, Wind and Water Power Program
    WIND AND WATER POWER PROGRAM Wind Power Today 2010 •• BUILDING•A•CLEAN• ENERGY •ECONOMY •• ADVANCING•WIND• TURBINE •TECHNOLOGY •• SUPPORTING•SYSTEMS•• INTERCONNECTION •• GROWING•A•LARGER• MARKET 2 WIND AND WATER POWER PROGRAM BUILDING•A•CLEAN•ENERGY•ECONOMY The mission of the U.S. Department of Energy Wind Program is to focus the passion, ingenuity, and diversity of the nation to enable rapid expansion of clean, affordable, reliable, domestic wind power to promote national security, economic vitality, and environmental quality. Built in 2009, the 63-megawatt Dry Lake Wind Power Project is Arizona’s first utility-scale wind power project. Building•a•Green•Economy• In 2009, more wind generation capacity was installed in the United States than in any previous year despite difficult economic conditions. The rapid expansion of the wind industry underscores the potential for wind energy to supply 20% of the nation’s electricity by the year 2030 as envisioned in the 2008 Department of Energy (DOE) report 20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply. Funding provided by DOE, the American Recovery and Reinvestment Act CONTENTS of 2009 (Recovery Act), and state and local initiatives have all contributed to the wind industry’s growth and are moving the BUILDING•A•CLEAN•ENERGY•ECONOMY• ........................2 nation toward achieving its energy goals. ADVANCING•LARGE•WIND•TURBINE•TECHNOLOGY• .....7 Wind energy is poised to make a major contribution to the President’s goal of doubling our nation’s electricity generation SMALL •AND•MID-SIZED•TURBINE•DEVELOPMENT• ...... 15 capacity from clean, renewable sources by 2012. The DOE Office of Energy Efficiency and Renewable Energy invests in clean SUPPORTING•GRID•INTERCONNECTION• ....................
    [Show full text]
  • Clean Energy Economy
    JUNE 2009 The Pew Charitable Trusts applies the power of knowledge to solve today’s most challenging problems. Our Pew Center on the States identifies and advances effective policy approaches to critical issues facing states, and our Pew Environment Group promotes practical, meaningful solutions to some of the world’s most pressing environmental problems. PEW CENTER ON THE STATES PEW ENVIRONMENT GROUP Susan Urahn, managing director Joshua Reichert, managing director Project Team Kevin Curtis Kil Huh Brendan Hill Phyllis Cuttino Lori Grange Jeannette Lam Laura Lightbody E. Brooks Riley Michele Mariani Vaughn Shannon Heyck-Williams Jill Antonishak Melissa Maynard Jane Breakell Carla Uriona, design Sean Greene Research Consultants: Collaborative Economics, Inc. ACKNOWLEDGMENTS This report benefited tremendously from the insights and expertise of an advisory panel and two additional external reviewers. These experts provided feedback and guidance at critical stages in the project. While they have screened the report for accuracy, neither they nor their organizations necessarily endorse its findings or conclusions. Advisory Panel: Marilyn Brown, professor, School of Public Policy, Georgia Institute of Technology; Doug Cameron, managing director and chief science advisor, Piper Jaffray; Joe Cortright, vice president and principal, Impresa; Jeff Finkle, CEcD, president and CEO, International Economic Development Council; Tim Woodward, managing director, Nth Power; and Joel S. Yudken, PhD, principal, High Road Strategies, LLC. External Reviewers: Mark Z. Jacobson, professor of Civil and Environmental Engineering and director, Atmosphere/Energy Program, Stanford University; and Joe Fargione, Lead Scientist, North America Region, The Nature Conservancy. We would like to thank our Pew colleagues—Andrew McDonald, Brandon MacGillis, Kymberly Escobar, Lisa Cutler, Janet Lane, Alyson Freedman and Jessica Riordan—for their assistance with communications and dissemination.
    [Show full text]
  • The Depression Era Pdf, Epub, Ebook
    CENTRAL GLASS WORKS: THE DEPRESSION ERA PDF, EPUB, EBOOK Tim Schmidt | 192 pages | 01 Jun 2004 | Schiffer Publishing Ltd | 9780764320163 | English | Atglen, United States Central Glass Works: The Depression Era PDF Book Comic Books. To find a value for your vintage glassware, shop around. Nonetheless, stock prices continued to rise, and by the fall of that year had reached stratospheric levels that could not be justified by expected future earnings. Answer: When we think of Depression Glass, we usually think of the popular dishware manufactured during that period. Lorraine — Also known as pattern No. Model Trains. The early history of the companies and operations which became the Indiana Glass Company are confusing, convoluted and not terribly well documented! And those relief programs for which blacks were eligible on paper were rife with discrimination in practice, since all relief programs were administered locally. Feel the heft of it. Princess is often found in pink and green, followed by yellow and occasionally in light blue. Jobs available to women paid less, but were more stable during the banking crisis: nursing, teaching and domestic work. Many cookie jars were made in colors not originally associated with Mayfair, but the pink and light blue versions can be troublesome for new collectors. It went over to mass production in the s. Consignment shops also must collect a percentage of the sold price. Pyramid — also known as pattern No. For instance, English Hobnail and Miss America can look very similar with just a cursory inspection. Most often found in pink and monax. Lincoln's Depression. Cookie jars and shot glasses have been reproduced in the Mayfair pattern.
    [Show full text]
  • Wind Powering America Fy08 Activities Summary
    WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category).
    [Show full text]
  • Wind Powering America's Wind for Schools Project
    Wind Powering America’s Wind for Schools Project Summary Report I. Baring-Gould and C. Newcomb NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-7A20-51180 June 2012 Contract No. DE-AC36-08GO28308 Wind Powering America’s Wind for Schools Project Summary Report I. Baring-Gould and C. Newcomb Prepared under Task No. WE11.1102 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Management Report 15013 Denver West Parkway NREL/MP-7A20-51180 Golden, Colorado 80401 June 2012 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • A Feasibility Study for Transitioning Louisville, Kentucky's
    a Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Darst, Timothy. 2016. a Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources. Master's thesis, Harvard Extension School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797349 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A Feasibility Study for Transitioning Louisville, Kentucky’s Transportation and Electricity Generation to Renewable Sources Timothy J. Darst A Thesis in the Field of Sustainability and Environmental Management for the Degree of Liberal Arts in Extension Studies Harvard University May 2016 © 2016 Timothy J. Darst. Abstract Climate change is caused mainly by humans and there is a great risk of “severe, pervasive and irreversible impacts for people and ecosystems” (IPCC, 2014). It has been proposed by many that America can address climate change by simply buying electric cars and then obtaining all electricity from renewable sources (Deutch, & Moniz, 2010; Freeman & Parks, 2016). This “silver bullet” is appealing; however, without detailed study it is not known whether this is a viable solution in many communities across the United States. Louisville, Kentucky was chosen as a case study to determine if it is feasible for conversion to a 100%-renewably-sourced electricity grid and all-electric transportation model.
    [Show full text]