A Review of the Taxonomy and Systematics of Aigialosaurs

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Taxonomy and Systematics of Aigialosaurs Netherlands Journal of Geosciences — Geologie en Mijnbouw | 84 - 3 | 221 - 229 | 2005 A review of the taxonomy and systematics of aigialosaurs A.R. Dutchak Department of Geological Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, USA. Email: [email protected] Manuscript received: November 2004; accepted: January 2005 Abstract Aigialosaurs have been recognised as a group of semi-aquatic marine reptiles for over one hundred years. While the taxonomic status of aigialosaurs has changed little in the past century, the interfamilial relationships have been modified considerably making the phylogenetic relationships between aigialosaurs, mosasaurs, dolichosaurs, coniasaurs, varanids and other squamates a topic of much debate. The monophyly of the family Aigialosauridae has been contested by recent studies and remains highly questionable. The higher-level relationships of mosasauroids within Squamata remain problematic with studies placing mosasauroids outside of Varanidae, Varanoidea and even Anguimorpha. These findings conflict with earlier views that aigialosaurs (and by association mosasaurs) were closely related to Varanus. This study concludes that further descriptions of aigialosaur taxa are needed, and several key flaws need to be addressed in the data matrices that have been used in previous studies. This should facilitate the clarification of aigialosaur systematic relationships both within Mosasauroidea and Squamata. Keywords: aigialosaurs, mosasaurs, systematics, taxonomy | Introduction A. novaki Kramberger, 1892, Carsosaurus marchesetti Kornhuber, 1893, Opetiosaurus bucchichi Kornhuber, 1901, Proaigialosaurus The conventional characterisation of an 'aigialosaur' is that hueni Kuhn, 1958 and Haasiasaurus gittelmani (Polcyn et al., they are semi-aquatic squamates that lived in marginal marine 1999). In addition to the specimens properly described in the habitats during the early stages of the Late Cretaceous. The literature there are two more important taxa that have played first described aigialosaurs were found in the Cenomanian- integral roles in recent discussions of aigialosaur taxonomy aged rocks along the coast of the Adriatic Sea; more recently, and phylogeny. Dallasaurus turneri Bell & Polcyn, 2005 (in Bell (1997) reported on the presence, though without any previous literature as 'the Dallas aigialosaur' although the description of the animal, of an aigialosaur from North America most recent systematic analysis places it as the sister group to (this characterisation is now revised in the present volume). clidastine mosasaurs) is described in the present volume, and Recent taxonomic and systematic questions of aigialosaur 'the Trieste aigialosaur', erroneously referred to the genus nomenclature and phylogenetic relations have focused on Opetiosaurus (Calligaris 1988) and then left unnamed by which taxa are valid, who is their closest sister group within Carroll & DeBraga (1992) and later researchers, which is in the Squamata, and whether or not there is a monophyletic process of being described (A. Paid, pers. comm.). These eight Aigialosauridae (Caldwell et al, 1995; Bell, 1997), all of which specimens represent the complete dataset upon which our harkens back to a similar debate between Kornhuber (1873) understanding of aigialosaurs is based. and Kramberger (1892). It is the goal of this study to review the literature describing There are currently six published descriptions of putative and interpreting these eight specimens from the first publi­ aigialosaurs: Aigialosaurus dalmaticus Kramberger, 1892, cation (Kramberger, 1892) through the most recent systematic DownloadedNetherland from https://www.cambridge.org/cores Journal of Geoscience. IP address:s — Geologi 170.106.40.139e en Mijnbou, on 29w Sep | 202184 - at3 09:56:50 | 2005, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016774600021004 analyses (Bell & Polcyn, 2005; Polcyn & Bell, 2005). This review Suborder Dolichosauria will identify gaps in the current knowledge of aigialosaurs, and by association, weaknesses in current systematic hypotheses. Aigialosauridae Dolichosauridae By analysing the strengths and weaknesses of previous taxo­ nomic and systematic interpretations it will be possible to Acteosaurus Dolichosaurus determine the best starting points for future research and the Adriosaurus directions that this research should take. Pontosaurus Aigialosaurus | Review Order Squamata The family Aigialosauridae was erected by Kramberger (1892) to contain the previously described Acteosaurus von Meyer, Suborder Lepidosauria 1860 and Adriosaurus Seeley, 1881, his newly described specimens from the island of Lesina, Italy (now Hvar, Croatia) Aigialosauridae Dolichosauridae A. dalmaticus and A. novaki, and the renamed Pontosaurus (Hydrosaurus) lesinensis originally described in 1873 by Aigialosaurus Dolichosaurus Kornhuber (for a review of P. lesinensis and dolichosaur Carsosaurus Acteosaurus Opetiosaurus systematics see Pierce & Caldwell, 2004). Kramberger grouped Pontosaurus ?Mesoleptos Adriosaurus the Aigialosauridae with the Dolichosauridae (including only Dolichosaurus longicollis Owen, 1850) in the new suborder Ophiosauria (Fig. la; this name was actually preoccupied and Serpentes was emended to Dolichosauria at a later date). Kramberger Varanidae hypothesised that the Aigialosauridae were ancestral to Aigialosauridae modern lacertilians, dolichosaurs, and pythonomorphs (snakes Mosasauridae and mosasaurs). Dolichosauridae Kramberger's classification scheme was reviewed by Helodermatidae Kornhuber (1901), who determined that the members of the Glyptosauridae family Aigialosauridae did not differ significantly from extant Anniellidae monitors and thus did not merit removal from the family Anguidae Varanidae. Kornhuber (1901) argued that the 'completely Xenosauridae different shape' of the quadrate in A. dalmaticus was not sufficient cause to erect a new family, suggesting instead that quadrate shape was extremely variable across Varanidae and Fig. 1. a. The original arrangement of aigialosaurs and dolichosaurs that the differences seen in A. dalmaticus were not excep­ according to Kramberger (1892); b. the modified taxonomic scheme tional. Kornhuber (1901) went on to point out that if any proposed by Nopcsa (1903) separating the long-necked dolichosaurs from specimen were to be used to illustrate a transitional form the larger aigialosaurs; c. the systematic relations of anguimorph lizards, between varanids and pythonomorphs it should be not modified from Camp (1923). Kramberger's A. dalmaticus, but instead his new specimen 0. bucchichi based on its 'special, outstanding dentition' (the and tail and reduced limbs of Acteosaurus, Adriosaurus and cone-shaped dentition of 0. bucchichi appears to have been Pontosaurus were much more similar to characteristics seen in crushed, giving the teeth a more leaf-like appearance Dolichosaurus, thus meriting their placement in the family (A. Dutchak, pers. obs.). It should be noted that in addition Dolichosauridae (Fig. lb). The remaining lizards (Aigialosaurus, to contradicting Kramberger's (1892) classification scheme, Carsosaurus, Opetiosaurus and Mesoleptos zendrini) were Kornhuber (1901) also refused to acknowledge the renaming grouped together in an emended Aigialosauridae. of Pontosaurus, repeatedly referring to the specimen as Nopcsa (1908, 1923) again reviewed the relationships of Hydrosaurus throughout his paper. fossil lizards, with the latter paper being his final word on the With two totally different classification schemes in the subject. Rejecting his earlier (Nopcsa, 1903) suggestion that literature, Nopcsa (1903) was the next to review the 'Varanus- dolichosaurs and aigialosaurs were distantly related Nopcsa like lizards of Istria'. While agreeing with Kramberger (1892) determined that they should be placed in the same family. that the Aigialosauridae were sufficiently different from After some taxonomic juggling (see Nopcsa, 1923 for details) extant varanids to merit a familial distinction, Nopcsa (1903) the family Dolichosauridae was emended to include three proposed a different distribution of genera amongst the families. subfamilies: Dolichosaurinae (Acteosaurus, Adriosaurus, It was Nopcsa (1903) who recognised that the lengthy neck Pontosaurus, Dolichosaurus and the newly named Eidolosaurus), Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.139, on 29 SepNetherland 2021 at 09:56:50s Journa, subjectl toof the Geoscience Cambridges Core — termsGeologi of euse, en available Mijnbou atw | 84 - 3 | 2005 https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0016774600021004 El Aigialosaurinae (Aigialosaurus, Carsosaurus and Opetiosaurus) same with two new families being added to the superfamily and the newly erected, monogeneric Mesoleptinae (Mesoleptos). Varanoidea: the Helodermatidae and the Lanthanotidae (the Nopcsa (1923) also went to great lengths to disagree with authors obviously disagreed with the classification of earlier arguments by Fejervary (1918), who suggested that the Lanthanotus as an aigialosaur by McDowell and Bogert (1954)). cranial similarities seen in aigialosaurs and mosasaurs were Russell (1967) used Camp & Allison's (1961) taxonomic scheme a result of convergence, and to state that the subfamily in his landmark publication which focused on the Aigialosaurinae contained the ancestors of the mosasaurs. In Mosasauridae but also mentioned basal
Recommended publications
  • Estesia Mongoliensis (Squamata: Anguimorpha) and the Evolution of Venom Grooves in Lizards
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific Publications AMERICAN MUSEUM NOVITATES Number 3767, 31 pp. January 25, 2013 New materials of Estesia mongoliensis (Squamata: Anguimorpha) and the evolution of venom grooves in lizards HONG-YU YI1,2 AND MARK A. NORELL1,2 ABSTRACT New specimens of the fossil lizard Estesia mongoliensis are described from the Upper Cre- taceous of Mongolia. Phylogenetic analysis of 86 anguimorph taxa coded with 435 morphologi- cal characters and four genes confirms the placement of Estesia mongoliensis in a monophyletic Monstersauria. Extant monstersaurs, the genus Heloderma, are the only extant lizards bearing venom-transmitting teeth with a deep venom grove in the rostral carina. Compared to the crown group, stem monstersaurs are morphologically more variable in venom-delivery appa- ratus. This study has found that Estesia mongoliensis has two shallow grooves in the rostral and caudal carinae of its dentary teeth, demonstrating a primary venom-delivery apparatus. A sum- mary of venom-delivering tooth specialization in the Anguimorpha is provided, and related morphological characters are optimized on the strict consensus tree resulting from the com- bined morphological and molecular analysis of anguimorph phylogeny. The phylogeny supports a single origination of venom grooves in the Monstersauria, and indicates that grooved teeth are currently the only reliable venom-delivery apparatus to be recognized in fossil lizards. Key Words: Estesia mongoliensis, Monstersauria, venom groove, Anguimorpha INTRODUCTION Estesia mongoliensis is the oldest fossil squamate with dental grooves comparable to venom grooves in extant species.
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen Through Destructive Cleavage
    toxins Article Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen through Destructive Cleavage James S. Dobson 1 , Christina N. Zdenek 1 , Chris Hay 1, Aude Violette 2 , Rudy Fourmy 2, Chip Cochran 3 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (J.S.D.); [email protected] (C.N.Z.); [email protected] (C.H.) 2 Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; [email protected] (A.V.); [email protected] (R.F.) 3 Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; [email protected] * Correspondence: [email protected] Received: 11 March 2019; Accepted: 1 May 2019; Published: 7 May 2019 Abstract: The functional activities of Anguimorpha lizard venoms have received less attention compared to serpent lineages. Bite victims of varanid lizards often report persistent bleeding exceeding that expected for the mechanical damage of the bite. Research to date has identified the blockage of platelet aggregation as one bleeding-inducing activity, and destructive cleavage of fibrinogen as another. However, the ability of the venoms to prevent clot formation has not been directly investigated. Using a thromboelastograph (TEG5000), clot strength was measured after incubating human fibrinogen with Heloderma and Varanus lizard venoms. Clot strengths were found to be highly variable, with the most potent effects produced by incubation with Varanus venoms from the Odatria and Euprepriosaurus clades. The most fibrinogenolytically active venoms belonged to arboreal species and therefore prey escape potential is likely a strong evolutionary selection pressure.
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Leaming 300 North Zeeb Road, Ann Artx)r, Ml 48106-1346 USA U lM l 800-521-0600 UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE NEW RECORDS OF EARLY, MEDIAL, AND LATE CRETACEOUS LIZARDS AND THE EVOLUTION OF THE CRETACEOUS LIZARD FAUNA OF NORTH AMERICA A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY By RANDALL LAWRENCE NYDAM Norman, Oklahoma 2000 UMI Number 9962951 UMI UMI Microform9962951 Copyright 2000 by Bell & Howell Information and Leaming Company.
    [Show full text]
  • The Tiny Cretaceous Stem-Bird Oculudentavis Revealed As a Bizarre Lizard
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243048; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The tiny Cretaceous stem-bird Oculudentavis revealed as a bizarre lizard Arnau Bolet1,2, Edward L. Stanley3, Juan D. Daza4*, J. Salvador Arias5, Andrej Čerňanský6, Marta Vidal-García7, Aaron M. Bauer8, Joseph J. Bevitt9, Adolf Peretti10, and Susan E. Evans11 Affiliations: 1 Institut Català de Paleontologia, Universitat Autònoma de Barcelona. Barcelona, Spain. 2 School of Earth Sciences, University of Bristol, Bristol, United Kingdom. 3 Department of Herpetology, Florida Museum of Natural History, Gainesville, Florida, United States. 4 Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, United States. 5 Fundación Miguel Lillo, CONICET, San Miguel de Tucumán, Argentina. 6 Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia. 7Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada. 8Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, Pennsylvania, United States. 9Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia. 10GRS Gemresearch Swisslab AG and Peretti Museum Foundation, Meggen, Switzerland. 11Department of Cell and Developmental Biology, University College London, London, United Kingdom. *For correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243048; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Variability in Pulmonary Reduction and Asymmetry in a Serpentiform Lizard: the Sheltopusik, Pseudopus Apodus (Pallas, 1775)
    68 (1): 21– 26 © Senckenberg Gesellschaft für Naturforschung, 2018. 19.4.2018 Variability in pulmonary reduction and asymmetry in a serpentiform lizard: The sheltopusik, Pseudopus apodus (Pallas, 1775) Markus Lambertz 1, 2, *, Nils Arenz 1 & Kristina Grommes 1 1 Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany — 2 Sektion Herpetolo- gie, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany; [email protected] — * Correspond- ing author Accepted 4.ix.2017. Published online at www.senckenberg.de/vertebrate-zoology on 5.4.2018. Editor in charge: Uwe Fritz Abstract Besides snakes, numerous lineages of squamates gave rise to limb-reduced and elongated (serpentiform) species, indicating the evolution- ary success of this modification of the plesiomorphic lizard Bauplan. Concerted with a serpentiform habitus are several morphological adaptations, many of which also concern the structure and arrangement of the viscera, such as frequently a pronounced pulmonary asym- metry in which one lung is reduced or even absent. The European glass lizard or sheltopusik, Pseudopus apodus, is the largest species of the exclusively serpentiform Anguinae. Driven by pre-existing conflicting statements on pulmonary asymmetry, we examined the lungs of 14 sheltopusiks and compared the condition to 11 slow worms (Anguis fragilis). We consistently found the left lung pronouncedly shorter for the slow worm, but indeed a highly variable pulmonary asymmetry between left and right sides in the sheltopusik. This is the first verified case of such variability in pulmonary reduction for any serpentiform squamate and raises several questions about the underlying developmental program for this otherwise taxon-specifically conservative trait.
    [Show full text]
  • Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3045, 24 pp., 13 figures, 1 table July 27, 1992 Estesia mongoliensis, a New Fossil Varanoid from the Late Cretaceous Barun Goyot Formation of Mongolia1 MARK A. NORELL,2 MALCOLM C. McKENNA,3 AND MICHAEL J. NOVACEK3 ABSTRACT A new lizard from the Late Cretaceous Barun minotus and Saniwa. Although the phylogenetic Goyot Formation was collected during the 1990 relationships among these taxa are uncertain, pre- joint Mongolian American paleontological expe- liminary analysis suggests that the new taxon is dition to the Gobi Desert, Mongolia. This lizard the sister group to Lanthanotus and Varanus. Fur- is referable to a clade containing the extant genera ther, it displays the unusual feature oflongitudinal Lanthanotus, Heloderma, and Varanus, as well as grooves on the teeth, identical to the grooves used several poorly known extinct taxa including Cher- for venom conduction in Heloderma. INTRODUCTION One of the great Mesozoic and Tertiary worowska and Dovchin, 1968). Among these fossil-producing regions in the world is the are Cretaceous mammals and exquisitely Gobi Desert ofMongolia. Since their discov- preserved dinosaurs. Often overlooked, re- ery by field parties ofthe American Museum mains of lizards are among the most numer- in 1923, the Mesozoic beds from this region ous fossils encountered at some localities. have produced spectacular skeletons offossil Mongolian lizard fossils have been de- vertebrates (see Andrews, 1932; Kielan-Ja- scribed by Gilmore (1943) (from specimens ' This is contribution no. 1 of the Mongolian-American Museum Paleontological Project.
    [Show full text]
  • Digitalcommons@University of Nebraska - Lincoln
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2005 New Stratigraphic Subdivision, Depositional Environment, and Age Estimate for the Upper Cretaceous Djadokhta Formation, Southern Ulan Nur Basin, Mongolia Demberelyin Dashzeveg Geological Institute of the Mongolian Academy of Sciences, [email protected] Lowell Dingus American Museum of Natural History, [email protected] David B. Loope University of Nebraska, Lincoln, [email protected] Carl C. Swisher III Rutgers University Togtokh Dulam Mongolian Geological Survey See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Dashzeveg, Demberelyin; Dingus, Lowell; Loope, David B.; Swisher, Carl C. III; Dulam, Togtokh; and Sweeney, Mark R., "New Stratigraphic Subdivision, Depositional Environment, and Age Estimate for the Upper Cretaceous Djadokhta Formation, Southern Ulan Nur Basin, Mongolia" (2005). Papers in the Earth and Atmospheric Sciences. 209. https://digitalcommons.unl.edu/geosciencefacpub/209 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Demberelyin Dashzeveg, Lowell Dingus,
    [Show full text]
  • Helodermatid Lizard from the Mio-Pliocene Oak-Hickory Forest of Tennessee, Eastern USA, and a Review of Monstersaurian Osteoderms
    Helodermatid lizard from the Mio-Pliocene oak-hickory forest of Tennessee, eastern USA, and a review of monstersaurian osteoderms Jim I. Mead, Blaine W. Schubert, Steven C. Wallace, and Sandra L. Swift Acta Palaeontologica Polonica 57 (1), 2012: 111-121 doi: http://dx.doi.org/10.4202/app.2010.0083 The extant venomous Gila monster and beaded lizards, species of Heloderma, live today in southwestern USA and south along the Pacific coastal region into Central America, but their fossil history is poorly understood. Here we report helodermatid osteoderms (dermal ossicles) from the late Miocene–early Pliocene Gray Fossil Site, eastern Tennessee USA. Twenty−three species of mammals are known from the fauna including abundant Tapirus polkensis, as well as fishes, anurans, salamanders, turtles, Alligator, birds, and snakes. Beaded lizards belong to the Monstersauria, a clade that includes Primaderma + Paraderma + Gobiderma + Helodermatidae (Estesia, Eurheloderma, Lowesaurus, and Heloderma). Osteoderms of lizards in this clade are unique within Squamata; they typically are circular to polygonal in outline, domed to flat−domed in cross−section, have a vermiculate surface texture, are not compound structures, and do not have imbricate surfaces as on many scincomorph and anguid lizards. We review and characterize the osteoderms of all members of Monstersauria. Osteoderms from the cranium, body, and limbs of Heloderma characteristically have a ring−extension (bony flange) at least partly surrounding the dome. Its presence appears to be a key character distinct to all species of Heloderma, consequently, we propose the presence of a ring−extension to be an apomorphy. Three osteoderms from the Gray Fossil Site range from 1.5 to 3.0 mm in diameter, have the circular shape of helodermatid osteoderms with a domed apical surface, and have the ring−extensions, permiting generic identification.
    [Show full text]
  • ZOO VIEW Tales of Monitor Lizard Tails and Other Perspectives
    178 ZOO VIEW Herpetological Review, 2019, 50(1), 178–201. © 2019 by Society for the Study of Amphibians and Reptiles Tales of Monitor Lizard Tails and Other Perspectives SINCE I—ABOUT 30 YEARS AGO—GOT MY FIRST LIVING NILE MONITOR OTHER AS THE ROLL OVER AND OVER ON THE GROUND. THE VICTOR THEN AND BECAME ACQUAINTED WITH HIS LIFE HABITS IN THE TERRARIUM, THE COURTS THE FEMALE, FIRST FLICKING HIS TONGUE ALL OVER HER AND THEN, MONITOR LIZARDS HAVE FASCINATED ME ALL THE TIME, THESE ‘PROUDEST, IF SHE CONCURS, CLIMBING ON TOP OF HER AND MATING BY CURLING THE BEST-PROPORTIONED, MIGHTIEST, AND MOST INTELLIGENT’ LIZARDS AS BASE OF HIS TAIL BENEATH HERS AND INSERTING ONE OF HIS TWO HEMIPENES [FRANZ] WERNER STRIKINGLY CALLED THEM. INTO HER CLOACA. (MALE VARANIDS HAVE A UNIQUE CARTILAGINOUS, —ROBERT MERTENS (1942) SOMETIMES BONY, SUPPORT STRUCTURE IN EACH HEMIPENES, CALLED A HEMIBACULUM). MODERN COMPARATIVE METHODS ALLOW THE EXAMINATION OF —ERIC R. PIANKA AND LAURIE J. VITT (2003) THE PROBABLE COURSE OF EVOLUTION IN A LINEAGE OF LIZARDS (FAMILY VARANIDAE, GENUS VARANUS). WITHIN THIS GENUS, BODY MASS VARIES MAINTENANCE OF THE EXISTING DIVERSITY OF VARANIDS, AS WELL AS BY NEARLY A FULL FIVE ORDERS OF MAGNITUDE. THE FOSSIL RECORD AND CLADE DIVERSITY OF ALL OTHER EXTANT LIZARDS, WILL DEPEND INCREASINGLY PRESENT GEOGRAPHICAL DISTRIBUTION SUGGEST THAT VARANIDS AROSE ON OUR ABILITY TO MANAGE AND SHARE BELEAGUERED SPACESHIP OVER 65 MILLION YR AGO IN LAURASIA AND SUBSEQUENTLY DISPERSED EARTH. CURRENT AND EXPANDING LEVELS OF HUMAN POPULATIONS ARE TO AFRICA AND AUSTRALIA. TWO MAJOR LINEAGES HAVE UNDERGONE UNSUSTAINABLE AND ARE DIRECT AND INDIRECT CAUSES OF HABITAT LOSS.
    [Show full text]
  • Anatomia, Taxonomia, Ontogenia E Filogenia De Mosassaurianos Basais (Squamata, Mosasauria) E Suas Implicações Para a Evolução De Anguimorpha
    Bruno Gonçalves Augusta Anatomia, taxonomia, ontogenia e filogenia de mosassaurianos basais (Squamata, Mosasauria) e suas implicações para a evolução de Anguimorpha Anatomy, taxonomy, ontogeny and phylogeny of basal mosasaurians (Squamata, Mosasauria) and their implications to the evolution of Anguimorpha Vol. 2 – Figures São Paulo 2019 242 Chapter 1 - A new and exquisitely preserved fossil marine lizard with embryos Figure 1.1 – Coniasaurus sp. nov. preserved remains. Adult remains (above) are: A) Parietal; B) Cervical vertebra; C) Dorsal vertebra; D) Sacral vertebrae; E) Pygal vertebra; F) Dentary; G) Humerus; H) Proximal end of femur; I) Distal end of femur; J) Caudal vertebra. Embryonic remains (below) are: K) Premaxilla; L) Frontal; M) Cervical vertebra; N) Pygal vertebra; O) Dentary; P) Dorsal vertebra; Q) Caudal vertebra. Scale bars are 1mm for bones and 50mm for reconstructions. Skeletal reconstructions credit: Felipe Alves Elias. 243 Figure 1.2 – Paleogeography of Texas and biogeographic distribution of mosasaurians during the early Late Cretaceous (Cenomanian-Turonian). A) Cenomanian and Turonian dolichosaur and mosasaur localities. Southern North Sea Basin: 1: England and France (Anglo-Paris Basin; Rage, 1989; Caldwell, 1999; Caldwell & Cooper, 1999; 2: NW Germany (Diedrich, 1997, 1999). Eastern Mediterranean: 3: Slovenia (Carroll & DeBraga, 1992); 4: Hvar and Lesina, Croatia (Carroll & De Braga, 1992); 5: Hajula, Hakel and Al Nammoura, Lebanon (Dal Sasso & Renesto, 1999; Dalla Vecchia & Venturini, 1999); 6: ‘Ein Yabrud (Polcyn et al., 1999); 7: Besokty II, Kazakhstan (Averianov, 2001); 8: Goulmima, Morocco (Bardet et al., 2003); 9: Iembi, 244 Angola (Antunes, 1964); 10: Yagua, Columbia (Páramo, 1994). USA: 11: Big Bend, Texas (Bell & VonLoh, 1998); 12: Dallas area (Jacobs et al., 2005); 13: Kansas; 14: South Dakota and Wyoming (Bell & VonLoh, 1998; VonLoh & Bell, 1998).
    [Show full text]