Examination of the State-Dependency and Consequences of Foraging in a Low-Energy

Total Page:16

File Type:pdf, Size:1020Kb

Examination of the State-Dependency and Consequences of Foraging in a Low-Energy Examination of the State-Dependency and Consequences of Foraging in a Low-Energy System, the Gila Monster, Heloderma Suspectum by Christian Wright A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2014 by the Graduate Supervisory Committee: Dale DeNardo, Chair Jon Harrison Kevin McGraw Brian Sullivan Blair Wolf ARIZONA STATE UNIVERSITY May 2014 ABSTRACT Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior that seeks to protect assets of fitness is termed the asset protection principle (APP). A majority of studies examining SDF have focused on the role that energy balance has on the foraging of organisms with high metabolism and high energy demands ("high-energy systems" such as endotherms). In contrast, limited work has examined whether species with low energy use ("low-energy systems" such as vertebrate ectotherms) use an SDF strategy. Additionally, there is a paucity of evidence demonstrating how physiological and environmental factors other than energy balance influence foraging behavior (e.g. hydration state and free-standing water availability). Given these gaps in our understanding of SDF behavior and the APP, I examined the state-dependency and consequences of foraging in a low-energy system occupying a resource-limited environment - the Gila monster (Heloderma suspectum, Cope 1869). In contrast to what has been observed in a wide variety of taxa, I found that Gila monsters do not use a SDF strategy to manage their energy reserves and that Gila monsters do not defend their energetic assets. However, hydration state and free-standing water availability do affect foraging behavior of Gila monsters. Additionally, as Gila monsters become increasingly dehydrated, they reduce activity to defend hydration state. The SDF behavior of Gila monsters appears to be largely driven by the fact that Gila monsters i must separately satisfy energy and water demands with food and free-standing water, respectively, in conjunction with the timescale within which Gila monsters balance their energy and water budgets (supra-annually versus annually, respectively). Given these findings, the impact of anticipated changes in temperature and rainfall patterns in the Sonoran Desert are most likely going to pose their greatest risks to Gila monsters through the direct and indirect effects on water balance. ii DEDICATION I dedicate my dissertation work to the support of my many friends and my family. Thank you to my loving mother, Cyndy Wright, for all the words of encouragement, love, and support. To my brother Cory Wright, who has always pushed me to be my best and to his wife, Cathy Wright, for her continued support. To my niece Madeline Wright, whom I one day hope becomes a scientist! And especially to my grandparents, Louis and Elizabeth Headley, who always taught me to do what I loved and work hard every day. I would also like to give a special thanks to my closest friends, Dr. Zachary and Kaity Redfield-Ortiz, the Redfield/Taylor family, and Janin Polcovich, for being there throughout my entire doctoral program. iii ACKNOWLEDGMENTS This research was made possible through funding by the Graduate and Professional Students’ Association at Arizona State University (ASU), the ASU Foundation, the School of Life Sciences at ASU, College of Liberal Arts and Sciences at ASU, and the Peabody Family Memorial Graduate Fellowship. I greatly appreciate the support of Dr. Ty Hoffman, Dr. Michael Angilletta, Dr. John Sabo, Dr. Kevin McCluney, Dr. Jake Brashears, Dr. Zachary Stahlschmidt, Dr. Catriona Condon, Marin Jackson, Courtney Holden, Guillaume Demare, and Megan Murphy. Finally, I would like to extend a special thank you to my mother Cyndy Wright, my brother Cory Wright, my friends, my graduate committee, and to my graduate colleague and friend, Karla Moeller. iv TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ..........................................................................................................xii LIST OF SYMBOLS / NOMENCLATURE ................................................................. xiv CHAPTER 1 INTRODUCTION .................... ............................................................................ 1 2 EXAMINING COLD-ACCLIMATION METABOLIC RESPONSE AND THERMAL SENSITIVITY OF STANDARD METABOLIC RATE .............. 8 Introduction ................................................................................................ 8 Results ...................................................................................................... 10 Experiment 1 – Thermal Sensitivity of SMR ............................. 10 Experiment 2 – Acclimation of SMR to Cold Temperatures ..... 11 Discussion ................................................................................................ 11 Thermal Sensitivity of SMR ....................................................... 11 Acclimation of SMR to Cold Temperatures ............................... 13 Ecological Significance ............................................................... 15 Materials and Methods ............................................................................. 18 Experiment 1 – Thermal Sensitivity of SMR ............................. 18 Experiment 2 – Acclimation of SMR to Cold Temperatures ..... 21 Meta-analysis of Gila Monster SMR .......................................... 24 Statistical Analysis ...................................................................... 24 v CHAPTER Page 3 DO LOW ENERGY ORGANISMS PRACTICE STATE-DEPENDENT FORAGING STRATEGIES? ............................................................................. 33 Introduction .............................................................................................. 33 Results ...................................................................................................... 36 Surface Activity Estimates .......................................................... 36 Energy Expenditure per Day ....................................................... 37 Condition – Change in Tail Volume ........................................... 38 Total Body Water ........................................................................ 38 Hydration State ............................................................................ 38 Energy Expended Performing Different Activities .................... 39 Cost of Foraging .......................................................................... 40 Discussion ................................................................................................ 40 The Role of Energetics and Hydric Currencies in Satisfying Physiological Demands ............................................................... 41 Energetic State, SDF, the APP, and Possible Mechanisms Driving Foraging Behavior ....................................................................... 42 Hydration State and SDF ............................................................. 45 Ecological Implications .............................................................. 47 Materials and Methods ............................................................................. 48 Study Site and Weather Conditions ............................................ 48 Sample Sizes and Radiotelemetry ............................................... 49 Meal Supplementation ................................................................. 50 vi CHAPTER Page Body Condition and Hydration State .......................................... 50 Field Metabolic Rate and Total Body Water Estimates ............. 51 Surface Activity Estimates .......................................................... 53 Cost of Foraging .......................................................................... 54 Statistical Analysis ...................................................................... 56 4 THE IMPACT OF INDIVIDUAL VARIATION IN PHYSIOLOGICAL STATE ON FORAGING BEHAVIOR ACROSS MULTIPLE TIME SCALES: IMPLICATIONS FOR FUTURE STUDIES EXAMINING STATE-DEPENDENT FORAGING ........................................................................................................ 67 Introduction .............................................................................................. 67 Results ...................................................................................................... 72 Surface Activity and Tail Volume .............................................. 72 Surface Activity and Osmolality ................................................. 73 Tail Volume across Seasons and Years ...................................... 73 Plasma Osmolality across Seasons and Years ............................ 74 Discussion ................................................................................................ 74 Broader Contributions to SDF Theory ........................................ 74 Implications Associated with Global Climate Change .............. 78 Materials and Methods ............................................................................. 80 Study Site and Weather Conditions ...........................................
Recommended publications
  • Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen Through Destructive Cleavage
    toxins Article Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen through Destructive Cleavage James S. Dobson 1 , Christina N. Zdenek 1 , Chris Hay 1, Aude Violette 2 , Rudy Fourmy 2, Chip Cochran 3 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (J.S.D.); [email protected] (C.N.Z.); [email protected] (C.H.) 2 Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; [email protected] (A.V.); [email protected] (R.F.) 3 Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; [email protected] * Correspondence: [email protected] Received: 11 March 2019; Accepted: 1 May 2019; Published: 7 May 2019 Abstract: The functional activities of Anguimorpha lizard venoms have received less attention compared to serpent lineages. Bite victims of varanid lizards often report persistent bleeding exceeding that expected for the mechanical damage of the bite. Research to date has identified the blockage of platelet aggregation as one bleeding-inducing activity, and destructive cleavage of fibrinogen as another. However, the ability of the venoms to prevent clot formation has not been directly investigated. Using a thromboelastograph (TEG5000), clot strength was measured after incubating human fibrinogen with Heloderma and Varanus lizard venoms. Clot strengths were found to be highly variable, with the most potent effects produced by incubation with Varanus venoms from the Odatria and Euprepriosaurus clades. The most fibrinogenolytically active venoms belonged to arboreal species and therefore prey escape potential is likely a strong evolutionary selection pressure.
    [Show full text]
  • Prolonged Poststrike Elevation in Tongue-Flicking Rate with Rapid Onset in Gila Monster, <Emphasis Type="Italic">
    Journal of Chemical Ecology, Vol. 20. No. 11, 1994 PROLONGED POSTSTRIKE ELEVATION IN TONGUE- FLICKING RATE WITH RAPID ONSET IN GILA MONSTER, Heloderma suspectum: RELATION TO DIET AND FORAGING AND IMPLICATIONS FOR EVOLUTION OF CHEMOSENSORY SEARCHING WILLIAM E. COOPER, JR. I'* CHRISTOPHER S. DEPERNO I and JOHNNY ARNETT 2 ~Department of Biology Indiana University-Purdue University Fort Wayne Fort Wayne. bldiana 46805 2Department of Herpetology Cincinnati Zoo and Botanical Garden Cincinnati, Ohio 45220 (Received May 6, 1994; accepted June 27, 1994) Abstract--Experimental tests showed that poststrike elevation in tongue-flick- ing rate (PETF) and strike-induced chemosensory searching (SICS) in the gila monster last longer than reported for any other lizard. Based on analysis of numbers of tongue-flicks emitted in 5-rain intervals, significant PETF was detected in all intervals up to and including minutes 41~-5. Using 10-rain intervals, PETF lasted though minutes 46-55. Two of eight individuals con- tinued tongue-flicking throughout the 60 rain after biting prey, whereas all individuals ceased tongue-flicking in a control condition after minute 35. The apparent presence of PETF lasting at least an hour in some individuals sug- gests that there may be important individual differences in duration of PETF. PETF and/or SICS are present in all families of autarchoglossan lizards stud- ied except Cordylidae, the only family lacking lingually mediated prey chem- ical discrimination. However, its duration is known to be greater than 2-rain only in Helodermatidae and Varanidae, the living representatives of Vara- noidea_ That prolonged PETF and S1CS are typical of snakes provides another character supporting a possible a varanoid ancestry for Serpentes.
    [Show full text]
  • Lizard Facts Lizards Are One of the Biggest, Most Diverse and Widespread Groups of Reptiles Found on Earth
    Lizard Facts Lizards are one of the biggest, most diverse and widespread groups of reptiles found on Earth. They are found on all continents, except Antarctica. ▪ Lizard (suborder Sauria) refer to any of the more than 5,500 species of reptiles belonging in the order Squamata (which also includes snakes). They feature in a wide variety of colors, appearance, and size. ▪ It comprises 40 different families. According to the San Diego Zoo, there are currently over 4,675 lizard species, including iguanas, chameleons, geckos, Gila monsters, monitors, and skinks. Their ancestors appeared on Earth over 200 million years ago. ▪ Lizards are scaly-skinned reptiles that are usually distinguished from snakes by the possession of legs, movable eyelids, and external ear openings. However, some traditional (that is, non-snake) lizards lack one or more of these features. ▪ Due to their smooth and shiny appearance, some lizards can appear slimy or slippery. However, their skin – like all reptiles – is actually very dry due to a lack of pores to excrete water and oils. Class: Reptilia Higher classification: Scaled reptiles Kingdom: Animalia Order: Squamata Phylum: Chordata KIDSKONNECT.COM Lizard Facts MOBILITY All lizards are capable of swimming, and a few are quite comfortable in aquatic environments. Many are also good climbers and fast sprinters. Some can even run on two legs, such as the Collared Lizard and the Spiny-Tailed Iguana. LIZARDS AND HUMANS Most lizard species are harmless to humans. Only the very largest lizard species pose any threat of death. The chief impact of lizards on humans is positive, as they are the main predators of pest species.
    [Show full text]
  • Vernacular Name GILA MONSTER
    1/6 Vernacular Name GILA MONSTER GEOGRAPHIC RANGE Southwestern U.S. and northwestern Mexico. HABITAT Succulent desert and dry sub-tropical scrubland, hillsides, rocky slopes, arroyos and canyon bottoms (mainly those with streams). CONSERVATION STATUS IUCN: Near Threatened (2016). Population Trend: Decreasing. Threats: - illegal exploitation by commercial and private collectors. - habitat destruction due to urbanization and agricultural development. COOL FACTS Their common name “Gila” refers to the Gila River Basin in the southwest U.S. Their skin consists of many round, bony scales, a feature that was common among dinosaurs, but is unusual in today's reptiles. The Gila monster and the Mexican beaded lizard are the only lizards known to be venomous. Both live in North America. Gila monsters are the largest lizards native to the U.S. Gila monsters may bite and not let go, continuing to chew and, thereby, inject more venom into their victims. Venom is released from the venom glands (modified salivary glands) into the lower jaws and travels up grooves on the outside of the teeth and into the victims as the Gila monsters bite. The lizards lack the musculature to forcibly inject the venom; instead the venom is propelled from the gland to the tooth by chewing. Capillary action brings the venom out of the tooth and into the victim. Gila monsters have been observed to flip over while biting the victim, presumably to aid the flow of the venom into the wound. Bites are painful, but rarely fatal to humans in good health. While the bites can overpower predators and prey, they are rarely fatal to humans in good health although humans may suffer pain, edema, bleeding, nausea and vomiting.
    [Show full text]
  • An Annotated Type Catalogue of Varanid Lizards (Reptilia: Squamata: Varanidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 33 187–194 (2018) DOI: 10.18195/issn.0312-3162.33(2).2018.187-194 An annotated type catalogue of varanid lizards (Reptilia: Squamata: Varanidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. Email: [email protected] ABSTRACT – There are currently 30 recognised species, with 13 subspecies, of varanid lizards (Varanidae: Varanus) occurring in Australia, with 24 known to occur in Western Australia, including fve endemic species and one subspecies. Of the 37 Australian varanid species or subspecies, type material for 12 are, or have formerly been, housed in the collection of the Western Australian Museum, including 11 holotypes, one neotype and 67 paratypes. Of the 67 paratypes held in the WAM collection, fve belonging to V. panoptes rubidus and V. glauerti have not been located and are presumed lost. An annotated catalogue is provided for all varanid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, goanna, monitor lizard, holotype, neotype, paratype, nomenclature INTRODUCTION WAM collection; it was subsequently gifted to the The varanid lizards (family Varanidae) are British Museum (Natural History), now the Natural represented by a single genus (Varanus) distributed History Museum, London. Only five currently across Africa, the Middle East, South-East Asia recognised Australian varanids were described in and Australia (Pianka et al. 2004), comprising the early 20th century (1901–1950), while the late approximately 80 species, of which 30 (~37.5%) and 20th century (1951–2000) saw a substantial increase 13 subspecies occur in Australia (Uetz et al.
    [Show full text]
  • The Tiny Cretaceous Stem-Bird Oculudentavis Revealed As a Bizarre Lizard
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243048; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The tiny Cretaceous stem-bird Oculudentavis revealed as a bizarre lizard Arnau Bolet1,2, Edward L. Stanley3, Juan D. Daza4*, J. Salvador Arias5, Andrej Čerňanský6, Marta Vidal-García7, Aaron M. Bauer8, Joseph J. Bevitt9, Adolf Peretti10, and Susan E. Evans11 Affiliations: 1 Institut Català de Paleontologia, Universitat Autònoma de Barcelona. Barcelona, Spain. 2 School of Earth Sciences, University of Bristol, Bristol, United Kingdom. 3 Department of Herpetology, Florida Museum of Natural History, Gainesville, Florida, United States. 4 Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, United States. 5 Fundación Miguel Lillo, CONICET, San Miguel de Tucumán, Argentina. 6 Department of Ecology, Laboratory of Evolutionary Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia. 7Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada. 8Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, Pennsylvania, United States. 9Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Australia. 10GRS Gemresearch Swisslab AG and Peretti Museum Foundation, Meggen, Switzerland. 11Department of Cell and Developmental Biology, University College London, London, United Kingdom. *For correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.09.243048; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Volume 78 Part 4
    JournalJournal of ofthe the Royal Royal Society Society of ofWestern Western Australia, Australia, 78(4), 78:107-114, December 1995 1995 Foraging patterns and behaviours, body postures and movement speed for goannas, Varanus gouldii (Reptilia: Varanidae), in a semi-urban environment G G Thompson Edith Cowan University, Joondalup Drive, Joondalup, WA 6027 Manuscript received July 1995; accepted February 1996 Abstract Two Gould’s goannas (Varanus gouldii) were intensively observed in the semi-urban environ- ment of Karrakatta Cemetery, Perth, Western Australia. After emerging and basking to increase their body temperature, they spent most of their time out of their burrows foraging, primarily in leaves between grave covers, and under trees and shrubs. Mean speed of movement between specific foraging sites was 27.6 m min-1, whereas the overall mean speed while active was only 2.6 m min-1 because of their slower speeds while foraging. A number of specific body postures were observed, including; vigilance, walking, erect, and tail swipes. Specific feeding and avoidance behaviours were also recorded, along with the influence that two species of birds had on their selection of foraging sites. Introduction Methods Our knowledge of foraging habits, patterns, home Study Site range and activity area size, posture, and behaviour for Karrakatta Cemetery (115° 47' E, 31° 55' S) is located large goannas has been extended since the early work of within the Perth metropolitan area, approximately 4 km Cowles (1930) with V. niloticus, and Green & King (1978) west-south-west of the city centre. It has 53 ha allotted with V. rosenbergi. Recent comprehensive studies include to burial plots and another 53 ha to roads, ornamental those by Auffenberg (1981a,b; 1988; 1994) for V.
    [Show full text]
  • Variability in Pulmonary Reduction and Asymmetry in a Serpentiform Lizard: the Sheltopusik, Pseudopus Apodus (Pallas, 1775)
    68 (1): 21– 26 © Senckenberg Gesellschaft für Naturforschung, 2018. 19.4.2018 Variability in pulmonary reduction and asymmetry in a serpentiform lizard: The sheltopusik, Pseudopus apodus (Pallas, 1775) Markus Lambertz 1, 2, *, Nils Arenz 1 & Kristina Grommes 1 1 Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany — 2 Sektion Herpetolo- gie, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany; [email protected] — * Correspond- ing author Accepted 4.ix.2017. Published online at www.senckenberg.de/vertebrate-zoology on 5.4.2018. Editor in charge: Uwe Fritz Abstract Besides snakes, numerous lineages of squamates gave rise to limb-reduced and elongated (serpentiform) species, indicating the evolution- ary success of this modification of the plesiomorphic lizard Bauplan. Concerted with a serpentiform habitus are several morphological adaptations, many of which also concern the structure and arrangement of the viscera, such as frequently a pronounced pulmonary asym- metry in which one lung is reduced or even absent. The European glass lizard or sheltopusik, Pseudopus apodus, is the largest species of the exclusively serpentiform Anguinae. Driven by pre-existing conflicting statements on pulmonary asymmetry, we examined the lungs of 14 sheltopusiks and compared the condition to 11 slow worms (Anguis fragilis). We consistently found the left lung pronouncedly shorter for the slow worm, but indeed a highly variable pulmonary asymmetry between left and right sides in the sheltopusik. This is the first verified case of such variability in pulmonary reduction for any serpentiform squamate and raises several questions about the underlying developmental program for this otherwise taxon-specifically conservative trait.
    [Show full text]
  • Inventory of Amphibians and Reptiles at Death Valley National Park
    Inventory of Amphibians and Reptiles at Death Valley National Park Final Report Permit # DEVA-2003-SCI-0010 (amphibians) and DEVA-2002-SCI-0010 (reptiles) Accession # DEVA- 2493 (amphibians) and DEVA-2453 (reptiles) Trevor B. Persons and Erika M. Nowak Common Chuckwalla in Greenwater Canyon, Death Valley National Park (TBP photo). USGS Southwest Biological Science Center Colorado Plateau Research Station Box 5614, Northern Arizona University Flagstaff, Arizona 86011 May 2006 Death Valley Amphibians and Reptiles_____________________________________________________ ABSTRACT As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002- 2004. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species.
    [Show full text]
  • Pest Risk Assessment
    PEST RISK ASSESSMENT Lace Monitor Varanus varius Photo: Quartl (2009). Image from Wikimedia Commons under the Creative Commons Attribution-Share Alike 3.0 Unported license.) September 2011 Department of Primary Industries, Parks, Water and Environment Resource Management and Conservation Division Department of Primary Industries, Parks, Water and Environment 2011 Information in this publication may be reproduced provided that any extracts are acknowledged. This publication should be cited as: DPIPWE (2011) Pest Risk Assessment: Lace Monitor (Varanus varius). Department of Primary Industries, Parks, Water and Environment. Hobart, Tasmania. About this Pest Risk Assessment: This pest risk assessment is developed in accordance with the Policy and Procedures for the Import, Movement and Keeping of Vertebrate Wildlife in Tasmania (DPIPWE 2011). The policy and procedures set out conditions and restrictions for the importation of controlled animals pursuant to s32 of the Nature Conservation Act 2002. This pest risk assessment is prepared by DPIPWE for use within the Department. For more information about this Pest Risk Assessment, please contact: Wildlife Management Branch Department of Primary Industries, Parks, Water and Environment Address: GPO Box 44, Hobart, TAS. 7001, Australia. Phone: 1300 386 550 Email: [email protected] Visit: www.dpipwe.tas.gov.au Disclaimer The information provided in this pest risk assessment is provided in good faith. The Crown, its officers, employees and agents do not accept liability however arising, including liability for negligence, for any loss resulting from the use of or reliance upon the information in this pest risk assessment and/or reliance on its availability at any time. Pest Risk Assessment: Lace Monitor (Varanus varius) 2/18 1.
    [Show full text]
  • Anatomia, Taxonomia, Ontogenia E Filogenia De Mosassaurianos Basais (Squamata, Mosasauria) E Suas Implicações Para a Evolução De Anguimorpha
    Bruno Gonçalves Augusta Anatomia, taxonomia, ontogenia e filogenia de mosassaurianos basais (Squamata, Mosasauria) e suas implicações para a evolução de Anguimorpha Anatomy, taxonomy, ontogeny and phylogeny of basal mosasaurians (Squamata, Mosasauria) and their implications to the evolution of Anguimorpha Vol. 2 – Figures São Paulo 2019 242 Chapter 1 - A new and exquisitely preserved fossil marine lizard with embryos Figure 1.1 – Coniasaurus sp. nov. preserved remains. Adult remains (above) are: A) Parietal; B) Cervical vertebra; C) Dorsal vertebra; D) Sacral vertebrae; E) Pygal vertebra; F) Dentary; G) Humerus; H) Proximal end of femur; I) Distal end of femur; J) Caudal vertebra. Embryonic remains (below) are: K) Premaxilla; L) Frontal; M) Cervical vertebra; N) Pygal vertebra; O) Dentary; P) Dorsal vertebra; Q) Caudal vertebra. Scale bars are 1mm for bones and 50mm for reconstructions. Skeletal reconstructions credit: Felipe Alves Elias. 243 Figure 1.2 – Paleogeography of Texas and biogeographic distribution of mosasaurians during the early Late Cretaceous (Cenomanian-Turonian). A) Cenomanian and Turonian dolichosaur and mosasaur localities. Southern North Sea Basin: 1: England and France (Anglo-Paris Basin; Rage, 1989; Caldwell, 1999; Caldwell & Cooper, 1999; 2: NW Germany (Diedrich, 1997, 1999). Eastern Mediterranean: 3: Slovenia (Carroll & DeBraga, 1992); 4: Hvar and Lesina, Croatia (Carroll & De Braga, 1992); 5: Hajula, Hakel and Al Nammoura, Lebanon (Dal Sasso & Renesto, 1999; Dalla Vecchia & Venturini, 1999); 6: ‘Ein Yabrud (Polcyn et al., 1999); 7: Besokty II, Kazakhstan (Averianov, 2001); 8: Goulmima, Morocco (Bardet et al., 2003); 9: Iembi, 244 Angola (Antunes, 1964); 10: Yagua, Columbia (Páramo, 1994). USA: 11: Big Bend, Texas (Bell & VonLoh, 1998); 12: Dallas area (Jacobs et al., 2005); 13: Kansas; 14: South Dakota and Wyoming (Bell & VonLoh, 1998; VonLoh & Bell, 1998).
    [Show full text]
  • BIAWAK Journal of Varanid Biology and Husbandry
    BIAWAK Journal of Varanid Biology and Husbandry Volume 10 Number 2 ISSN: 1936-296X On the Cover: Varanus salvator bivittatus The hand-drawn anatomical illustrations appearing on the cover and inset of this issue originate from Grace B. Watkinson’s 1906 work entitled “The cranial nerves of Varanus bivittatus.” With 17 figures, this monograph repre- sents one of the earliest investigations on the nervous system of varanid lizards, and features what may be the first published illustration of the varanid brain (Varanus salvator bivittatus). Figures courtesy of the American Museum of Natural History Library. Watkinson, G.B. 1906. The cranial nerves of Varanus bivittatus. Gegenbaurs Morphologisches Jahrbuch 35: 450- 472 + 17 figures. BIAWAK Journal of Varanid Biology and Husbandry Editor Editorial Review ROBERT W. MENDYK MICHAEL J. BALSAI Department of Herpetology Department of Biology, Temple University Smithsonian National Zoological Park Philadelphia, PA 19122, US 3001 Connecticut Avenue NW [email protected] Washington, DC 20008, US [email protected] BERND EIDENMÜLLER Griesheimer Ufer 53 Department of Herpetology 65933 Frankfurt, DE Jacksonville Zoo and Gardens [email protected] 370 Zoo Parkway Jacksonville, FL 32218 MICHAEL FOST [email protected] Department of Math and Statistics Georgia State University Atlanta, GA 30303, US Associate Editors [email protected] DANIEL BENNETT RUSTON W. HARTDEGEN PO Box 42793 Department of Herpetology, Dallas Zoo Larnaca 6503, CY 650 South R.L. Thornton Freeway [email protected] Dallas, Texas 75203, US [email protected] MICHAEL COTA Natural History Museum HANS-GEORG HORN National Science Museum, Thailand Monitor Lizards Research Station Technopolis, Khlong 5, Khlong Luang Hasslinghauser Str.
    [Show full text]