Taxonomic Reassessment and Conservation Status of the Beaded Lizard, Heloderma Horridum (Squamata: Helodermatidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RESEARCH PUBLICATIONS by ZOO ATLANTA STAFF 1978–Present
RESEARCH PUBLICATIONS BY ZOO ATLANTA STAFF 1978–Present This listing may be incomplete, and some citation information may be incomplete or inaccurate. Please advise us if you are aware of any additional publications. Copies of publications may be available directly from the authors, or from websites such as ResearchGate. Zoo Atlanta does not distribute copies of articles on behalf of these authors. Updated: 22 Jan 2020 1978 1. Maple, T.L., and E.L. Zucker. 1978. Ethological studies of play behavior in captive great apes. In E.O. Smith (Ed.), Social Play in Primates. New York: Academic Press, 113–142. 1979 2. Maple, T.L. 1979. Great apes in captivity: the good, the bad, and the ugly. In J. Erwin, T.L. Maple, G. Mitchell (Eds.), Captivity and Behavior: Primates in Breeding Colonies, Laboratories and Zoos. New York: Van Nostrand Reinhold, 239–272. 3. Strier, K.B., J. Altman, D. Brockman, A. Bronikowski, M. Cords, L. Fedigan, H. Lapp, J. Erwin, T.L. Maple, and G. Mitchell (Eds.). 1979. Captivity and Behavior: Primates in Breeding Colonies, Laboratories and Zoos. New York: Van Nostrand Reinhold, 286. 1981 4. Hoff, M.P., R.D. Nadler, and T.L. Maple. 1981. Development of infant independence in a captive group of lowland gorillas. Developmental Psychobiology 14:251–265. 5. Hoff, M.P., R.D. Nadler, and T.L. Maple. 1981. The development of infant play in a captive group of lowland gorillas (Gorilla gorilla gorilla). American Journal of Primatology 1:65–72. 1982 6. Hoff, M.P., R.D. Nadler, and T.L. Maple. -
Estesia Mongoliensis (Squamata: Anguimorpha) and the Evolution of Venom Grooves in Lizards
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by American Museum of Natural History Scientific Publications AMERICAN MUSEUM NOVITATES Number 3767, 31 pp. January 25, 2013 New materials of Estesia mongoliensis (Squamata: Anguimorpha) and the evolution of venom grooves in lizards HONG-YU YI1,2 AND MARK A. NORELL1,2 ABSTRACT New specimens of the fossil lizard Estesia mongoliensis are described from the Upper Cre- taceous of Mongolia. Phylogenetic analysis of 86 anguimorph taxa coded with 435 morphologi- cal characters and four genes confirms the placement of Estesia mongoliensis in a monophyletic Monstersauria. Extant monstersaurs, the genus Heloderma, are the only extant lizards bearing venom-transmitting teeth with a deep venom grove in the rostral carina. Compared to the crown group, stem monstersaurs are morphologically more variable in venom-delivery appa- ratus. This study has found that Estesia mongoliensis has two shallow grooves in the rostral and caudal carinae of its dentary teeth, demonstrating a primary venom-delivery apparatus. A sum- mary of venom-delivering tooth specialization in the Anguimorpha is provided, and related morphological characters are optimized on the strict consensus tree resulting from the com- bined morphological and molecular analysis of anguimorph phylogeny. The phylogeny supports a single origination of venom grooves in the Monstersauria, and indicates that grooved teeth are currently the only reliable venom-delivery apparatus to be recognized in fossil lizards. Key Words: Estesia mongoliensis, Monstersauria, venom groove, Anguimorpha INTRODUCTION Estesia mongoliensis is the oldest fossil squamate with dental grooves comparable to venom grooves in extant species. -
Diversificação Morfológica E Molecular Em Lagartos Dactyloidae Sul-Americanos
MUSEU PARAENSE EMÍLIO GOELDI UNIVERSIDADE FEDERAL DO PARÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA CURSO DE DOUTORADO EM ZOOLOGIA DIVERSIFICAÇÃO MORFOLÓGICA E MOLECULAR EM LAGARTOS DACTYLOIDAE SUL-AMERICANOS ANNELISE BATISTA D’ANGIOLELLA Belém - PA 2015 ANNELISE BATISTA D’ANGIOLELLA DIVERSIFICAÇÃO MORFOLOGICA E MOLECULAR EM LAGARTOS DACTYLOIDAE SUL-AMERICANOS Tese apresenta ao Programa de Pós-Graduação em Zoologia do convênio Universidade Federal do Pará e Museu Paraense Emílio Goeldi, para obtenção do título de doutora em zoologia. Orientadora: Dra. Tereza Cristina Ávila Pires Co-Orientadora: Dra. Ana Carolina Carnaval Belém - PA 2015 “É capaz quem pensa que é capaz.” ii Agradecimento Ao CNPq pela concessão da minha bolsa de pesquisa. A Capes pela Bolsa de Doutorado Sanduiche no exterior. À Teresa Avila-Pires, minha orientadora, por estar sempre disponível para ajudar, escutar e puxar a orelha! A minha co-orientadora Carol Carnaval, por ter me recebido de braços abertos em seu lab e por toda confiança e apoio. A Ana Prudente pelo passe livre à Coleção e sugestões dadas ao trabalho de hemipenis. Ao Tibério Burlamaqui por toda a ajuda com as análises moleculares e momentos de descontração! A todo o pessoal do laboratório de Herpetologia do MPEG pela companhia e troca de ideias, sempre ajudando quando possível. Ao lab de molecular que foi a minha casa nesses últimos quatro anos e a todos que por ele passaram e contribuíram de alguma forma com meu conhecimento, em especial a Áurea, Geraldo, e Joice. Aos meus filhos de quatro patas Pukey e Bingo por me amarem incondicionalmente. A dança, por ser meu refúgio e por não ter me deixado pirar! Ao meu amor, Bruno, por me inspirar diariamente a ser uma pessoa melhor! Por me impulsionar a ir além e por simplesmente existir em minha vida.. -
Beaded Lizard
Beaded lizard PHYSICAL DESCRIPTION: NATIVE HABITAT: • Their base color is black and marked with • Beaded lizards are found in a variety of varying amounts of yellow spots or bands, with habitats in Mexico and Guatemala. the exception of “H. alvarezi” which are all • They are most often found in tropical black in color! deciduous forest, but are also found in thorn • The beaded lizards have short tails which are forests, tropical scrubland and pine-oak forest. used to store fat so they can survive during months of estivation (hibernation that occurs DIET: in summer). • They feed primarily on reptile and bird eggs! • They have forked, pink tongues which they use to smell, with the help of a Jacobson’s organ. • They are semi-arboreal, and will climb trees to get into the nests of other animals. • The “beads” all over their body are called osteoderms, and can be seen on their skeleton! • They occasionally prey upon small birds, mammals, frogs, lizards, and insects. • SIZE AND LIFESPAN: • Adult beaded lizards range from 22inch to REPRODUCTION: 36inch in length. • The beaded lizard becomes sexually mature • Their average weight is around 4lbs! at six to eight years and mates between September and October. • Although males are slightly larger than females, the beaded lizards are not sexually • The female lays her clutch of two to 30 eggs dimorphic. between October and December, the clutch hatching the following June or July. • They have a long life span, living 30 years typically but can possibly live to 50 plus years!! • Young lizards are seldom seen. They are believed to spend much of their early lives underground, emerging at two to three years of age after gaining considerable size!! FUN FACTS: • The venom glands of the beaded lizard are modified salivary glands located in the reptile’s lower jaw. -
The Sclerotic Ring: Evolutionary Trends in Squamates
The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements .................................................................................................... -
Multi-National Conservation of Alligator Lizards
MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science. -
Monster of the Desert by Guy Belleranti
Name: __________________________________ Monster of the Desert by Guy Belleranti Imagine a monster with a big head, a powerful bite, strong digging claws, and a forked tongue. The monster is black with yellow or pink scales all over it's body. If you've been to the deserts of southwestern U.S. and northwestern Mexico, you may have seen such an animal, known as the Gila (HEE-la) monster. Growing up to two feet long, it is the largest of all lizards native to the United States. The Gila monster is one of only two venomous lizards living in North America. The other is the similar looking Mexican beaded lizard. Named after Arizona’s Gila River, the colorful Gila monster makes its home in hot, dry, rocky desert landscapes. Despite its scary name the Gila monster is actually a shy animal. It doesn’t bravely leap out at people, spitting venom. Instead, the solitary Gila monster spends most of its time in underground burrows or hiding under rocks. A Gila monster can go for months without eating. How can it do this? Well, it lives on the fat it has stored in its tail and abdomen. The most likely time to see this animal is in the spring when it comes out to hunt for food. While it is nocturnal (coming out at night) for most of the year, the Gila monster does occasionally venture out in the sunshine during the spring months to sun itself on desert rocks. The Gila monster doesn’t consider people food. We’re way too big. -
Instituto Politécnico Nacional Escuela Nacional De Ciencias Biológicas El Tráfico Ilegal De Fauna Silvestre En La Ciudad De M
INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS EL TRÁFICO ILEGAL DE FAUNA SILVESTRE EN LA CIUDAD DE MÉXICO T E S I S QUE PARA OBTENER EL GRADO ACADÉMICO DE: BIÓLOGO PRESENTA: JAIME ALBERTO ANTONIO GUZMÁN DIRECTOR DE TESIS: M. en C. ALEJANDRA DUARTE QUIROGA CODIRECTOR: BIOL. ENRIQUE QUIROZ UHART Ciudad de México 2016 El tráfico ilegal de fauna silvestre en la Ciudad de México J.A. Antonio Guzmán RESUMEN Las características geográficas y topográficas de México hacen de este país un lugar propicio para albergar una riqueza natural que representa un 10% de la biodiversidad descrita a nivel mundial. Estos recursos naturales han sido sobreexplotados por las poblaciones humanas de tal forma, que ha sido necesario regular su aprovechamiento. Para proteger a las especies de flora y fauna cuyas poblaciones están siendo afectadas por su uso desmedido, se han conformado listados donde se establece el grado de amenaza, desde Preocupación Menor hasta en Peligro de Extinción. Sin embargo, el enlistar a ciertas especies de fauna silvestre dentro de dichas categorías de riesgo para evitar su extinción, en ocasiones promueve su tráfico ilegal de manera paralela. A pesar de las acciones emprendidas a nivel internacional y local para regular la comercialización ilegal de fauna silvestre, ésta es una actividad recurrente. Este trabajo de investigación recopila un listado de algunos vertebrados terrestres comercializados en la Ciudad de México y su Zona Metropolitana, principalmente de tres grupos taxonómicos: reptiles, aves y mamíferos. Este listado de especies integra datos recolectados a lo largo de un año (junio del 2014 - mayo del 2015) obtenidos por: 1) observación directa durante recorridos en mercados y tianguis, 2) bases de datos sobre aseguramientos y 3) monitoreo de fauna silvestre ofertada por Internet. -
Animal Information Natural Treasures Reptiles (Non-Snakes)
1 Animal Information Natural Treasures Reptiles (Non-Snakes) Table of Contents Red-footed Tortoise…………….………………………………………………………..2 Argentine Black and white Tegu.………………….………………………..……..4 Madagascar Giant Day Gecko.……………………………………….……..………5 Henkel’s Leaf-Tailed Gecko……………………………………………………………6 Panther Chameleon………………………………………………………………………8 Prehensile-tailed Skink………………………………………….……………………..10 Chuckwalla………………………………………………………….……………………….12 Crevice Spiny Lizard……………………………………………………………………..14 Gila Monster……………………………………………..………………………………...15 Dwarf Caiman………….…………………………………………………………………..17 Spotted Turtle……………………………………………………………………………..19 Mexican Beaded Lizard………………………………………………………………..21 Collared Lizard………………………………………………………………………....…23 Red-footed Tortoise Geocheloidis carbonaria 2 John Ball Zoo Habitat – Depending on whether they can be found either in the Natural Treasures Building or outside in the children’s zoo area across from the Budgie Aviary. Individual Animals: 1 Male, 1 Female Male – Morty (Smooth shell) o Age unknown . Records date back to 1985 o Arrived October 11, 2007 o Weight: 8.5lbs Female - Ethel o Age unknown o Arrived June 02, 2011 o Weight: 9.5-10lbs Life Expectancy Insufficient data Statistics Carapace Length – 1.6 feet for males, females tend to be smaller Diet – Frugivore – an animal that mainly eats fruit Wild – Fruit during the wet season and flowers during the dry season o Some soil and fungi Zoo – Salad mix (greens, fruits, veggies) hard boiled eggs, and fish o Fed twice a week Predators Other than humans, there is no information available concerning predators. Habitat Tropical, terrestrial Rainforests and savanna areas. It prefers heavily forested, humid habitats but avoids muddy areas due to low burrowing capacity of these habitats. Region Throughout the South American mainland and North of Argentina. Red-footed Tortoise 3 Geocheloidis carbonaria Reproduction – Polygynous (having more than one female as a mate at a time). -
Iguanid and Varanid CAMP 1992.Pdf
CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological -
Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen Through Destructive Cleavage
toxins Article Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen through Destructive Cleavage James S. Dobson 1 , Christina N. Zdenek 1 , Chris Hay 1, Aude Violette 2 , Rudy Fourmy 2, Chip Cochran 3 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (J.S.D.); [email protected] (C.N.Z.); [email protected] (C.H.) 2 Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; [email protected] (A.V.); [email protected] (R.F.) 3 Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; [email protected] * Correspondence: [email protected] Received: 11 March 2019; Accepted: 1 May 2019; Published: 7 May 2019 Abstract: The functional activities of Anguimorpha lizard venoms have received less attention compared to serpent lineages. Bite victims of varanid lizards often report persistent bleeding exceeding that expected for the mechanical damage of the bite. Research to date has identified the blockage of platelet aggregation as one bleeding-inducing activity, and destructive cleavage of fibrinogen as another. However, the ability of the venoms to prevent clot formation has not been directly investigated. Using a thromboelastograph (TEG5000), clot strength was measured after incubating human fibrinogen with Heloderma and Varanus lizard venoms. Clot strengths were found to be highly variable, with the most potent effects produced by incubation with Varanus venoms from the Odatria and Euprepriosaurus clades. The most fibrinogenolytically active venoms belonged to arboreal species and therefore prey escape potential is likely a strong evolutionary selection pressure. -
Prolonged Poststrike Elevation in Tongue-Flicking Rate with Rapid Onset in Gila Monster, <Emphasis Type="Italic">
Journal of Chemical Ecology, Vol. 20. No. 11, 1994 PROLONGED POSTSTRIKE ELEVATION IN TONGUE- FLICKING RATE WITH RAPID ONSET IN GILA MONSTER, Heloderma suspectum: RELATION TO DIET AND FORAGING AND IMPLICATIONS FOR EVOLUTION OF CHEMOSENSORY SEARCHING WILLIAM E. COOPER, JR. I'* CHRISTOPHER S. DEPERNO I and JOHNNY ARNETT 2 ~Department of Biology Indiana University-Purdue University Fort Wayne Fort Wayne. bldiana 46805 2Department of Herpetology Cincinnati Zoo and Botanical Garden Cincinnati, Ohio 45220 (Received May 6, 1994; accepted June 27, 1994) Abstract--Experimental tests showed that poststrike elevation in tongue-flick- ing rate (PETF) and strike-induced chemosensory searching (SICS) in the gila monster last longer than reported for any other lizard. Based on analysis of numbers of tongue-flicks emitted in 5-rain intervals, significant PETF was detected in all intervals up to and including minutes 41~-5. Using 10-rain intervals, PETF lasted though minutes 46-55. Two of eight individuals con- tinued tongue-flicking throughout the 60 rain after biting prey, whereas all individuals ceased tongue-flicking in a control condition after minute 35. The apparent presence of PETF lasting at least an hour in some individuals sug- gests that there may be important individual differences in duration of PETF. PETF and/or SICS are present in all families of autarchoglossan lizards stud- ied except Cordylidae, the only family lacking lingually mediated prey chem- ical discrimination. However, its duration is known to be greater than 2-rain only in Helodermatidae and Varanidae, the living representatives of Vara- noidea_ That prolonged PETF and S1CS are typical of snakes provides another character supporting a possible a varanoid ancestry for Serpentes.