A 16-Bit MIPS Based Instruction Set Architecture for RISC Processor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MIPS Architecture
Introduction to the MIPS Architecture January 14–16, 2013 1 / 24 Unofficial textbook MIPS Assembly Language Programming by Robert Britton A beta version of this book (2003) is available free online 2 / 24 Exercise 1 clarification This is a question about converting between bases • bit – base-2 (states: 0 and 1) • flash cell – base-4 (states: 0–3) • hex digit – base-16 (states: 0–9, A–F) • Each hex digit represents 4 bits of information: 0xE ) 1110 • It takes two hex digits to represent one byte: 1010 0111 ) 0xA7 3 / 24 Outline Overview of the MIPS architecture What is a computer architecture? Fetch-decode-execute cycle Datapath and control unit Components of the MIPS architecture Memory Other components of the datapath Control unit 4 / 24 What is a computer architecture? One view: The machine language the CPU implements Instruction set architecture (ISA) • Built in data types (integers, floating point numbers) • Fixed set of instructions • Fixed set of on-processor variables (registers) • Interface for reading/writing memory • Mechanisms to do input/output 5 / 24 What is a computer architecture? Another view: How the ISA is implemented Microarchitecture 6 / 24 How a computer executes a program Fetch-decode-execute cycle (FDX) 1. fetch the next instruction from memory 2. decode the instruction 3. execute the instruction Decode determines: • operation to execute • arguments to use • where the result will be stored Execute: • performs the operation • determines next instruction to fetch (by default, next one) 7 / 24 Datapath and control unit -
MIPS IV Instruction Set
MIPS IV Instruction Set Revision 3.2 September, 1995 Charles Price MIPS Technologies, Inc. All Right Reserved RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and / or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor / manufacturer is MIPS Technologies, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. R2000, R3000, R6000, R4000, R4400, R4200, R8000, R4300 and R10000 are trademarks of MIPS Technologies, Inc. MIPS and R3000 are registered trademarks of MIPS Technologies, Inc. The information in this document is preliminary and subject to change without notice. MIPS Technologies, Inc. (MTI) reserves the right to change any portion of the product described herein to improve function or design. MTI does not assume liability arising out of the application or use of any product or circuit described herein. Information on MIPS products is available electronically: (a) Through the World Wide Web. Point your WWW client to: http://www.mips.com (b) Through ftp from the internet site “sgigate.sgi.com”. Login as “ftp” or “anonymous” and then cd to the directory “pub/doc”. (c) Through an automated FAX service: Inside the USA toll free: (800) 446-6477 (800-IGO-MIPS) Outside the USA: (415) 688-4321 (call from a FAX machine) MIPS Technologies, Inc. -
Design and VHDL Implementation of an Application-Specific Instruction Set Processor
Design and VHDL Implementation of an Application-Specific Instruction Set Processor Lauri Isola School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 19.12.2019 Supervisor Prof. Jussi Ryynänen Advisor D.Sc. (Tech.) Marko Kosunen Copyright © 2019 Lauri Isola Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the master’s thesis Author Lauri Isola Title Design and VHDL Implementation of an Application-Specific Instruction Set Processor Degree programme Computer, Communication and Information Sciences Major Signal, Speech and Language Processing Code of major ELEC3031 Supervisor Prof. Jussi Ryynänen Advisor D.Sc. (Tech.) Marko Kosunen Date 19.12.2019 Number of pages 66+45 Language English Abstract Open source processors are becoming more popular. They are a cost-effective option in hardware designs, because using the processor does not require an expensive license. However, a limited number of open source processors are still available. This is especially true for Application-Specific Instruction Set Processors (ASIPs). In this work, an ASIP processor was designed and implemented in VHDL hardware description language. The design was based on goals that make the processor easily customizable, and to have a low resource consumption in a System- on-Chip (SoC) design. Finally, the processor was implemented on an FPGA circuit, where it was tested with a specially designed VGA graphics controller. Necessary software tools, such as an assembler were also implemented for the processor. The assembler was used to write comprehensive test programs for testing and verifying the functionality of the processor. This work also examined some future upgrades of the designed processor. -
Overview of the MIPS Architecture: Part I
Overview of the MIPS Architecture: Part I CS 161: Lecture 0 1/24/17 Looking Behind the Curtain of Software • The OS sits between hardware and user-level software, providing: • Isolation (e.g., to give each process a separate memory region) • Fairness (e.g., via CPU scheduling) • Higher-level abstractions for low-level resources like IO devices • To really understand how software works, you have to understand how the hardware works! • Despite OS abstractions, low-level hardware behavior is often still visible to user-level applications • Ex: Disk thrashing Processors: From the View of a Terrible Programmer Letter “m” Drawing of bird ANSWERS Source code Compilation add t0, t1, t2 lw t3, 16(t0) slt t0, t1, 0x6eb21 Machine instructions A HARDWARE MAGIC OCCURS Processors: From the View of a Mediocre Programmer • Program instructions live Registers in RAM • PC register points to the memory address of the instruction to fetch and execute next • Arithmetic logic unit (ALU) performs operations on PC registers, writes new RAM values to registers or Instruction memory, generates ALU to execute outputs which determine whether to branches should be taken • Some instructions cause Devices devices to perform actions Processors: From the View of a Mediocre Programmer • Registers versus RAM Registers • Registers are orders of magnitude faster for ALU to access (0.3ns versus 120ns) • RAM is orders of magnitude larger (a PC few dozen 32-bit or RAM 64-bit registers versus Instruction GBs of RAM) ALU to execute Devices Instruction Set Architectures (ISAs) -
Multiple Instruction Issue in the Nonstop Cyclone System
~TANDEM Multiple Instruction Issue in the NonStop Cyclone System Robert W. Horst Richard L. Harris Robert L. Jardine Technical Report 90.6 June 1990 Part Number: 48007 Multiple Instruction Issue in the NonStop Cyclone Processorl Robert W. Horst Richard L. Harris Robert L. Jardine Tandem Computers Incorporated 19333 Vallco Parkway Cupertino, CA 95014 Abstract This paper describes the architecture for issuing multiple instructions per clock in the NonStop Cyclone Processor. Pairs of instructions are fetched and decoded by a dual two-stage prefetch pipeline and passed to a dual six-stage pipeline for execution. Dynamic branch prediction is used to reduce branch penalties. A unique microcode routine for each pair is stored in the large duplexed control store. The microcode controls parallel data paths optimized for executing the most frequent instruction pairs. Other features of the architecture include cache support for unaligned double precision accesses, a virtually-addressed main memory, and a novel precise exception mechanism. lA previous version of this paper was published in the conference proceedings of The 17th Annual International Symposium on Computer Architecture, May 28-31, 1990, Seattle, Washington. Dynabus+ Dynabus X Dvnabus Y IIIIII I 20 MBIS Parallel I I II 100 MbiVS III I Serial Fibers CPU CPU CPU CPU 0 3 14 15 MEMORY ••• MEMORY • •• MEMORY MEMORY ~IIIO PROC110 IIPROC1,0 PROC1,0 ROC PROC110 IIPROC1,0 PROC110 F11IOROC o 1 o 1 o 1 o 1 I DISKCTRL ~ DISKCTRL I I Q~ / \. I DISKCTRL I TAPECTRL : : DISKCTRL : I 0 1 2 3 /\ o 1 2 3 0 1 2 3 0 1 2 3 Section 0 Section 3 Figure 1. -
Fault Tolerance in Tandem Computer Systems
1'TANDEM Fault Tolerance in Tandem Computer Systems Joel Bartlett * Wendy Bartlett Richard Carr Dave Garcia Jim Gray Robert Horst Robert Jardine Dan Lenoski DixMcGuire • Preselll address: Digital Equipmelll CorporQlioll Western Regional Laboralory. Palo Alto. California Technical Report 90.5 May 1990 Part Number: 40666 ~ TANDEM COMPUTERS Fault Tolerance in Tandem Computer Systems Joel Bartlett* Wendy Bartlett Richard Carr Dave Garcia Jim Gray Robert Horst Robert Jardine Dan Lenoski Dix McGuire * Present address: Digital Equipment Corporation Western Regional Laboratory, Palo Alto, California Technical Report 90.5 May 1990 Part Nurnber: 40666 Fault Tolerance in Tandem Computer Systems! Wendy Bartlett, Richard Carr, Dave Garcia, Jim Gray, Robert Horst, Robert Jardine, Dan Lenoski, Dix McGuire Tandem Computers Incorporated Cupertino, California Joel Bartlett Digital Equipment Corporation, Western Regional Laboratory Palo Alto, California Tandem Technical Report 90.5, Tandem Part Number 40666 March 1990 ABSTRACT Tandem produces high-availability, general-purpose computers that provide fault tolerance through fail fast hardware modules and fault-tolerant software2. This chapter presents a historical perspective of the Tandem systems' evolution and provides a synopsis of the company's current approach to implementing these systems. The article does not cover products announced since January 1990. At the hardware level, a Tandem system is a loosely-coupled multiprocessor with fail-fast modules connected with dual paths. A system can include a range of processors, interconnected through a hierarchical fault-tolerant local network. A system can also include a variety of peripherals, attached with dual-ported controllers. A novel disk subsystem allows a choice between low cost-per-byte and low cost-per-access. -
In More Depth: the IBM/Motorola Powerpc Indexed Addressing
In More Depth IMD 2.20-11 In More Depth: The IBM/Motorola PowerPC The PowerPC, made by IBM and Motorola and used in the Apple Macin- tosh, shares many similarities to MIPS: both have 32 integer registers, instructions are all 32 bits long, and data transfer is possible only with loads and stores. The primary difference is two more addressing modes plus a few operations. Indexed Addressing In the examples above we saw cases where we needed one register to hold the base of the array and the other to hold the index of the array. PowerPC provides an addressing mode, often called indexed addressing, that allows two registers to be added together. The MIPS code add $t0,$a0,$s3 # $a0 = base of array, $s3 = index lw $t1,0($t0) # reg $t1 gets Memory[$a0+$s3] could be replaced by the following single instruction in PowerPC: lw $t1,$a0+$s3 # reg $t1 gets Memory[$a0+$s3] Using the same notation as Figure 2.24 on page 101, Figure 2.1.1 shows indexed addressing. It is available with both loads and stores. Update Addressing Imagine the case of a code sequence marching through an array of words in memory, such as in the array version of clear1 on page 130. A frequent pair of operations would be loading a word and then incrementing the base reg- ister to point to the next word. The idea of update addressing is to have a new version of data transfer instructions that will automatically increment the base register to point to the next word each time data is transferred. -
Design of the RISC-V Instruction Set Architecture
Design of the RISC-V Instruction Set Architecture Andrew Waterman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-1 http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html January 3, 2016 Copyright © 2016, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Patterson, Chair Professor Krste Asanovi´c Associate Professor Per-Olof Persson Spring 2016 Design of the RISC-V Instruction Set Architecture Copyright 2016 by Andrew Shell Waterman 1 Abstract Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman Doctor of Philosophy in Computer Science University of California, Berkeley Professor David Patterson, Chair The hardware-software interface, embodied in the instruction set architecture (ISA), is arguably the most important interface in a computer system. Yet, in contrast to nearly all other interfaces in a modern computer system, all commercially popular ISAs are proprietary. -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
MIPS Architecture with Tomasulo Algorithm [12]
CALIFORNIA STATE UNIVERSITY NORTHRIDGE TOMASULO ARCHITECTURE BASED MIPS PROCESSOR A graduate project submitted in partial fulfilment for the requirement Of the degree of Master of Science In Electrical Engineering By Sameer S Pandit May 2014 The graduate project of Sameer Pandit is approved by: ______________________________________ ____________ Dr. Ali Amini, Ph.D. Date _______________________________________ ____________ Dr. Shahnam Mirzaei, Ph.D. Date _______________________________________ ____________ Dr. Ramin Roosta, Ph.D., Chair Date California State University Northridge ii ACKNOWLEDGEMENT I would like to express my gratitude towards all the members of the project committee and would like to thank them for their continuous support and mentoring me for every step that I have taken towards the completion of this project. Dr. Roosta, for his guidance, Dr. Shahnam for his ideas, and Dr. Ali Amini for his utmost support. I would also like to thank my family and friends for their love, care and support through all the tough times during my graduation. iii Table of Contents SIGNATURE PAGE .......................................................................................................... ii ACKNOWLEDGEMENT ................................................................................................. iii LIST OF FIGURES .......................................................................................................... vii ABSTRACT ....................................................................................................................... -
HP Nonstop Systems Deployments
HP NonStop systems – as you haven’t seen them before HP NonStop systems as you haven’t seen them before Deployed in support of mission-critical applications in manufacturing and distribution, telecommunications, retail and wholesale banking, transportation and entertainment Richard Buckle Founder and CEO Pyalla Technologies, LLC Pyalla Technologies, LLC Page 1 HP NonStop systems – as you haven’t seen them before About the Author Richard Buckle is the founder and CEO of Pyalla Technologies, LLC. He has enjoyed a long association with the IT industry as a user, vendor, and more recently, as an industry commentator. Richard has over 25 years of research experience with HP’s NonStop platform, including eight years working at Tandem Computers, followed by just as many years at InSession Inc. and ACI Worldwide, as well as four years at Golden Gate, now a part of Oracle. Well known to the user communities of HP and IBM, Richard served as a Director of ITUG (2000-2006), as its Chairman (2004-2005), and as the Director of Marketing of the IBM user group, SHARE, (2007-2008). Richard provides industry commentary and opinions through his community blog as well as through his industry association and vendor blogs, web publications and eNewsletters. You can follow him at www.itug- connection.blogspot.com and at ATMmarketplace.com as well read his editorial, Musings on NonStop, published monthly in Tandemworld.net Pyalla Technologies, LLC Page 2 HP NonStop systems – as you haven’t seen them before Introduction The strength of NonStop systems has always been its support of real time, mission critical, transaction processing, starting out with an application built on a fault tolerant system continues to be the simplest way to assure its availability. -
Atalla HSM & HPE Nonstop
Data Security Overview GTUG – May 2018 Darren Burkey, Senior PreSales Consultant Atalla [email protected] The New Combined Company: built on stability, acquisition and innovation Network Management/ COBOL Data Protector 40 30 2 Years Years “Better Together” Portfolio Has Breadth and Depth Information Linux & DevOps IT Operations Cloud Security Governance Open Source Service Management, Cloud Service Digital Safe, Data Protector, Operations Bridge, Automation, Control Point, Data Center Hybrid Cloud Structured Data Manager, Automation, Management Storage Optimizer Network Management Mainframe Solutions, IT Operations Enterprise Linux, Management, OpenStack Private Cloud, Cobol Development, Host Connectivity, Identity-based Software-defined Software Delivery Collaboration Workload Migration Access Governance Storage and Testing and Security Big Data Analytics IDOL Data security portfolio: Voltage & Atalla Data privacy & security compliance Secure analytics, privacy and Hybrid cloud data protection & & risk reduction pseudonymization collaboration Voltage SecureData Enterprise, Big Data, Cloud, Mobile and Payments Data Security Tokenization, Encryption, Masking Voltage SecureMail Voltage SecureMail Cloud Easy, scalable email encryption Enterprise email encryption SaaS Atalla HSM Enterprise Secure Key Manager Payments crypto appliances & key storage KMIP Key Management for Storage, 3rd party apps 4 ® Atalla Product Overview History of Atalla • Established in 1972 • Mission: Protect financial transactions • Atalla introduced first