MASARYKOVA UNIVERZITA V BRNĚ

Přírodovědecká fakulta

DISERTAČNÍ PRÁCE

Petr ŠMARDA Brno, 2005

MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta

Petr ŠMARDA

BIOSYSTEMATICKÁ STUDIE STŘEDOEVROPSKÝCH KOSTŘAV SER. PSAMMOPHILAE PAWLUS.

Disertační práce

Školitel: doc. RNDr. Petr Bureš Ph.D. Brno, 2005

Bibliografická identifikace

Jméno a příjmení autora: Mgr. Petr Šmarda

Název disertační práce: Biosystematická studie středoevropských kostřav Festuca ser. Psammophilae Pawlus.

Název disertační práce anglicky: Biosystematical study of Central European fescues Festuca ser. Psammophilae Pawlus.

Studijní program: botanika

Studijní obor (směr), kombinace oborů:

Školitel: doc. RNDr. Petr Bureš Ph.D.

Rok obhajoby: 2005

Klíčová slova v češtině: Festuca L., úzkolisté kostřavy, taxonomie, systematika, evoluce, karyologie, morfometrie, AFLP, obsah DNA, variabilita velikosti genomu, průtoková cytometrie, nomenklatura, rozšíření, střední Evropa, suché trávníky, skalní stepi, váté písky

Klíčová slova v angličtině: Festuca L., fine-leaved fescues, taxonomy, systematics, evolution, karyology, multivariate morfometrics, AFLP, DNA content, genome size variability, flow cytometry, nomenclatory, distribution, Central Europe, dry grasslands, rocky steppes, wind-blown sands

© Petr Šmarda, Masarykova univerzita v Brně, 2005

Poděkování: Za vedení práce a řadu cenných rad a námětů bych rád poděkoval bývalému i současnému školiteli doc. RNDr. Marii Dvořákové CSc. a doc. RNDr. Petru Burešovi Ph.D., jakož i mnoha dalším členům katedry. Svým spolužákům Tomáši Vymyslickému, Honzovi Rolečkovi, Katce Kočí, Kláře Helánové, Zuzce Rozbrojové, Katce Krátké, Janě Božkové a dalším vděčím za mnohé sběry kostřav a krásné chvíle na společných exkurzích. Výsledky předkládané práce byly finančně podpořeny z grantů MSM 143100010, FRVŠ 555-G4/2004, GAČR 206/03/0228, GAČR 206/98/1545, GAČR 524/05/H536 a MSM 0021622416. Abstrakt

Festuca ser. Psammophilae Pawlus (Poeae, ) je kritickou skupinou středoevropských úzkolistých kostřav sekce Festuca. Jednotlivé taxony jsou si morfologicky velmi podobné a taxonomické postavení některých taxonů není zcela jasné. Klasickými karyologickými metodami nebo cytometricky byl zjištěn stupeň ploidie u několika set rostlin zahrnujících všechny sledované druhy a materiál z velké části jejich areálu. Na základě výsledků mnohorozměrných analýz morfologických znaků, studia AFLP polymorfizmu a studia typového materiálu bylo ve střední Evropě rozlišeno 6 druhů: F. pallens Host (reliktní skalní biotopy, diploid); F. csikhegyensis Simonk. (bazické skalní biotopy, tetraploid); F. psammophila (Čelak) Fritsch (kyselé písky) se dvěma poddruhy F. p. subsp. psammophila a F. p. subsp. dominii (Krajina) P. Šmarda nom. prov. (dolní Pomoraví, stř. a vých. Polsko); F. vaginata Willd. (bazické písky panonské oblasti); F. polesica Zapał. (přímořské a vnitro- zemské písečné duny); F. pseudovaginata Penksza (bazické písky panonské oblasti). K jednotlivým druhům jsou doplněny mapky rozšíření, determinační klíč, informace o typovém materiálu, exsikátových sbírkách, synonymice a hybridech. Diskutována je možná evoluce okruhu s ancestrální pozicí F. pallens a izolovaným postavením F. polesica. Při studiu byla objevena možnost cytometrického stanovení stupně ploidie ze suchého herbářového materiálu a snižování pozorovaného obsahu suchého materiálu oproti živým vzorkům. U F. pallens a několika dalších druhů byla zjištěna na vnitrodruhová variabilita v obsahu DNA. U F. pallens s.l. se tato variability projevuje na intrapopulační i lokálni úrovni a v rámci celého areálu se obsah DNA v rámci diploidů i tetraploidů liší až o 16,6 %. Obsah DNA obou ploidních je geograficky provázaný (P<0,001) a sleduje podobný geografický trend s rostlinami s větším genomem v jihovýchodní části areálu (P<0,01). U diploidů větší obsah DNA koresponduje s reliktním charakterem stanoviště (P<0,001) a typem vegetace na konci posledního glaciálu (P<0,05). Obsah DNA u diploidů se liší v jednotlivých fytogeo- grafických oblastech (P<0,001) a u tetraploidů mezi jednotlivými geografickými typy (P<0,001). Monoploidní obsah DNA je u tetraploidů nižší než u diploidů (P<0,001).

Dissertation Abstract

Festuca ser. Psammophilae Pawlus (Poeae, Poaceae) is the critical groups of Central European fine leaved fescues of sect. Festuca. Particular taxa are very close morphologically and taxonomic status of some taxa is still not clearly resolved. For several hundreds of , including all taxa studied and material from major parts of their distribution areas, ploidy level was estimated by classical karyological methods and flow cytometry. Based on the multivariate morphological analysis, AFLP analysis, and the study of type specimens, following six species were recognized: F. pallens Host (relict rocky habitats, diploid); F. csikhegyensis Simonk. (basic rocky habitats, tetraploid); F. psammophila (Čelak) Fritsch (acidic sands) with two subspecies F. p. subsp. psammophila and F. p. subsp. dominii (Krajina) P. Šmarda nom. prov. (SW Moravia, C and E Poland); F. vaginata Willd. (basic sands mainly in Pannonian region); F. polesica Zapał. (seaside and inland sand dunes); F. pseudovaginata Penksza (basic sands in Pannonian lowland). Determination key, distribution maps, informations about the type specimens, exsiccata collections, synonyms, and hybrids are provided. Evolutionary relationships with the assumed putative taxon F. pallens and the rather isolated position of F. polesica are discussed.. Within the study, flow cytometry was revealed to enable determination of ploidy level from dry herbarium material. Observed DNA content of herbarium specimens decrease in comparison with the fresh plants. Intraspecific variability of DNA content was observed in F. pallens and several further species. In F. pallens s.l., DNA content variability appears both on intrapopulation and landscape scales. Within the whole distribution area, at maximum 1.166 fold difference were observed both within the diploids and tetraploids. DNA content in both ploidy levels is spatially related (P<0.001) and reflects the same geographical gradient with plants with larger genomes growing in South-eastern part of the distribution area. In diploids, larger DNA content correlates with relict habitats (P<0.01) and character of palaeo-vegetation 20 000 BP (P<0.02). DNA content in diploids vary among phytogeographical regions (P<0.001), and among patricular tetraploid types (P<0.001). Relative monoploid DNA content of tetraploids is smaller than diploids (P<0.001). Obsah

1. Rod Festuca L. a současné názory na jeho evoluci a členění ...... 2 1.1 Popis...... 2 1.2 Postavení v rámci čeledi Poaceae Barnhart...... 3 1.3 Infragenerické členění ...... 4 1.4 Evoluce rodu ...... 7 2. Festuca ser. Psammophilae ve střední Evropě...... 10 2.1 Úvod...... 10 2.2 Konspekt středoevropských druhů...... 10 2.3 Určovací klíč ...... 16 2.4 Evoluce a systematika okruhu...... 17 3. Konspekt disertační práce ...... 20 3.1 Cíle disertační práce...... 20 3.2 Použité metody...... 20 3.3 Přehled publikovaných a k publikaci připravených prací ...... 20 3.4 Hlavní výsledky disertační práce ...... 22 3.5 Náměty k dalšímu studiu a rozpracovaná témata...... 22 4. Seznam použité literatury...... 25

(1) Šmarda P., Müller J., Vrána J. et Kočí K. (2005): Ploidy level variability of some Central European fescues (Festuca subg. Festuca L., Poaceae). – Biologia (Bratislava) 60: 25–36. (2) Šmarda P. et Kočí K. (2003): Chromosome number variability in Central European members of Festuca ovina and F. pallens groups (sect. Festuca). – Folia Geobot. 38: 65–95. (3) Grulich V., Krahulec F., Šmarda P. et Kočí K. (2002): Festuca. p. 828–834. In: Kubát K. [ed.], Klíč ke květeně České republiky. – Academia, Praha. (4) Šmarda P. (submitted): DNA ploidy levels of Romanian fescues (Festuca L., Poaceae), measured in living plants and herbarium specimens. – Folia Geobot. (5) Šmarda P., Šmerda J., Knoll A. et Bureš P. (in prep.): Revision of Central European taxa of Festuca ser. Psammophilae Pawlus – morphometrical, karyological and AFLP analysis. (6) Šmarda P. et Bureš P. (submitted): Intraspecific genome size variability in Festuca pallens on different geographical scales and ploidy levels. – Ann. Bot. (Oxford). (7) Šmarda P. et Grulich V. (in prep.): Festuca L. in: Feráková V., Grulich V., Hodálová I., Hrouda L., Kochjarová J., Marhold K., Mártonfi P. et Mereďa P. [eds.], Určovací kľúč papraďorastov a semenných rastlín Slovenska.

Zkratky autorů jmen jsou sjednoceny podle International names index (http://www.ipni.org). Zkratky jmen časopisů jsou sjednoceny podle Botanico-Periodicum Huntianum/Supplementum (Bridson et Smith 1991), zkratky knižních publikací podle Stafleu et Cowan (1976–1988). Taxonomie a pojetí taxonů mimo rod Festuca je shodné s Flora Europaea (Tutin et al. 1964–1980).

1 1. Rod Festuca L. a současné názory na jeho evoluci a členění

1.1 Popis

Upraveno na základě prací Clayton et Renvoize (1986), Watson et Dallwitz (1992 onwards).

Rostliny vytrvalé, oboupohlavé, příležitostně dvoudomé, některé druhy viviparní; stéblo 2– 200 cm vysoké, někdy na bázi ztlustlé, kolénka lysá; listová čepel plochá nebo svinutá, 0,2– 15,0 mm široká, v pupenu svinutá nebo řasnatě složená, listy někdy ouškaté, jazýček 0,1– 5,5 mm dlouhý; květenství tvoří otevřená nebo stažená lata; fertilní klásky 3–20 mm dlouhé, 2–14-květé (vzácně jednokvěté), bočně smáčklé, odpadávájící nad plevami; plevy 2, zašpičatělé, bezosinné, kratší než nejbližší pluchy, dolní 1–3-žilná, horní (1–)3–5-žilná; pluchy 3–7-žilné s podobnou strukturou jako plevy, blanité až lehce kožovité, někdy tužší než plevy, alespoň u báze na hřbetě oblé (subgen. Hesperochloa kýlnaté), 3–7-žilné, zašpičatělé až krátce osinaté; osina terminální vzácně subterminální, nekolénkatá, většinou výrazně kratší než plucha nebo vzácně zdéli pluchy; kýly plušky drsné; prašníky 3, 0,4–6,0 mm dlouhé; semeník na vrcholu lysý nebo chlupatý; čnělky 2, bílé; hilum čárkovité vzácně podlouhlé. Metabolismus typu C3; základní chromozomové číslo x = 7; 2n = 14–84; 2, (3), 4, (5), 6, 8, 10, 12-ploid, asi 70 % druhů polyploidních (Hunziker et Stebbins 1987, Dubcovsky et Martínez 1992); chromozomy „velké“; monoploidní velikosti genomu 1,94–4,89, 2C obsah DNA 3,89–24,08 pg (2x–10x; Šmarda et al. in prep. a). Rod je rozšířen na všech kontinentech (mimo Antarktidu) v temperátní zóně, v tropech pouze v horách. Některé druhy se chovají synantropně, některé jsou pěstovány pro okrasu. Recentně 589 druhů (Clayton et al. 2002 onwards), největší počet druhů v horách střední a jižní Evropy, početné zastoupení v horách Asie a Jižní Ameriky (obr. 1). Mezirodoví hybridi s druhy rodu Vulpia (×Festulpia Stace et R. Cotton), Lolium (×Festulolium Aschers. et Graebn.), předpokládá se i hybridizace s rodem Bromus (×Bromofestuca Prodan); hospodářsky významné druhy: F. arundinacea Schreb., F. pratensis L., F. ovina L., F. filiformis Pourr., F. rubra L., F. brevipila R. Tracey. Jméno Festuca: už u Plinia = obecně stéblo, stonek, plevel v ječmeni (Watson et Dallwitz 1992 onwards), nebo z keltského fest = pokrm a obecně stébelné trávy poskytující dobrou píci (Polívka 1883).

195 153 58 43 63 3 156 20

5

Obr. 1: Počty druhů rodu Festuca na jednotlivých kontinentech podle Clayton et al. 2002 onwards.

2 1.2 Postavení v rámci čeledi Poaceae Barnhart podčeleď supertribus Poodae tribus Poeae subtribus Loliinae Dumort. rod Festuca L.

Čeleď Poaceae bývá na základě morfologických znaků a moderních molekulárních analýz rozdělována do sedmi až deseti (Watson et Dallwitz 1992 onwards, Clayton et Renvoize 1986, Macfarlane 1987) a v nejnovější klasifikaci až do dvanácti podčeledí (Grass phylogeny working group 2001). Sesterskou skupinu podčeledi Pooideae tvoří podčeleď Bambusoideae a Ehrhartoideae (Hilu et Alice 1999, Grass phylogeny working group 2001). Podčeleď Pooideae tvoří s přibližně 160 rody a asi 3000 druhy téměř třetinu z celkového počtu druhů čeledi Poaceae (Macfarlane 1987), v současnosti čítající kolem 10 800 druhů (Clayton et al. 2002 onwards). Stejně jako u ostatních skupin je náplň jednotlivých podčeledí a tribů předmětem intenzivního výzkumu a závisí na pojetí jednotlivých autorů i zohledňovaných znacích. Základní monofyletickou skupinu podčeledi Pooideae „jádrové Poodae“, tvoří čtyři triby Poeae, Aveneae, Triticae a Bromeae. Od ostatních tribů podčeledi Pooideae se odlišují konstantním základním chromozomovým číslem x=7 a vystupující ve všech molekulárních analýzách jako monofyletická skupina (Catalán et al. 1997 a zde uvedené citace, Hilu et Alice 1999). Sesterskou skupinu k těmto čtyřem tribům, tvoří tribus Brachypodieae (Catalán et al. 1997, Hilu et Alice 1999) počítaný občas k jádrovým Poeae (Grass phylogeny working group 2001). Sesterskou skupinou tribu Poeae je tribus Aveneae (Catalán et al. 1997), zahrnovaný společně s tribem Poeae do supertribu Poodae (Macfarlane 1987). Clayton et Renvoize (1986) usuzuje v rámci tribu Poeae na existenci dvou hlavních evolučních linií spojených se dvěma druhově nejbohatšími rody Festuca a Poa (obr. 2). Od hlavní evoluční větve kostřav pak odvozuje menší rody jako Vulpia, Lolium, Micropyrum, Cynosurus (obr. 2). Za evolučně nejbližší, sesterskou skupinu subtribu Loliinae je považována skupina subtribů Dactylidinae, Cynosurinae a Parapholiinae (Catalán et al. 2004).

Obr. 2: Základní evoluční vztahy v tribu Poeae podle Clayton et Renvoize (1986).

3 1.3 Infragenerické členění Popis rodu Festuca se objevuje už v díle Species Plantarum (Linnaeus 1753). Typem rodu je Festuca ovina L. Sp. Pl. 1: 73. 1753. V první celoevropské monografii používá Hackel (1882) členění rodu na 6 následujících sekcí:

sect. I. Ovinae Fr. sect. II. Bovinae Fr. sect. III. Subbulbosae Nyman sect. IV. Variae Hack. sect. V. Scariosae Hack. sect. VI. Montanae Hack.

Hackelovo pojetí se s menšími obměnami uplatňuje i v současné infragenerické klasifikaci v jejímž rámci bývá celosvětově rod členěn na 9 podrodů. Jejich určovací klíč podle Clayton et Renvoize (1986) je uveden níže. Druhově nejbohatším podrodem je nominátní podrod Festuca, rozšířený zejména na Euroasijském kontinentě.

Festuca L. 1a Plevy celé blanité 2a pluchy kýlnaté, semeník chlupatý, rostliny často dvoudomé subgen. Hesperochloa 2b pluchy oblé, semeník lysý subgen. Xanthochloa 1b plevy bylinné nebo jen při okraji blanité 3a listová čepel plochá 4a báze stébla kryta bezčepelnými pochvami, plucha nahoře kýlnatá (F. altissima) subgen. Drymanthele 4b báze stébla není výrazněji kryta bezčepelnými pochvami, plucha oblá 5a ouška přítomna, semeník lysý (F. pratensis) subgen. Schenodorus 5b ouška chybí, semeník chlupatý 6a plucha špičatá 7a květy s krátkým uťatým kalusem subgen. Subulatae 7b květy stopečkaté subgen. Subuliflorae 6b plucha přišpičatělá nebo úzce zatupělá subgen. Obtusae 3b listová čepel svinutá, plucha oblá, semeník lysý nebo chlupatý 8a pleva kratší než nejbližší plucha (F. ovina, F. rubra) subgen. Festuca 8b pleva delší než nejbližší plucha subgen. Helleria

Podrod Festuca je v současném pojetí členěn na sedm níže uvedených sekcí (Torecilla et al. 2003, Catalán et al. 2004). Samostatně je zde vyčleněna skupina F. amethystina, která je jinak v širším pojetí řazena do sekce Festuca (Conert 1998), v užším pak do sekce Aulaxyper (Portal 1999). Charakteristické morfologické znaky jednotlivých skupin (tab. 1) jsou uvedeny podle Torecilla et al. (2003), Conert (1998) a Clayton et al. (2002 onwards), rozdíly v obsahu DNA jsou doplněny podle Šmarda et al. (in prep. a):

4 subgen. Festuca L. sekce typ A B C D E F G H I Festuca L. F. ovina L. 0 0 0 0 0 0 1 0 0 Aulaxyper Dumort. F. rubra L. 0 1 0 1 0/1 0 1 0 0 Eskia Willk. F. eskia DC. 0 0 0 0/1 0/1 0 0 1 1 Pseudoscariosa* Krivot. F. pseudeskia Boiss. 0 1 1 x 1 1 0 1 ? Scariosae* Hack. F. scariosa (Lag.) Asch. et Graebn. 0 2 0 x 1 1 1 1 ? Amphigenes Janka F. carpatica F. Dietr. 0 1 1 x 1 1 0 1 1 Subbulbosae Hack. F. fibrosa Griseb. 1 0 0 x 1 1 1 1 1 skupina F. amethystina – 0 0 0 x/1 0/1 0/1 1 0 1

Tab. 1: Základní diakritické znaky jednotlivých sekcí a skupin podrodu Festuca * monotypické sekce A: báze sterilních výhonů cibulovitě ztluštělá: 0 – ne, 1 – ano B: odnožování sterilních výhonů: 0 – intravaginální, 1 – extravaginální, 2 – extra- a intravaginální současně C: bezčepelné pochvy přítomny: 0 – ne, 1 – ano D: sklerenchym na vnější straně listu (viz tab. 2): 0 – tvoří souvislý až přerušovaný prstenec nebo tři provazce sklerenchymu na okrajích a proti centrální žilce, 1 – malé provazce naproti větším žilkám, x – je jiného charakteru E: sklerenchymatických provazců na vnitřní straně listu přítomny: 0 – ne, 1 – ano F: sklerenchymatické provazce propojují vnější a vnitřní stranu listu: 0 – ne, 1 – ano G: obilka přirůstá k pluše a plušce: 0 – ne, 1 – ano H: okraje pluch suchomázdřité: 0 – ne, 1 – ano I: monoploidní obsah DNA: 0 – menší než 3 pg, 1 – větší než 3 pg

Pawlus (1985) rozděluje sekci Festuca na základě morfologicko-anatomických znaků polských druhů na 4 série, ke kterým lze podle originálního popisu řadit následující středoevropské druhy: sect. Festuca ser. Festuca (ser. Ovinae Pawlus) Listy sterilních výběžků 0,2–0,7 (0,9) mm v průměru, s nepřerušeným sklerenchymatickým prstencem, s 5–7 cévními svazky, na vnitřní straně listu s 1–3 žebry. Středoevropští zástupci: F. ovina, F. filiformis, F. supina, F. eggleri. ser. Trachyphyllae Pawlus Listy sterilních výběžků až 1,5 mm v průměru, drsné, v příčném řezu s přerušovaným skleren- chymatickým prstencem, s 5–9 cévními svazky, na vnitřní straně listu se 3–7 žebry. Středoevropští zástupci: F. brevipila, F. makutrensis. ser. Psammophilae Pawlus Listy sterilních výběžků až 1,1 mm v průměru, na příčném řezu s nepřerušovaným sklerenchymatickým prstencem, se 7–15 cévními svazky, na vnitřní straně listu se 3–9 žebry. Středoevropští zástupci: F. pallens, F. csikhegyensis, F. psammophila, F. vaginata, F. pseudovaginata, F. polesica.

5 ser. Valesiacae Pawlus Listy sterilních výběžků 0,2–0,8 mm v průměru, na příčném řezu se třemi sklerenchy- matickými provazci, vzácně ještě doprovázené dvěma slabšími provazci bočními, se 3–7 cévními svazky a třemi žebry na svrchní straně listů. Středoevropští zástupci: F. valesiaca, F. pulchra, F. rupicola, F. pseudodalmatica.

Paralelně k formálnímu taxonomickému členění se používá neformální členění do skupin a agregátů na základě významnějších morfologických a anatomických znaků, které potom usnadňuje praktickou determinaci (Pignatti et Markgraf-Dannenberg 1982, Englmaier 1994, 2005, Šmarda et Kočí 2003, Willkinson et Stace 1991, Auquier et Kerguélen 1978, Arndt 2005). Pojetí skupin závisí značnou měrou na názorech autorů, v zásadě ale koresponduje s formální infragenerickou klasifikací na různých hierarchických úrovních. Jedno z možných členění středoevropských druhů sect. Festuca a sect. Aulaxyper na základě nápadných morfologických znaků (tab. 2) je uvedeno níže:

1. skupina F. ovina: F. ovina L., F. filiformis Pourr., F. airoides Lam., F. supina Schur, F. eggleri R. Tracey, F. vivipara (L.) Sm., F. lemanii Bastard, F. heteropachys (St.-Yves) Auquier. 2. skupina F. pallens: F. pallens Host, F. glaucina (Stohr) Stohr, F. psammophila (Čelak.) Fritsch, F. vaginata Willd., F. polesica Zapał., F. pseudovaginata Penksza. 3. skupina F. laevigata: F. laevigata Gaudin, F. ticinensis (Markgr.-Dann.) Markgr.-Dann. 4. skupina F. valesiaca: F. valesiaca Gaudin, F. pulchra Schur, F. pseudodalmatica Domin, F. dalmatica (Hack.) K. Richt., F. rupicola Heuff. 5. skupina F. brevipila: F. brevipila R. Tracey, F. stricta Host, F. wagneri (Degen, Thaisz et Flat) Degen, Thaisz et Flat, F. makutrensis Zapał., F. guinochetii (Bidault) S. Arndt., nom. prov. 6. skupina F. rubra: F. rubra L., F. trichophylla (Gaudin) K. Richt., F. nigrescens Lam., F. heteromala Pourr., F. heterophylla Lam. 7. skupina F. violacea: F. picturata Pils, F. violacea Gaudin, F. puccinellii Parl., F. nitida Schult., F. melanopsis Foggi, Gr. Rossi et Signorini. 8. skupina F. halleri: F. alpina Suter, F. rupicaprina (Hack.) A. Kern., F. halleri All., F. stenantha (Hack.) K. Richt., F. interscedens (Hack.) Bech., F. psudodura Steud. 9. skupina F. amethystina: F. amethystina L., F. tatrae (Czakó) Degen, F. norica (Hack.) K. Richt.

6

F. ovina F. pallens F. laevigata F. valesiaca F. brevipila F. rubra F. violacea F. halleri F. amethystina Charakter sklerenchymu na příčném řezu listem Tloušťka listů 0,3-0,7 0,7-1,5 0,5-1,4 0,3-1,0 0,6-1,2 0,3-2,0 0,3-0,8 0,2-0,7 0,3-1,3 (mm) Cévní svazky 5-7(9) 7-11(15) (5)7-11 5(7) 5-11(15) (3)5-11 5-9(11) 3(5) 5-9(13) Trsnatost + + + + + -+ + + + Uzavřené pochvy -(+) - -(+) - - + + + + Ploidní stupeň 2x-6x 2x-4x 6x-8x 2x-6x 4x-10x 4x-8x 2x (6x) 2x-6x 2x-6x Pochvy rozpadavé ve - - - - - + +(-) + - vlákna

Tab. 2: Základní znaky jednotlivých skupin středoevropských kostřav sect. Festuca, sect. Aulaxyper a skupiny F. amethystina. Průřezy listem podle Portal (1999).

1.4 Evoluce rodu Rod Festuca je s 589 druhy (Clayton et al. 2002 onwards) druhově nejbohatší rod čeledi. Za vývojové centrum je považován Euroasijský kontinent (Inda et al. 2005), kde se vyskytuje naprostá většina diploidních druhů (Dubcovsky et Martínez 1992). Diploidní taxony v Severní Americe mají přímou návaznost s východosibiřskými druhy odkud mohly v minulosti do Severní Ameriky migrovat přes Beringovu úžinu (cf. Inda et al. 2005). Při následné migraci a polyploidizaci se utvořilo sekundární vývojové centrum na jihoamerickém kontinetu. V severní části jihoamerického kontinentu dominují tetraploidní druhy, zatímco v jižní části je velmi výrazný podíl hexaploidních a oktoploidních druhů (Šmarda et Stančík accepted), což patrně souvisí s úspěšnou radiací hexaploidní F. pallescens (St.-Yves) Parodi (Dubcovsky et Martínez 1992). Předpokládané migrační cesty na další kontinenty ukazuje obr. 3. Z evolučního hlediska a s ohledem na současné molekulární studie je celý rod Festuca nutno chápat jako silně parafyletický (Torecilla et Catalán 2002, Catalán et al. 2004), což odpovídá jeho ancestrální evoluční pozici v rámci subtribu Loliinae, jak to předpokládá Clayton et Renvoize (1986, obr. 2). Nedávné studie na základě sekvencí ITS a trnL-F úseků DNA (Torecilla et Catalán 2002, Catalán et al. 2004) dokumentují v rámci rodu Festuca jakož i celém subtribu Loliinae dvě hlavní evoluční linie, spojované s úzkolistými a širokolistými kostřavami, s nimiž evolučně úzce souvisejí jednotlivé drobnější rody jako Lolium a Vulpia. Současné fylogenetické analýzy předpokládají podobnou dobu evoluce pro všechny hlavní evoluční linie (Drymanthele, Schedonorus, Scariosae, Pseudoscariosa, Subbulbosae, Leucopoa, Eskia), přičemž za primární místo evoluce těchto starších skupin lze považovat mediteránní oblast Evropy a Euroasijská vysokohoří (Torecilla et Catalán 2002, Catalán et al. 2004). Rod Lolium a s ním evolučně úzce související rod Micropyropsis představují mladé taxony, které se patrně vyvinuly z evropského zástupce Festuca subgen. Schedonorus (Catalán et al. 2004). Za bazální skupinu, z jejíhož základu se vyvinula skupina úzkolistých kostřav, lze počítat sekce Eskia a Amphigenes (Torecilla et Catalán 2002, Torecilla et al. 2003). Dvě hlavní linie úzkolistých kostřav potom představují okruhy F. rubra (sect.

7 Aulaxyper) a F. ovina s.l. (sect. Festuca; Catalán et al. 2004). Evoluce vytrvalých úzkolistých kostřav je úzce provázána s jednoletými rody Vulpia, Psilurus a Micropyrum (Torecilla et Catalán 2002, Catalán et al. 2004).

ancestrální typy

Obr. 3: Předpokládané hlavní migrační cesty spojené s evolucí kostřav, upraveno podle Inda et al. (2005).

Předpokládaná evoluce úzkolistých kostřav z ancestrálních typů okruhů Festuca subgen. Drymanthele, F. subgen. Subbulbosae, F. sect. Eskia a F. sect. Amphigenes, je spojena se značnou redukcí monoploidní velikosti genomu a změnou poměru AT a CG bazí (Šmarda et al. in prep. a, obr. 4). Možným evolučním mezistupněm mezi primitivními kostřavami sect. Eskia a úzkolistými kostřavami sect. Festuca může být skupina F. amethystina, která nebyla v molekulárních analýzách dosud zohledňována. Dosud předpokládané sesterské rody kostřav (Dactylis, Cynosurus) se od primitivních kostřav značně a nemusejí nutně předpokládat evolučně sesterskou skupinu, tak jak je používána v současných molekulárních studiích (např. Catalán et al. 2004). Ancestrální pozici by potom mohla mít skupina Festuca subgen. Drymanthele (F. altissima All., F. drymeia Mert. et Koch) jak to předpokládá Holub (1984). Evolučně provázaná skupina Fesuca subgen. Schedonorus (F. pratensis Huds., F. arundinacea Schreb.) a rod Lolium jsou ve velikosti genomu spíše podobné ostatním druhům tribu Poeae a je otázkou, zda je vůbec s rodem Festuca spojovat.

8 subg. Drymanthele

sect. Eskia+Amphigenes+Subbulbosae

F. amethystina skupina F. gigantea

Schedonorus Cynosurus cr.

Lolium

monoploidní velikost genomu (pg) (pg) genomu velikost monoploidní Vulpia myuros Dactylis úzkolisté kostřavy sect. Festuca F. rubra agg.

DAPI faktor (relativní poměr mezi obsahem AT a CG bází v genomu)

Obr. 4: Vztahy jednotlivých skupin evropských kostřav na základě srovnání parametrů velikosti genomu (Šmarda et al. in prep. a).

9 2. Festuca ser. Psammophilae ve střední Evropě

2.1 Úvod Festuca ser. Psammophilae Pawlus patří ke kritickým skupinám úzkolistých kostřav podrodu Festuca, který je zároveň nejbohatší druhovou skupinou celého rodu. Rostliny ze skupiny Festuca ser. Psammophilae jsou trsnaté, pouze s intravaginálními výběžky. Listy sterilních výběžků jsou tuhé, na příčném řezu 0,6–1,3 mm v průměru, se subepidermální vrstvou sklerenchymu tvořící celistvý až mírně přerušovaný prstenec. Rostliny jsou obvykle nápadně ojíněné, u některých taxonů jen slabě ojíněné nebo bez ojínění. Pawlus (1985) při revizi polských kostřav zahrnula do této série F. vaginata, F. psammophila, F. polesica, a F. pallens. Z nově rozlišovaných středoevropských druhů sem spadají ještě F. csikhegyensis a F. pseudovagina-ta. Všechny taxony jsou si morfologicky velmi podobné a liší se zejména v kvantita- tivních znacích. Kvalitativních znaků je málo a jejich správné hodnocení vyžaduje jistý stupeň praxe. V rámci okruhu F. pallens s.l. je běžně dokumen-tována diferenciace v ploidním stupni (Tracey 1980, Pils 1981, Šmarda et Kočí 2003, Šmarda et al. 2005). Od prvních popisů druhů (Host 1802) je celou skupinu provází bohatá nomeklatorická historie, která je komplikována dlouhodobou absencí typifikace. Typy většiny taxonů z této skupiny byly vybrány teprve nedávno (Foggi et al. 2004, Foggi et Signorini 2004). Taxonomická revize celé skupiny založená na analýze morfologických znaků u množství rostlin se známým stupněm ploidie, studiu AFLP polymorfizmu a typového materiálu (Šmarda et al. in prep. b) je prezentována níže.

2.2 Konspekt středoevropských druhů Festuca pallens a F. csikhegyensis mohou být sloučeny do F. pallens agg.

1. Festuca pallens Host, Icon. Descr. Gram. Austriac. 2: 63. 1802.

≡ F. ovina subvar. pallens (Host) Hack., Monogr. Festuc. Eur.: 95. 1882. ≡ F. glauca subsp. pallens (Host) K. Richt., Pl. Eur. 1: 94. 1890. ≡ F. glauca F. pallens (Host) Hayek, Sched. Fl. Stiriac. (1–2): 19. 1904. ≡ F. glauca var. pallens (Host) Beck, in Wiss. Mitt. Bosnien & Herzegovina 9: 448. 1904. ≡ F. ovina var. pallens (Host) Hegi, Ill. Fl. Mitt.-Eur. 1: 332. 1908. ≡ F. duriuscula var. pallens (Host) Krajina, in Acta Bot. Bohem. 9: 195. 1930. ≡ F. cinerea subsp. pallens (Host) Stohr, in Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 9: 403. 1960. = F. glauca var. major Hagenb., Fl. Basil.: 87. 1821. = F. glauca var. donacella Wallr., Sched. Crit. 1: 33. 1822. = F. arduenna Dumort., Observ. Gram. Belg.: 103. 1824. ≡ F. duriuscula var. arduenna (Dumort.) Mathieu, Fl. Gén. Belgique 1: 620. 1853. = F. rigurosa Schur, Enum. Pl. Transsilv.: 790. 1866. ≡ F. pallens var. rigurosa (Schur) Soó, in Acta Bot. Acad. Sci. Hung. 2: 195. 1955. = Oberösterreich-Niederösterreich and Weizklamm types, R. Tracey (1980), Pils (1981). – F. duriuscula auct. p. p. non L., Sp. Pl.: 74. 1753. – F. cinerea auct. non Vill. in Gilib., Fl. Delph. 1: 8. 1786. – F. glauca auct. non Vill., Hist. Pl. Dauphiné 2: 99. 1787 nec Lam., Encycl. 2: 459. 1788. – F. pannonica auct. non Wulfen ex Host, Icon. Descr. Gram. Austriac. 4: 62. 1809. – F. inops auct. non De Not., Repert. Fl. Ligust.: 466. 1844.

Lektotyp: W Herb. Host no. 2228!; s. d., s. loc., s. coll., vybral Foggi et al. (2004). Karyologie: 2n = 2x (3x) = 14+0-1B (21+0-1B)

10 Exsikátové sbírky: Dörfler Herb. Norm. no. 4599. – Fl. Exs. Reipubl. Bohem. Slov. no. 185. – Fl. Exs. Reipubl. Social. Čechoslov. no. 1695. – Fl. Polon. Exs. no. 516. – Fl. Siles. Exs. no. 355. – Kneucker Gram. Exs. no. 144. – Petrak Fl. Bohem. Morav. Exs. no. 805. Stanoviště: reliktní otevřené skalní trávníky, skalní stepi, exponované skalní výchozy, skály, útesy, lomy, bez zřetelné vazby k typu skalního podloží, vzácně na pískovcích; od nížin do nižších horských poloh, obvykle 100–1300 m n.m.; Diantho lumnitzerii-Seslerion albicantis, Alysso saxatilis-Festucion pallenstis, Helianthemo cani-Festucion pallentis, (Avenulo adsurgensis-Festucion pallentis, Asplenion serpentini, Alysso alyssoidis-Sedion albi) Rozšíření: Belgie, SV Francie, Švýcarsko, J Německo, J Polsko, Česká republika, Slovensko, Rakousko, S Maďarsko, Slovinsko, Rumunsko, SZ Ukrajina (obr. 5).

2. F. csikhegyensis Simonk., in Magyar Bot. Lapok 5: 377. 1906.

= F. cinerea var. lapidosa Stohr, in Wiss. Z. Univ. Halle, Math.-Nat. Reihe 9: 401. 1960 non F. lapidosa Markgr.-Dann., in Bot. Jahrb. 96: 174. 1975. ≡ F. glaucina Stohr, in Schlechtendalia 7: 29. 2001. = Scabrifolia type, Šmarda and Kočí (2003). = F. glauca var. scabrifolia Hack. ex Rohlena, in Věstn. Král. České Společn. Nauk, Tř. Mat.-Přír. 24: 3. 1899. ≡ F. ovina var. scabrifolia (Hack. ex Rohlena) Hegi, Ill. Fl. Mitt.-Eur. 1: 332. 1908. ≡ F. duriuscula (var. longifolia) subvar. scabrifolia (Hack. ex Rohlena) Krajina, in Acta Bot. Bohem. 9: 194. 1930. ≡ F. pallens var. scabrifolia (Hack. ex Rohlena) Markgr.-Dann. in Janchen, Cat. Fl. Austriae., Ergänzungsheft 1: 109. 1963. = Scabrifolia type, Šmarda and Kočí (2003). – F. pallens subsp. scabrifolia (Hack. ex Rohlena) Zielonk., in Hoppea 31: 177. 1973 (nom. inval. Art. 33.3). = F. pallens var. styriaca Markgr.-Dann. in Janchen, Cat. Fl. Austriae., Ergänzungsheft 1: 109. 1963. = Steiermark-Kärnten type, R. Tracey (1980). = F. duriuscula subvar. longifolia Krajina, in Acta Bot. Bohem. 9: 194. 1930. – F. longifolia (Krajina) Májovský, in Biologia (Bratislava) 10: 670. 1955 (nom. inval. Art. 11.2, 53.1) non. Thuill., Fl. Env. Paris, ed. 2: 50. 1799. = Pannoniches-Hügelland type, R. Tracey (1980). – F. duriuscula auct. p. p. non L., Sp. Pl. 1: 74. 1753. – F. cinerea auct. non Vill. in Gilib., Fl. Delph. 1: 8. 1786. – F. glauca auct. non Vill., Hist. Pl. Dauphiné 2: 99. 1787, nec Lam., Encycl. 2: 459. 1788. – F. stricta auct. non Host, Icon. Descr. Gram. Austriac. 2: 62. 1802. – F. duvalii auct. non (St.-Yves) Stohr, in Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 4: 732. 1955.

Lektotyp: in asperis saxosis rupium calc. in monte Csikyhegy ad Budaörs, leg. Dr. Simonkai Lajos 19.5.1902, crescit inter stirpes indicates (BP, no. 12054!), bude vybrán Šmarda et al. (in prep. b). Karyologie: 2n = 4x = 28+0-1B Exsikátové sbírky: Hayek Fl. Stir. Exs. no. 58. – Domin et Krajina Fl. Čechoslov. Exs. no. 118. – Gram. Hung. no. 171. – Fl. Exs. Reipubl. Social. Čechoslov. no. 1693 (as F. stricta Host). – Fl. Exs. Austro-Hung. no. 1076/I. Stanoviště: reliktní otevřené skalní trávníky, skalní stepi a pastviny, skalní výchozy, útesy, lomy, spíše na bazickém podloží, vzácněji na píscích a pískovcích, od nížin do pahorkatin, obvykle do 600 m n.m., v JV Alpách až kolem 1000 m n.m.; Bromo panonici-Festucion pallenstis, Alysso saxatilis-Festucion pallentis, Helianthemo cani-Festucion pallentis, Diantho lumnitzerii-Seslerion albicantis, (Koelerio-Phleion phleoidis, Alysso alyssoidis- Sedion albi, Avenulo adsurgensis-Festucion pallentis). Rozšíření: stř. a SV Německo, Česká republika, Slovensko, Rakousko, Maďarsko (obr. 5).

11 54N

52N

50N

48N

46N

44N

? 6E 9E 12E 15E 18E 21E 24E 27E

Obr. 5: Rozšíření saxikolních taxonů F. pallens agg. na základě morfologicky analyzovaných rostlin: šedé čtverce – F. pallens, tmavé kosočtverce – F. csikhegyensis, malá bílá kolečka – F. psammophila × F. pallens (F. ×belensis), bílý čtverec – F. pallens × F. valesiaca (Šmarda et Kočí 2003), bílý trojúhelník – F. glaucina × F. vaginata; přerušovaná čára ohraničuje areál F. pallens agg.

3. F. psammophila (Hack. ex Čelak.) Fritsch, Exkursionsfl. Österr.: 64. 1897 a. subsp. psammophila

Bas.: F. glauca subsp. psammophila Hack. ex Čelak., Prodr. Fl. Böhmen 4: 721. 1881. ≡ F. ovina subvar. psammophila (Hack. ex Čelak.) Hack., Monogr. Festuc Eur.: 96. 1882. ≡ F. ovina var. psammophila (Hack. ex Čelak.) Hack. ex Hegi, Ill. Fl. Mitt.-Eur. 1: 332. 1908. ≡ F. cinerea subsp. psammophila (Hack. ex Čelak.) Stohr, in Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 9: 403. 1960. ≡ F. caesia subsp. psammophila (Hack. ex Čelak.) Patzke, in Oesterr. Bot. Z. 108: 506. 1961. ≡ F. pallens subsp. psammophila (Hack. ex Čelak.) Tzvelev, Fl. Evropeiskoi Chasti SSSR 1: 266. 1974. = F. psammophila subsp. muellerstollii Toman, in Feddes Repert. 101: 31. 1990. = F. vaginata var. aristata Pawlus, in Fragm. Florist. Geobot. 29: 275. 1985.

Lektotyp: In arenosis prope Kolin ad Albim, leg. Čelakowsky 1880 (W – Herbarium Hackel, no. 10171!), vybral Foggi et Signorini (2004). Karyologie: 2n = 2x = 14 Exsikátové sbírky: Domin et Krajina Fl. Čechoslov Exs. no. 119. – Fl. Exs. Austro-Hung. no. 3950. – Fl. Siles. Exs. no. 1000. Stanoviště: kyselé až slabě bazické váté písky, písčité borové lesy a vřesoviště, 0–350 m n.m.; Koelerion glaucae, Corynephorion canescentis (Plantagini-Festucion ovinae, Genistion pilosae). Rozšíření: Česká republika (Čechy), V a stř. Německo, Polsko, Litva (obr. 6).

12 b. subsp. dominii (Krajina) P. Šmarda, nom. prov.

Bas.: F. dominii Krajina, in Acta Bot. Bohem. 9: 198. 1930. ≡ F. vaginata subsp. dominii (Krajina) Soó in Soó et Jávorka, Magyar Növényvilág Kézikönyve: 921. 1951. ≡ F. vaginata var. dominii (Krajina) Soó, in Acta Bot. Acad. Sci. Hung. 2: 187. 1955. = F. ovina var. vaginata f. mucronata Hack., Monogr. Festuc. Eur.: 97. 1882. – F. vaginata subsp. mucronata (Hack.) Schwarzová, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 14: 383. 1967 (nom. inval. Art. 11.3.). – F. amethystina Host, Icon. Descr. Gram. Austriac. 2: 89. 1802 (nom. inval. Art. 53.1) non L., Sp. Pl.: 74. 1753. ≡ F. ovina var. amethystina Koch, Syn. Fl. Germ. Helv.: 812. 1837. ≡ F. ovina subsp. amethystina (Koch) Čelak., Prodr. Květ České 3: add. ad Vol. 1 et 2, pag. prima sine num. 1877.

Lektotyp: BRNU no. 221474!; K. Domin et V. Krajina, Flora Čechoslovenica Exsiccata no. 120, Slovakia austro-occidentalis, in arenosis in planitie fluminis Morava Moravské Pole dicta, inter vicos Kuchyňa et Plavecký Štvrtok, altitude circa 160–170 m s. m., leg. K. Domin, V. Krajina et socii 19. 6. 1929, bude vybrán Šmarda et al. (in prep. b). Karyologie: 2n = 2x = 14 Exsikátové sbírky: Domin et Krajina Fl. Čechoslov. Exs. no. 120, 121. – Fl. Exs. Austro- Hung. no. 279. Stanoviště: slabě bazické nebo kyselé písky a písčité bory, 100–200 m n.m.; Festucion vaginatae (Plantagini-Festucion ovinae, Koelerion glaucae). Rozšíření: JV Polsko, JV Morava, JZ Slovensko, SV Rakousko (obr. 6).

4. F. vaginata Waldst. et Kit. ex Willd., Enum. Pl.: 116. 1809.

≡ F. glauca var. vaginata (Waldst. et Kit. ex Willd.) Wimm. et Grab., Fl. Siles. 1: 87. 1827. ≡ F. ovina subsp. vaginata (Waldst. et Kit. ex Willd.) Čelak., Prodr. Květ. České 3: add. ad Vol. 1 et 2, pag. prima sine num. 1877. ≡ F. ovina var. vaginata (Waldst. et Kit. ex Willd.) Fiek, Fl. Schlesien: 522. 1881; Hack., in Bot. Centralbl. 8: 405. 1881. ≡ F. glauca subsp. vaginata (Waldst. et Kit. ex Willd.) Nyman, Consp. Fl. Eur. 4: 829. 1882. ≡ F. ovina subsp. vaginata (Waldst. et Kit. ex Willd.) Hack. ex Hegi, Ill. Fl. Mitt.-Eur. 1: 333. 1908. ≡ F. caesia subsp. vaginata (Waldst. et Kit. ex Willd.) Patzke, in Oesterr. Bot. Z. 108: 506. 1961. = F. dominii var. margittaii Krajina, in Acta Bot. Bohem. 9: 200. 1930. ≡ F. vaginata var. margittaii (Krajina) Schwarzová, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 14: 383. 1967.

Typ: B Herb. Willdenow no. B-W 02054-02; s. d., s. loc., s. coll., bude vybrán Šmarda et al. (in prep. b). Karyologie: 2n = 2x (3x) = 14 (21) Exsikátové sbírky: Bartha Pl. Hung. Exs. sine no. “F. vaginata W. et K.“. – Dörfler Herb. Norm. no. 5574. – Fl. Hung. Exs. no. 290. – Fl. Rom. Exs. no. 3295. – Gram. Hung. no. 34. – Kneucker Gram. Exs. no. 145. – Fl. Exs. Reipubl. Bohem. Slov. no. 989. Stanoviště: bazické nebo vzácně acidofilní váté písky, písčité bory, pískovny, vzácně na pískovci, 0–300 m n.m.; Festucion vaginatae (Plantagini-Festucion ovinae). Rozšíření: J a V Slovensko, SV Rakousko, Maďarsko, SV Chorvatsko, SZ a JZ Rumunsko, V Bulharsko (obr. 6).

13 5. F. polesica Zapał., in Bull. Int. Acad. Sci. Cracoviae, Cl. Sci. Math., Sér. B, Sci. Nat. 1904: 303. 1904.

≡ F. ovina subvar. polesica (Zapał.) Litard., in Candollea 10: 107. 1945. ≡ F. beckerii subsp. polesica (Zapał.) Tzvelev, in Spisok Rast. Gerb. Fl. S.S.S.R. Bot. Inst. Vsesoyuzn. Akad. Nauk. 18: 15. 1970. = F. ovina subsp. glauca var. sabulosa Andersson, Pl. Scand. 2: 23. 1852. ≡ F. sabulosa (Andersson) H. Lindb., Sched. Pl. Finland. Exsicc. 1: 23. 1906. ≡ F. ovina subsp. sabulosa (Andersson) Tzvelev, in Spisok Rast. Gerb. Fl. S.S.S.R. Bot. Inst. Vsesoyuzn. Akad. Nauk. 18: 14. 1970. = F. vaginata var. dubia Beldie, Fl. Republ. Socialist. Romania 12: 790. 1972. – F. vaginata auct., non Waldst. et Kit. ex Willd., Enum. Pl.: 116. 1809. – F. caesia auct. non Sm., Engl. Bot. 27: tab. 1917. 1808.

Typ: Polesie Wolynskie, Rokitno, leg. Dr. A. Rehman 1882 (KRA no. 65117) Karyologie: 2n = 2x = 14+0-4B Exsikátové sbírky: Estonian Plants No. 33. – Gerb. Fl. SSSR no. 4920, 5859. Stanoviště: pobřežní a vnitrozemské písečné duny, 0–150 m n.m.; Koelerion glaucae, Festucion beckerii. Rozšíření: Dánsko, V Německo, Polsko, Švédsko, Finsko, Estonsko, Litva, Bělorusko, Ukrajina, Moldávie, Rumunsko, Bulharsko a v Rusku na východ až po Ural (obr. 6).

6. F. ?×pseudovaginata Penksza, in Acta Bot. Hung. 45: 367. 2003.

?= F. hackelii Beck, Fl. Nieder-Österreich 1: 97. 1890. “pro hybr.” ?= F. interjecta Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 175. 1917. „pro hybr.“

Holotyp: Kis-tece pasture near Vácrátót, Hungary, GPS coordinate Unified Projection System: x=262650, y=663180, altidude ca 128 m, 6.5.2003 leg. K. Penksza (BP, no. 647351!). Karyologie: 2n = 2x, 4x = 14, 28 Stanoviště: bazické váté písky, 100–200 m n.m.; Festucion vaginatae. Rozšíření: stř. Maďarsko, SZ Rumunsko (obr. 6). hybridi (1) F. ovina × F. pallens = F. ×duernsteinensis Vetter, in Verh. Zool.-Bot. Ges. Wien 72: 116. 1922. = F. ×vihorlatica Májovský, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 9: 330. 1963 (nom. inval. Art. 37.2) (2) F. ovina × F. polesica (3) F. ovina × F. psammophila (4) F. pallens × F. psammophila = F. ×belensis Toman, in Feddes Repert. 87: 566. 1974. (5) F. pallens × F. pseudodalmatica = F. ×krizoviensis Májovský, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 9: 330. 1963. (6) F. pallens × F. valesiaca = F. ×saxicola Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 178. 1917. (7) F. pallens × F. rubra = F. ×wettsteinii Vetter, in Verh. Zool.-Bot. Ges. Wien 72: 114. 1922. (8) F. pseudovina × F. vaginata = F. ×hackelii Beck, Fl. Nieder-Österreich 1: 97. 1890. (9) F. rubra × F. vaginata = F. ×teyberi Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 65: 148. 1915. = F. × neilreicheana Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 66: 125. 1916. (10) F. rubra × F. vaginata × F. rupicola = F. ×trigenea Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 183. 1917.

14 (11) F. rupicola × F. vaginata = F. × interjecta Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 175. 1917. = F. ×diluta Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 173. 1917. = F. ×firma Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 172. 1917. – F. javorkae Májovský, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 9: 323. 1963 (nom. inval. Art. 37.2, 52.1). (12) F. vaginata ×F. csikhegyensis (13) F. vaginata ×F. valesiaca

54N

52N

50N

48N

46N

44N

6E 9E 12E 15E 18E 21E 24E 27E

Obr. 6: Rozšíření psamofilních taxonů na základě morfologicky hodnocených rostlin. Symboly: bílá kolečka – F. psammophila subsp. psammophila, rozdělená tmavá/bílá kolečka – F. psammophila subsp. dominii, tmavé čtverce – F. polesica, bílé čtverce – F. pseudovaginata, tmavé trojúhelníky – F. vaginata, bílé trojúhelníky – F. vaginata × F. valesiaca, malé tmavé body – F. psammophila × F. ovina; přerušovaná čára ohraničuje přirozený areál F. psammophila, plná čára areál F. vaginata a tečkovaná čára západní okraj areálu F. polesica.

15

2.3 Určovací klíč K měření by měly být vybírány pouze laty nejlépe vyvinutých (nejvyšších) stébel a klásky ze střední části laty. Délka (dále jen dl.) klásků je měřena od báze dolní plevy po vrchol čtvrté pluchy (bez osiny). Délka pluchy a osiny jsou měřeny na druhé pluše v klásku. Drsnost listů (tj. přítomnost drobných osténků na kýlech vnější strany listů) se posuzuje protažením kýlu listů sterilních výhonů mezi rty směrem od špice k bázi nebo alespoň při 40-ti násobném zvětšení. Struktura sklerenchymu se pozoruje na mikroskopickém preparátu příčných řezů listy sterilních výběžků (mezi polovinou a horní čtvrtinou jejich délky), nejméně pod 100- násobným zvětšením.

1a Stébla pod latou hustě, krátce chlupatá (alespoň 10-ti násobně zvětšení); rostliny ojíněné nebo neojíněné; listy sterilních výhonů postupně se zužující, vyrůstající jako přímé pokračování pochvy, všechny téměř po celé délce drsné; trsy obvykle husté, zpravidla se slámově zabarvenými pochvami; výhradně písčitá stanoviště …...……………. F. polesica 1b Stébla pod latou lysá až hustě chlupatá; rostliny vždy ojíněné; listy sterilních výhonů krátce zašpičatělé, odstávající obvykle v různém úhlu od pochvy, hladké až různou měrou drsné; trsy obvykle volnější, příležitostně s fialově naběhlými pochvami; skalnatá i písčitá stanoviště ………..………………………….……………..………………..…………..… 2 2a Klásky (5,7)6,5–8,3(9,1) mm dl.; plucha (3,7)4,1–5,8(6,1) mm dl. s (0,5)0,9–2,5(3,5) mm dl. osinou; skalnatá stanoviště, velmi vzácně písky ……………………..…………...…... 3 2b Klásky (4,8)5,3–7,6(7,9) mm dl.; plucha (2,7)3,2–4,9(5,2) mm dl., bez nebo s 0,05– 1,1(1,8) mm dl. osinou; výhradně písky, vzácně pískovce ……………………….....…… 4 3a Alespoň některé listy mladých sterilních výhonů také v dolní polovině na hřbetě přinejmenším slabě drsné; sklerenchym na příčném řezu alespoň některých listů na bočních stranách listu přerušen na délku několika epidermálních buněk; cévních svazků 7–9(11); lata před rozkvětem přímá; stéblo pod latou alespoň s několika drobnými osténky až výrazně drsné (alespoň 25-ti násobné zvětšení); 2n = 4x = 28 ..……… F. csikhegyensis 3b Listy sterilních výhonů obvykle hladké nebo vzácně jen při špici drsné; sklerenchym tvoří nepřerušovaný prstenec; cévních svazků 7–11(15); lata před rozkvětem, zpravidla nicí; stébla pod latou úplně hladká nebo jen příležitostně řídce osténkatá; 2n = 2x = 14 ……….. …………………………………………………………………………………… F. pallens 4a Listy sterilních výhonů vždy úplně hladké; pluchy bez nebo jen s 0,05–1,1(1,4) mm dl. osinou ……………………..…………………………………………………….……..…. 5 4b Alespoň mladší listy sterilních výhonů na hřbetě drsné; pluchy s dlouhou osinou ….…… 6 5a Plucha (2,7)3,2–4,0(4,3) mm dl., bez nebo jen příležitostně s 0,05–0,4(0,6) mm dl. osinou; nejdelší laty 9–20(24) cm dl., s 30–170(210) klásky, s nejdelšími dolními větévkami laty (3,0)3,6–8,0(10,5) cm dl., bazické písky v panonské oblasti …...……………. F. vaginata 5b Plucha (3,4)3,7–4,9(5,2) mm dl. s (0,1)0,2–1,1(1,4) mm dl. osinou; nejdelší laty 7–15(18) cm dl. s 20–80(120) klásky, s nejdelšími dolními větévkami laty (1,3)2,1–5,7(6,6) cm dl., kyselé až mírně bazické písky v České republice, Rakousku, JZ Slovensku, Německu, Polsku a Litvě …..………………………………..…………………….… F. psammophila 01a V populacích převládají rostliny s velkými, širokými, 10–20 cm dl. latami s dlouhými nejspodnějšími větévkami laty; klásky obvykle 3,8–4,3 mm dl.; osiny obvykle 0,2–0,6 mm dl.; písky JV Moravy, JZ Slovenska, SV Rakouska a V Polska ……………………. …………………………………….……………………………...… F. p. subsp. dominii 01b V populacích převládají rostliny s menšími, užšími, 7–15 cm dl. latami s kratšími spodními větévkami laty; klásky obvykle 4,0–4,5 mm dl.; osiny zpravidla 0,4–1,1 mm dl.; písky v Německu, České republice (Polabí), Polsku a Litvě …………..……………. …………………………………………………………………F. p. subsp. psammophila

16 6a Malé, 20–35 cm vysoké rostliny; laty 5,0–8,5 cm dl.; časně kvetoucí rostliny; písky panonské oblasti ………………………………………………..……… F. pseudovaginata 6b Rostliny zpravidla vyšší; laty obvykle delší; rostliny později kvetoucí, roztroušené v populacích F. psammophila nebo F. vaginata, v kontaktu s drsnolistými druhy z okruhů F. ovina nebo F. valesiaca ……..………....…. hybridi s F. psammophila nebo F. vaginata

2.4 Evoluce a systematika okruhu

Za evoluční centrum skupiny Festuca ser. Psammophilae lze považovat mediteránní oblast jižní a jihozápadní Evropy, kde se vyskytuje řada morfologicky velmi podobných druhů (F. inops De Not., F. gracilior (Hack.) Markgr.-Dann., F. michaelis Cebolla et Rivas Ponce, F. degenii (St.-Yves) Markgr.-Dann., F. occitanica (Litard.) Auquier et Kerguélen, F. cinerea Vill., F. indigesta Boiss., F. altopyrenaica Fuente et Ortúñez, F. summilusitana Franco et Rocha Afonso). Jedinou analogií této skupiny na píscích východní Evropy a jižní Sibiře představuje skupina F. beckeri (F. polesica a Festuca beckeri (Hack.) Trautv.). Tato skupina se od ostatních středoevropských druhů liší v několika podstatných kvalitativních znacích jako je častá absence ojínění, odlišná architektura trsu a sterilních výběžků a částečně odlišný charakter příčného řezu, a její zařazení do skupiny F. ser. Psammophilae vyžaduje další studium. V případě evoluční příbuznosti skupiny F. beckerii s ostatními druhy Festuca ser. Psammophilae (cf. Alexeev 1975), geografická izolace spolu se širokým rozšířením na jižní Sibiři mohou indikovat časnou diverzifikaci a rozšíření tohoto okruhu. Středoevropské diploidní taxony skupiny Festuca ser. Psammophilae (F. pallens, F. psammophila, F. vaginata) jsou morfologicky velmi podobné, bez zřejmých kvalitativních rozdílů, a liší se zejména rozměry generativních částí. Ancestrální pozici v této skupině zřejmě zaujímá F. pallens. Festuca pallens roste na množství reliktních stepních skalních biotopů (skalní útesy a výchozy v hlubokých říčních kaňonech, krasových územích, horských soutěskách a údolích), které nebyly nikdy v minulosti kryty lesem a F. pallens zde mohla přežívat dlouhou dobu. Na stanoviště F. pallens je vázáno množství různých reliktních a endemických druhů jako: terciérní relikty Daphne arbuscula a Festuca tatrae (Csakó) Degen (Kliment 1999), glaciální relikty Saxifraga paniculata, Primula auricula, Biscutella laevigata, Arenaria grandiflora, Sesleria albicans nebo S. rigida, relikty periglaciálních stepí Ferula sadleriana, Helictotrichon decorum, Seseli leucospermum a Viola jóoi. Mnohé mediteránní či submeridionální druhy, jinak široké ekologické amplitudy, preferují na severních okrajích svých areálů právě společenstva s F. pallens (Notholaena marantae, Stipa pennata subsp. eriocaulis). Na mladších stanovištích písků vznikajících na konci glaciálu se z F. pallens potom mohly formovat druhy F. psammophila a F. vaginata. Ekologická vazba F. pallens na skalní stanoviště nemusela představovat výraznou bariéru při evoluci psamofilních taxonů. Jako analogický příklad může sloužit řada druhů rostoucích s F. pallens, které se vyskytují nebo běžně kolonizují jak skalní, tak písčitá stanoviště: Minuartia glaucina Dvořáková, Alyssum montanum, Alyssum tortuosum, Verbascum phoeniceum, Fumana procumbens a Carex supina. Blízký vztah F. pallens a F. psammophila na pískovcích v okolí Bělé pod Bezdězem dokazují srovnání na základě AFLP polymorfizmu. Už Stohr (1960) a Tzvelev (1972) slučují F. pallens a F. psammophila jako subspecie F. cinerea Vill. a Alexeev (1975) oba taxony pojímá dokonce jako synonymní. Stejně jako v ostatních skupinách úzkolistých kostřav sekce Festuca, i v případě F. pallens, je významným evolučním mechanizmem polyploidie. Polyploidizace u F. pallens a ostatních druhů této skupiny probíhá nepochybně kontinuálně i v současnosti. Na základě aktuálních karyologických a cytometrických prací (Šmarda et Kočí 2003, Šmarda et al. 2005, Šmarda submitted, Šmarda et Bureš submitted, Šmarda unpub.) lze současné polyploidy F. pallens rozdělit podle relativní doby vzniku do tří následujících skupin:

17 a) Jednotlivé triploidní, tetraploidní nebo pentaploidní rostliny vznikající recentně v jinak ploidně homogenních populacích. Nejčastěji jde o hybridy, v některých případech nelze vyloučit ani možný autopolyploidní původ. b) Malé stabilizované populace tetraploidů nebo triploidů v území s širokým zastoupením diploidů (Moravský Krumlov, F. pallens; Čenkov, F. vaginata × F. rupicola; Steckby, F. ovina × F. polesica) nebo velké populace tetraploidů s izolovanými mikropopulacemi diploidů (Větrušice, kaňon Vltavy, F. pallens s.l.). Vzhledem k morfologické odlišnosti obou ploidních úrovní F. pallens je možno některé ploidně smíšené populace chápat jen jako sympatrický výskyt dvou nezávislých druhů a potvrzení skutečného soumístného původu diploidů a tetraploidů vyžaduje ověření molekulárními metodami. c) Staré stabilizované typy s širokým areálem, které by mohly představovat u F. pallens následující tři tetraploidní typy (Tracey 1980, Pils 1981, Šmarda et Kočí 2003): Pannonisches-Hügelland (vápencové a dolomitové kopce v panonské oblasti), Steiermark-Kärnten (vápencové a dolomitové skály JV Alp) a typ Scabrifolia (vápencové, silikátové skály, vzácněji písky, rozšířený v Čechách, středním a S Německu). Tyto tetraploidní typy jsou vzhledem k větší či měnší odlišnosti od diploidních populací a s ohledem na malé vzájemné morfologické rozdíly slučovány do jediného druhu jako F. csikhegyensis (Šmarda et al. in prep. b). Některé kvalitativní znaky chybějící u diploidů (tendence k vytváření přerušovaného sklerenchymatického provazce a drsnost listů) mohou odrážet hybridní původ tetraploidů. Z taxoů Festuca ser. Psammophilae má zatím evyjasněné postavení F. dominii Krajina. V širším geografickém kontextu je taxonomická hodnota diferenciálních znaků v originální práci Krajiny (Krajina 1930) poměrně malá a většina rostlin označovaných jako F. dominii je morfologicky podobná F. psammophila. Jen ve velmi variabilních populacích mohou některé vzorky připomínat F. vaginata. Ačkoliv je morfologická diferenciace F. dominii vůči ostatním druhům slabá a nepodporuje tak druhový statut tohoto taxonu, pravidelné seskupování vzorků na základě AFLP polymorfizmu a částečná geografická separace populací s F. psammophila hovoří pro zachování tohoto taxonu alespoň na poddruhové úrovni v rámci F. psammophila. Za současných znalostí není možné vyloučit vznik tohoto druhu hybridizací F. psammophila a F. vaginata na kontaktu areálu obou druhů, ani postupnou alopatrickou speciaci na východním okraji areálu F. psammophila. Dalším sporným druhem zůstává F. pseudovaginata Penksza, u kterého byl oproti původnímu diploidnímu počtu chromozomů v popisu (Penksza 2003) detekován u typového materiálu tetraploidní stupeň ploidie (Šmarda et al. in prep. b). Morfologická podobnost s F. vaginata a vazba na společenstva tohoto druhu (Penksza 2003: 367, Šmarda submitted), ale jinak odlišný ploidní stupeň a na hřbetě drsné listy mohou indikovat hybridní původ F. pseudovaginata s F. vaginata jako jedním z rodičů. Hybridnímu původu F. pseudovaginata a zahrnutí odlišného genotypu může nasvědčovat i samostatné shlukování diplo- a tetraploidních vzorků v AFLP analýze, stejně jako je tomu v případě hybridů s F. ovina (Šmarda et al. in prep. b). Časnější doba květu je podobná jako v případě často společně rostoucí F. pulchra Schur. Hybridi F. vaginata s taxony ze skupiny F. valesiaca byly už několikrát popsáni Vetterem (Vetter 1917) a Beckem (Beck 1890) a mohou mít prioritu vůči pozdějšímu jménu F. pseudovaginata. Kostřavy jsou zatím jedním z mála příkladů druhů, u kterých byla prokázána významnější vnitrodruhová variabilita v obsahu DNA (cf. Greilhuber 2005) jak na areálové, tak na intrapopulační a regionální úrovni (Šmarda submitted, Šmarda et Bureš submitted). V rámci celého areálu je obsah DNA tetraploidů a diploidů F. pallens agg. vzájemně geograficky provázaný a v oblastech s vysokým obsahem DNA u diploidů mají vyšší obsah i tetraploidi. Obsah DNA u obou ploidních úrovní sleduje stejný geografický gradient s vyšším obsahem DNA u rostlin na JV okraji areálu. Tento trend koresponduje s charakterem vegetace na sklonku posledního glaciálu (20 000 BP, Lang 1994) a u diploidů je větší obsah

18 DNA vázán na reliktní stanoviště. Vzhledem k existujícímu geografickému gradientu se různí obsah DNA i v jednotlivých fytogeografických oblastech. U tetraploidů se rozdíly projevují zejména mezi třemi rozlišovanými tetraploidními typy (viz výše). Zdá se, že velikost genomu v tomto případě může více než ekologické faktory prostředí odráží mikrospeciační procesy a polytopní původ jednotlivých tetraploidních typů. I když nejvariabilnější populace byly pozorovány u tetraploidů (Mikulov – Svatý Kopeček), variabilita v diploidních a tetraploid- ních populacích je podobná.

19 3. Konspekt disertační práce

3.1 Cíle disertační práce − Dokumentovat karyologickou variabilitu polyploidního okruhu Festuca pallens a rozšíření jednotlivých ploidních úrovní ve střední Evropě v návaznosti na předchozí práce Tracey (1980) a Pilse (Pils 1981). − Morfologická a cytometrická analýza diploidních a tetraploidních rostlin F. pallens s.l. − Taxonomická revize okruhu Festuca ser. Psammophilae na základě morfologických, karyologických a molekulárních znaků. − Možnosti využití průtokové cytometrie ke studiu okruhu Festuca ser. Psammophilae.

3.2 Použité metody Rostliny pro studium okruhu Festuca ser. Psammophilae byly sbírány od roku 1998 a jsou kultivovány na pozemcích Pedagogické fakulty MU v Brně-Bohunicích, pozemcích Výzkumného ústavu pícninářského v Troubsku a částečně i na soukromé zahradě v Moravských Budějovicích. Z populací byly odebírány 1–4 rostliny, v ojedinělých případech rostlin až 14. Část odebraného trsu byla přímo v terénu herbarizována a další herbářové položky byly pořízeny u většiny vzorků také v průběhu kultivace. U kritických skupin byly morfologické znaky proměřovány pouze u rostlin se známým ploidním stupněm. Výběr a hodnocení znaků byl upraven podle současných taxonomických pojednání okruhu, metodické morfologické práce Toman (1974) a na základě vlastních pozorování. Počet chromozomů byl zpočátku determinován přímým počítáním modifikací běžně používané rychlé cytologické metody (Pazourková et Pazourek 1960, Šmarda et Kočí 2003). V průběhu dalšího studia byl ploidní stupeň živých i suchých herbářových položek měřen za využití průtokové cytometrie. K vyvození vzájemných evolučních vztahů jednotlivých taxonů bylo využito metody AFLP. Detailní popis jednotlivých metod včetně výběru morfologických a anatomických znaků jsou blíže dokumentovány v jednotlivých metodických pasážích příslušných předkládaných publikací.

3.3 Přehled publikovaných a k publikaci připravených prací K disertační práci: (1) Šmarda P., Müller J., Vrána J. et Kočí K. (2005): Ploidy level variability of some Central European fescues (Festuca subg. Festuca L., Poaceae). – Biologia (Bratislava) 60: 25–36. (2) Šmarda P. et Kočí K. (2003): Chromosome number variability in Central European members of Festuca ovina and F. pallens groups (sect. Festuca). – Folia Geobot. 38: 65–95. (3) Grulich V., Krahulec F., Šmarda P. et Kočí K. (2002): Festuca. p. 828–834. In: Kubát K. [ed.], Klíč ke květeně České republiky. – Academia, Praha. (4) Šmarda P. (submitted): DNA ploidy levels of Romanian fescues (Festuca L., Poaceae), measured in living plants and herbarium specimens. – Folia Geobot. (5) Šmarda P., Šmerda J., Knoll A. et Bureš P. (in prep. b): Revision of Central European taxa of Festuca ser. Psammophilae Pawlus – morphometrical, karyological and AFLP analysis. (6) Šmarda P. et Bureš P. (submitted): Intraspecific genome size variability in Festuca pallens on different geographical scales and ploidy levels. – Ann. Bot. (Oxford).

20 (7) Šmarda P. et Grulich V. (in prep.): Festuca L. in: Feráková V., Grulich V., Hodálová I., Hrouda L., Kochjarová J., Marhold K., Mártonfi P. et Mereďa P. [eds.], Určovací kľúč papraďorastov a semenných rastlín Slovenska.

Vymezení podílu spoluautorů: Petr Šmarda: (1) Text článku, sběr, kultivace a determinace rostlin, asistence při cytometrických měřeních. (2) Text článku, počty chromozomů pro druhy z okruhu F. pallens, literární rešerše karyologických údajů. (3) Struktura klíče, dílčí klíč na druhy z okruhu F. pallens a F. valesiaca. (5) Text článku, taxonomické hodnocení, morfologická měření a jejich statistická analýza, cytometrická měření, vyhodnocení a statistická analýza AFLP polymorfizmu. (6) Příprava textu článku, sběr a kultivace vzorků, cytometrická měření, statistická analýza dat. (7) Celková koncepce a text klíče vyjma širokolistých druhů a skupiny F. rubra s. str.

Petr Bureš: (5) Konzultace taxonomických otázek skupiny a revize textu (6) Příprava textu článku, sběr populačních vzorků, cytometrická měření. Vít Grulich: (3) Celková editace a komentáře ke klíči, dílčí klíč na širokolisté druhy a F. amethystina a F. heterophylla. (7) Editace klíče, poznámky k rozšíření, v budoucnu dílčí klíč na širokolisté druhy a druhy okruhu F. rubra agg. Aleš Knoll: (5) Analýza délkového spektra AFLP fragmentů na sekvenátoru. Kateřina Kočí: (1) Revize textu, asistence při cytometrických měřeních. (2) Revize textu, počty chromozomů pro druhy z okruhu F. ovina. (3) Dílčí klíč k F. ovina a F. filiformis. František Krahulec: (3) Dílčí klíč k taxonům F. rubra agg. Jochen Müller: (1) Příprava textu článku, poskytnutí herbářových položek některých německých druhů. Jakub Šmerda: (5) Izolace DNA, amplifikace restrikčních fragmentů, text metodiky molekulárních metod. Jan Vrána: (1) Měření na proudovém cytometru.

Ostatní publikace: (a) Šmarda P. et Kočí K. (2005): Festuca alpina, a new species for the flora of Slovakia. – Biologia (Bratislava) 60: 383–385. (b) Šumberová K., Lososová Z. et Šmarda P. (2004): Nové nálezy Veronica scardica na jižní Moravě. – Zprávy České Bot. Společn. 39: 161–166. (c) Helánová K., Bureš P., Šmarda P. et Horová L. (2004): Polypodium ×mantoniae (P. interjectum × P. vulgare) new hybrid in Rumania confirmed using flow cytometry. – Contr. Bot. Univ “Babes-Bolay” Cluj-Napoca 39: 7–11. (d) Šmarda P. et Stančík D. (accepted): Ploidy level variability in South American fescues (Festuca L., Poaceae): use of flow cytometry in up to 5 ½-year-old caryopses and herbarium specimens. – Pl. Biol. (accepted) (e) Šmarda P., Horová L., Bureš P., Foggi B., Rossi G. et Loureiro J. (in prep. a): Study of evolution using genome size and AT/CG ratio: A case study of European fescues (Festuca L., Poaceae).

21

3.4 Hlavní výsledky disertační práce − Dokumentace rozšíření jednotlivých ploidních úrovní rozlišovaných typů F. pallens (Tracey 1980, Pils 1981) a ostatních druhů F. ser. Psammophilae v rámci celého jejich areálu (1, 2, 4, 5, 6). Vylišení nového tetraploidního typu Scabrifolia zastoupeného v Čechách a v Německu (2). Detekce vzácných ploidních úrovní a hybridů v populacích sledovaných druhů (1, 2, 6) a ploidních úrovní mnoha dalších druhů evropských kostřav (1, 2, 4). − Taxonomická revize okruhu Festuca ser. Psammophilae na základě morfologické, karyologické a AFLP analýzy sředoevropských druhů a studia typového materiálu. Odlišení tetraploidních typů F. pallens jako samostatný druh F. csikhegyensis a dokumentace jeho rozšíření. Reklasifikace F. dominii na poddruhovou úroveň pod F. psammophila (5). − Vypracování určovacích klíčů na kostřavy okruhu F. pallens, F. valesiaca a některé další druhy pro Českou republiku a Slovensko (3, 7). − Objevení možnosti použití průtokové cytometrie u suchých herbářových položek (1). Zjištění mírného posunu v naměřeném obsahu DNA u herbářových položek oproti měřením živých rostlin (4). − Dokumentace výrazné variability v obsahu DNA u F. pallens a několika dalších druhů kostřav (4). Dokumentování vazby obsahu DNA u F. pallens s geografickou pozicí v rámci areálu, typem stanovišť, jednotlivými tetraploidními typy a prostorové provázanosti obsahu DNA diploidů a tetraploidů (6).

3.5 Náměty k dalšímu studiu a rozpracovaná témata

Nezávislý vznik tetraploidních typů F. csikhegyensis? V rámci studia skupiny Festuca ser. Psammophilae zůstává nedořešeno postavení jednotlivých tetraploidních typů, které jsou slučovány pod F. csikhegyensis (Šmarda et al. in prep. b). Jejich možný nezávislý původ naznačuje geografická separace a nepatrné morfologické rozdíly pozorované Tracey (1980) v kultivačních podmínkách. Typ Scabrifolia se od ostatních dvou typů rovněž liší menším obsahem DNA (Šmarda et Bureš submitted). K potvrzení hypotézy nezávislého vzniku jednotlivých tetraploidních typů bude vhodné využít molekulárních metod a doplnit dosud nasbíraný materiál pro morfologická měření o dostatečné množství populačních vzorků. Prvotní výsledky AFLP na základě zvolených primerů nedávají vzhledem k velkému množství fragmentů a značně individuálnímu charakteru jednotlivých vzorků zatím uspokojivou odpověď.

Taxonomie okruhu F. valesiaca a F. pseudodalmatica ve střední Evropě. Festuca valesiaca a F. pseudodalmatica jsou blízce příbuzné druhy, svou taxonomickou problematikou analogické okruhu F. pallens. Oba dva druhy jsou morfologicky velmi podobné a bývají rozlišovány zejména na základě rozdílného stupně ploidie (diploidní F. valesiaca a tetraploidní F. pseudodalmatica) a stanovištních preferencí. Dosavadní cytometrická a morfologická analýza více než 150 rostlin (včetně typové lokality) poukazuje na rozpory v pojetí a určování obou druhů ve flórách jednotlivých zemí a na nutnost taxonomické revize celého okruhu.

22 Morfologické srovnání populací F. valesiaca a F. pseudodalmatica na jižní Moravě. V průběhu studia byly v říčních údolích jihozápadní Moravy pozorovány tetraploidní populace jinak běžně rozšířeného diploidního druhu Festuca valesiaca. Na základě vzhledu rostlin z kultivace a odlišného stupně ploidie byly tyto rostliny ztotožněny s jiným blízce příbuzným tetraploidním druhem F. pseudodalmatica Domin, který je dosud znám nejblíže ze západního Slovenka a východního Rakouska. Sběr, cytometrická měření a morfologická měření populačních vzorků, prováděných v rámci diplomové práce Kateřiny Krátké, by měly vyjasnit rozšíření a vymezení tohoto taxonu vůči diploidní F. valesiaca. Z prvotních měření je zatím zřejmé, že tetraploidní populace zcela dominují v říčních kaňonech jihozápadní Moravy.

Nomenklatorická otázka F. pannonica a F. valesiaca. Originální popis F. pannonica Host i vybraný lektotyp (Foggi et al. 2004) odpovídají F. valesiaca a je zřejmé, že tento taxon byl chybně interpretován již monografem rodu Hackelem (Hackel 1882) a následně řadou autorů až do současnosti. Jméno F. pannonica Host je o dva roky starší a má prioritu oproti široce zažitému a používanému jménu F. valesiaca Gaudin Po revizi typového materiálu F. valesiaca v Lausane je v případě potvrzení totožnosti F. pannonica a F. valesiaca záměrem autorů Šmarda et Foggi navrhnout jméno F. valesiaca Gaudin ke konzervaci.

Jaká je struktura velikosti genomu u rostlin z variabilní populace na Svatém kopečku u Mikulova? Je velikost genomu závislá na charakteru stanoviště? U populace F. pallens ze stepních strání PR Svatý kopeček u Mikulova byl prokázán až 12-ti % rozdíl ve velikosti genomu jednotlivých rostlin (Šmarda et Bureš submitted). Není dosud jasné, jakým způsobem se takto velká variabilita indukuje. Záměrem této práce bude zjistit, zda velikost genomu může souviset s typem stanoviště, zda-li se rostliny s větším či menším genomem koncentrují jen v některých oblastech a zda se rozdílná velikost genomu projevuje i morfologicky. V průběhu roku 2005 bylo z 57 plošek (2–3 m2) po celé rezervaci odebráno vždy po třech morfologicky nejkontrastnějších rostlinách a na ploškách byl zapsán fytocenologický snímek s hodnocením vybraných stanovištních faktorů. Výsledky cytometric-kých měření prokázaly podobný rozsah variability jako Šmarda et Bureš (submitted) a disperzní charakter rozšíření jednotlivých skupin rostlin s různě velkým genomem. Detailní analýza vztahu hlavních gradientů vegetačních zápisů s velikostí genomu (Ordinace, Procrustes analysis) a celkové vyhodnocení dat je plánováno na rok 2006.

Velikost genomu a evoluce evropských kostřav. Do připravovaného srovnání (Šmarda et al. in prep. a) je zahrnuto kolem 100 druhů evropských kostřav, u kterých je měřen monoploidní obsah DNA (velikost genomu podělená stupněm ploidie) a poměr AT a CG bazí v genomu. Na základě výsledků molekulární studie Catalán et al. (2004) jsou zahrnuty i některé příbuzné rody jako Lolium, Vulpia, Dactylis a Cynosurus. Dosud naměřená data ukazují, že na základě použitých parametrů velikosti genomu je možno rozlišovat hlavní evoluční skupiny (sekce, podrody, okruhy) evropských kostřav a dokumentovat jejich evoluci v souladu s evolučními trendy odvozovanými na základě sekvenčních dat (kapitola 1.4, obr. 4).

Zpracování druhů pro květenu České republiky V rámci projektu Květena ČR budou zpracovány úzkolisté druhy Festuca ser. Psammophilae a Festuca ser. Valesiacae. Herbářové doklady významnějších českých herbářových sbírek budou revidovány v průběhu roku 2006.

23

Rozšíření F. alpina ve Velké Fatře a analýza zdejších populací cf. F. rupicola. Při výzkumu kostřav na Slovensku byla ve Velké Fatře nalezena izolovaná populace alpského druhu vápencových skalních štěrbin, F. alpina Suter (Šmarda et Kočí 2005). Další výzkum by měl prokázat, zda-li jde pouze o izolovanou lokalitu, nebo zda-li byl tento druh přehlížen a na podobných stanovištích jej lze nalézt i jinde v západních Karpatech. Ve vrcholových partiích Velké Fatry (1300–1400 m n.m.) byla rovněž pozorována variabilní populace hexaploidních kostřav nejasného zařazení, morfologicky připomínající F. rupicola nebo některé analogické druhy z vápenců alpských vysokohoří. Detailnější morfologické srovnání a kultivace rostlin by měly ukázat, zda jde pouze o vysoko položenou populaci F. rupicola, nebo zda je možno tyto populace přiřadit k některým alpským druhům jako F. stricta Host s.l. nebo F. laevigata Gaudin.

24

4. Seznam použité literatury

Alexeev E. B. (1975): Uzkolistnije ovsjanici (Festuca L.) evropskoj chasti SSSR. – Novosti Sist. Vyssh. Rast. 12: 11–43. Arndt S. (2005): Systematik der Festuca valesiaca und Festuca laevigata-Gruppe in den Westalpen. – Doktorská práce, Biologisch-Pharmazeutisch Fakultät der Friedrich- Schiller-Universität Jena. Auquier P. et Kerguélen M. (1978): Un groupe embrouillé de Festuca (Poaceae): les taxons désignés par ľ épithète “glauca” en Europe occidentale et dans les regions voisines. – Lejeunia 89(1977): 1–82. Bridson G. D. R. et Smith E. R. (1991): Botanico-Periodicum-Huntianum/Supplementum. – Hunt Institute for Botanical Documentation, Pitsburgh. Catalán P., Kellogg E. A. et Olmstead R. G. (1997): Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. – Molec. Phylogenetics Evol. 8: 150–166. Catalán P., Torrecilla P., López Rodríguez J. A. et Olmstead R. G. (2004): Phylogeny of festucoid grasses of subtribe Loliinae and allies (Poae, Pooideae) inferred from ITS and trnL–F sequences. – Molec. Phylogenetics Evol. 31: 517–541. Clayton W. D. et Renvoize S. A. (1986): Genera graminum: Grasses of the World. – Kew Bull., Addit. Ser. 13: 1–389. Clayton W. D., Harman K. T. et Williamson H. (2002 onwards). World Grass Species: Descriptions, Identification, and Information Retrieval. http://www.kew.org/data/grasses–db.html. [aktualizace 1. srpna 2005]. Conert H. J. (1998) Festuca L. in: Hegi G. Spermatophyta: Angiospermae: Monocotyledones 1 (2). Poaceae (Echte Grässer oder Süssgrässer). Vol. 1, part 3. – Parey, Berlin. pp. 530–633. Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M. A., Nardi L., Obermayer R. (1998): Plant genome size estimation by flow cytometry: Inter-laboratory comparison. – Ann. Bot. (Oxford) 82(Suppl. A): 17–26. Dubcovsky J. et Martínez A. (1992): Distribución geográfica de los niveles de ploidía en Festuca. – Parodiana 7: 91–99. Englmaier P. (1994): Festuca L. in: Fischer M. [ed.]: Exkursionsflora von Österreich. – Eugen Ulmer, Stuttgart et Wien, pp. 993 –1005. Englmaier P. (2005): Festuca L. in: Fischer M., Adler W., Oswald K. [eds.]: Exkursionsflora von Österreich, Liechtenstein and Südtiror. – Biologiezentrum der Oberösterreichischen Landesmuseen, Linz, pp. 1134 –1147. Foggi B. et Signorini M. A. (2004): Types of names of Festuca (Gramineae) in the herbarium W: types from Hackel’s herbarium. – Ann. Naturhist. Mus. Wien, B 105: 613–644. Foggi B., Signorini M. A. et Vitek E. (2004): Types of names of Festuca (Gramineae) in the herbarium W: types from Host’s herbarium. – Ann. Naturhist. Mus. Wien, B 105: 597–612. Grass phylogeny working group (2001): Phylogeny and subfamilial classification of the Grasses (Poaceae). – Ann. Missouri Bot. Gard. 88: 373–457. Greilhuber J. (2005): Intraspecific variation in genome size in Angiosperms: Identifying its existence. – Ann. Bot. (Oxford) 95: 91–98. Hackel E. (1882): Monographia Festucarum europearum. – Theodor Fischer, Kassel et Berlin. Hilu K. W. et Alice L. A. (1999): Evolutionary implications of matK indels in Poaceae. – Amer. J. Bot. 86: 1735–1741. Holub J. (1984): New genera in Phanerogamae (1.–3.). – Folia Geobot. Phytotax. 19: 95–99.

25 Host N. T. (1802): Icones et descriptiones graminum austriacorum. Vol. 2. – M. A. Schmidt, Vienna. Hunziker J. H. et Stebbins G. L. (1987): Chromosomal evolution in the Gramineae. in: Soderstrom T. R., Hilu K. W., Campbell C. S. et Barkworth M. E. [eds.], Grass systematics and evolution. – Smithsonian institution press, Washington, pp. 178– 187. Inda L. A., Segarra-Moragues J. G., Peterson M. A., Müller J. et Catalán P. (2005): Phylogenetic studies and the radiation of the New and Old World festucoids (Loliinae, Pooideae, Poaceae). – poster presentation, XVII International Botanical Congres, Vienna; Abstracts p. 433, IBC Organizing Committee. Kliment J. (1999). Komentovaný prehľad vyšších rastlín flóry Slovenska, uvádzaných v literatúre jako endemické taxóny. – Bull. Slov. Bot. Společn. 21(Suppl. 4): 1–434. Krajina V. (1930): Festuca. Schedae ad floram Čechoslovenicam exsicatam. Centuria 2. – Acta Bot. Bohem. 9: 175–220. Lang G. (1994): Quartäre Vegetationsgeschichte Europas. – Gustav Fischer, Jena. Linné C. (1753): Species Plantarum Ed. 1. – L. Salvius, Holmiae. Macfarlane T. D. (1987): Poaceae subfamily Pooideae. in: Soderstrom T. R., Hilu K. W., Campbell C. S. et Barkworth M. E. [eds.]: Grass systematics and evolution. – Smithsonian institution press, Washington, pp. 178–187. Pawlus M. (1985): Systematyka i rozmieszczenie gatunków grupy Festuca ovina L. w Polsce. – Fragm. Florist. Geobot. 29(1983): 219–295. Pazourková Z. et Pazourek J. (1960): Rychlé metody botanické mikrotechniky. – Státní zemědělské nakladatelství, Praha. Penksza K. (2003): Festuca pseudovaginata, a new species from sandy areas of the Carpathian basin. – Acta Bot. Hung. 45: 365–372. Pignatti S. et Markgraf-Dannenberg I. (1982): Festuca L. in: Pignatti S.: Flora d’Italia Vol. 3. – Edagricole, Bologna, pp. 478–501. Pils G. (1981): Karyologie und Verbreitung von Festuca pallens Host in Österreich. – Linzer Biol. Beitr. 13: 231–241. Polívka F. (1983): Etymologický slovníček latinského názvosloví přírodopisného. – Urbánek, Praha. Portal R. (1999): Festuca de France. – L’ Ipmrimerie Jeanne–d’Arc, Le Puy-en-Velay. Stafleu F. A. et Cowan R. S. (1976–1988): Taxonomic literature. A selective guide to botanical publications and collections with dates, commentaries and types. Ed. 2, Vol. 1–7. – Bohn, Scheltema and Holkema, Utrecht. Stohr G. (1960): Gliederung der Festuca ovina-Gruppe in Mitteldeutschland unter Einschluss einiger benachtbarter Formen. – Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 9: 393–414. Šmarda P. (submitted): DNA ploidy levels of Romanian fescues (Festuca L., Poaceae), measured in living plants and herbarium specimens. – Folia Geobot. Šmarda P. et Bureš P. (submitted): Intraspecific genome size variability in Festuca pallens on different geographical scales and ploidy levels. – Ann. Bot. (Oxford). Šmarda P., Horová L., Bureš P., Foggi B., Rossi G. et Loureiro J. (in prep. a): Study of evolution using genome size and AT/CG ratio: A case study of European fescues (Festuca L., Poaceae). Šmarda P., Šmerda J., Knoll A. et Bureš P. (in prep. b): Revision of Central European taxa of Festuca ser. Psammophilae Pawlus – morphometrical, karyological and AFLP analysis. Šmarda P. et Kočí K. (2003): Chromosome number variability in Central European members of the Festuca ovina and F. pallens groups (sect. Festuca). – Folia Geobot. 38: 65– 95.

26 Šmarda P. et Kočí K. (2005): Festuca alpina, a new species for the flora of Slovakia. – Biologia (Bratislava) 60: 383–385. Šmarda P. et Stančík D. (accepted): Ploidy level variability in South American fescues (Festuca L., Poaceae): use of flow cytometry in up to 5 ½-year-old caryopses and herbarium specimens. – Pl. Biol. Šmarda P., Müller J., Vrána J. et Kočí K. (2005): Ploidy level variability of some Central European fescues (Festuca subg. Festuca, Poaceae). – Biologia (Bratislava) 60: 25– 36. Toman M. (1974): Populationsanalyse der Sammelart Festuca cinerea in Böhmen. – Feddes Repert. 85: 533–574. Torrecilla P. et Catalán P. (2002): Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. – Syst. Bot. 27: 241-251 (2002). Torrecilla P., López Rodríguez J. A., Stančík D. et Catalán P. (2003): Systematics of Festuca sect. Eskia Willk., Pseudatropis Kriv., Amphigenes (Janka) Tzvel., Pseudoscariosa Kriv. and Scariosae Hack. based on analysis of morphological characters and DNA sequences. – Pl. Syst. Evol. 239: 113–139. Tracey R. (1980): Beiträge zur Karyologie, Verbreitung und Systematik des Festuca ovina – Formenkreises im Osten Österreichs. – Disertační práce, Phil. Univ. Wien, Wien. Tzvelev N. N. (1972): Rod ovsjanica (Festuca L.) v SSSR. – Novosti Sist. Vyssh. Rast. 9: 15–46. Watson L. et Dallwitz M. J. (1992 onwards): The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. – http://delta-intkey.com/ [aktualizace 12. prosince 2005]. Wilkinson M. J. et Stace C. A. (1991): A new taxonomic treatment of the Festuca ovina L. aggregate (Poaceae) in the British Isles. – Bot. J. Linn. Soc. 106: 347–397.

27 (1)

Šmarda P., Müller J., Vrána J. et Kočí K. (2005):

Ploidy level variability of some Central European fescues (Festuca subg. Festuca L., Poaceae).

Biologia (Bratislava) 60: 25–36.

Biologia, Bratislava, 60/1: 25—36, 2005 25

Ploidy level variability of some Central European fescues (Festuca subg. Festuca,Poaceae)

Petr Šmarda1,JochenMüller2,JanVrána3,4 &KateřinaKočí1

1Department of Botany, Faculty of Science, Masaryk University, Kotlářská 2,CZ–611 37 Brno,CzechRepublic;fax:++ 420 5 4121 1214, e-mail: [email protected] 2Institut für spezielle Botanik, Friedrich-Schiller-Universität, Philosophenweg 16,D–07743 Jena, Germany; fax: ++ 49 3641 949262, e-mail: [email protected] 3Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovská 6,CZ–77200 Olomouc, Czech Republic 4Institute for Stem Cell Research, University of Edinburgh, West Mains Road, Edinburgh EH93JQ, United Kingdom

Abstract: Using flow cytometry, ploidy levels for 205 living samples of various European species of Festuca L. subg. Festuca were determined. We used successfully flow cytometry also for ploidy level estimation of other 28 additional, 1/2–2-year-old herbarium specimens. About 23 taxa and two spontaneous hybrids originating from natural populations from Austria, the Czech Republic, France, Hungary, Germany, Italy, Poland, Romania and Slovakia were studied. The following ploidy levels were documented: F. alpestris 2n =2x; F. amethystina 2n =4x; F. billyi 2n =6x; F. brevipila 2n =6x; F. carnuntina 2n =6x; F. cinerea 2n =4x; F. degenii 2n =4x; F. duernsteinensis 2n =4x; F. duvalii 2n =4x; F. gracilior 2n =2x; F. lemanii 2n =6x; F. ovina subsp. guestfalica 2n =4x;cf.F. ovina × F. pallens 2n =2x; F. pallens 2n =2x,3x,4x; F. psammophila 2n =2x; F. pseudodalmatica 2n =4x; F. pseudovina 2n =2x; F. rupicola 2n =6x; F. stricta 2n =6x; F. vaginata subsp. dominii 2n =2x; F. vaginata subsp. vaginata 2n =2x; F. vaginata × F. valesiaca 2n =2x; F. valesiaca 2n =2x; F. versicolor subsp. versicolor 2n =2x; F. wagneri 2n =4x. Key words: dry material, flow cytometry, karyology, polyploidy.

Introduction level became one of the basic classification and descrip- tion criteria. Without knowledge of ploidy level, almost Including about 360 species (Watson & Dallwitz, no systematic and taxonomic study can be done in this 1999), Festuca L. is one of the largest genera within group at present. the Poaceae family. Clayton & Renvoize (1986) di- This raises the question of what method to use vided the genus into the nine subgenera, with the most for ploidy level determination. The widely used aceto- species-rich group being Festuca subg. Festuca.One orcein method and similar techniques are very time- center of diversity of this subgenus is located in the consuming and do not allow determination of a large mountains and uplands of central and southern Eu- amount of samples. Recently, flow cytometry has be- rope. Within the subgenus, two sections, sect. Festuca come the method of choice for rapid and accurate de- and sect. Variae Hack., are recognized by Tzvelev termination of ploidy level and DNA content in fresh (1971). Further division in smaller species groups and plant tissues (Doležel, 1997). In Festuca,flowcytom- aggregates vary in the concepts of different authors. etry was first used by Huff & Palazzo (1998) and In subgen. Festuca, there is a remarkable morpho- Arumuganathan et al. (1999) and was successfully logical similarity among the taxa included, caused to applied in Festuca sect. Variae by Wallossek (1999). a great extent by the morphological variability of par- The base chromosome number of Festuca species is ticular characters. Based on morphological characters x = 7, diploids (2x) possess 14 chromosomes, triploids alone, interpretation of many taxa is very problematic (3x) 21, tetraploids (4x) 28 and hexaploids (6x)42 and sometimes nearly impossible. As already proved chromosomes; sometimes accessory chromosomes (B- in the 1920s, ploidy level variability is very important chromosomes) have also been reported (Mizianty & for taxon delimitation (Litardiere,` 1923; Lewitsky Pawlus, 1984; Fuente et al., 2001; Šmarda & Kočí, & Kuzmina, 1927). Soon it was shown that the most 2003). problematic species groups of the genus represent more The aim of this work was to determine the ploidy or less miscellaneous polyploid complexes, and ploidy levels of Central European species of Festuca subg. Fes- 26 P. Šmarda et al. tuca and some of their Mediterranean relatives; spe- miscellaneous taxa in sect. Festuca cial attention was devoted to species from the F. pal- F. amethystina L. lens group and to the possibility of using of flow cy- tometry in herbarium specimens. The results of this -sect. Variae Hack. study build upon previous records on chromosome num- F. alpestris Roem. et Schult. bers obtained by the aceto-orcein method (Šmarda & F. versicolor Tausch subsp. versicolor Kočí, 2003). In this work, we follow the concept of Central Euro- pean species and groups by Tracey (1980), which cor- Material and methods responds to the subsection divisions of Pawlus (1985). For determination of ploidy level, flow cytometry was For taxa delimitation, we adopt the species concepts of used. Measurements proceeded in 2000 with a PAS (Partec Markgraf-Dannenberg (1980) and Portal (1999). GmbH, Münster, Germany) ploidy analyser. We used both This work addresses the following European taxa and living and dried plant specimens. Living material came from groups: field-collections, and was cultivated after collection (1997 -sect. Festuca or later) in the Botanical Garden of Masaryk University in F. ovina Festuca Brno, Czech Republic. One to three (seven at maximum) group (ser. ): individuals from each population were investigated. Alto- × Vetter F. duernsteinensis J. * gether 205 living plants representing 142 populations of 21 F. ovina subsp. guestfalica (Boenn. ex Rchb.) K. taxa and two spontaneous hybrids were studied. Addition- Richt. ally, 31 dried, 1/2–2-year-old plant specimens from authors’ F. lemanii Bastard herbaria collections, representing 27 populations of 4 taxa, were investigated. These specimens were dried by classical F. pallens group (ser. Psammophilae Pawlus): methods, e.g. pressed among sheets of newspapers and fil- F. billyi Kerguélen et Plonka tering paper at room temperature. In addition to these, one 20-year-old and three 6–7-year-old specimens of F. brevip- F. cinerea Vill. St.-Yves) Markgr.-Dann ila stored in the Moravian Museum in Brno (BRNM) were F. degenii ( . used. Specimens of all determined living plants and authors’ F. duvalii (St.-Yves) Markgr.-Dann. collections are stored at the Herbarium of the Department F. gracilior (Hack.) Markgr.-Dann. of Botany, Faculty of Science, Masaryk University in Brno F. pallens Host** (BRNU). The localities of plants of which ploidy levels were – Oberösterreich-Niederösterreich type (Tracey determined are given in the appendix. 1980, Pils 1981) Young, basal parts of were used for analysis – Weizklamm type (Tracey 1980) of both fresh and dried plant material. Fresh diploid F. n – Pannonisches-Hügelland type (Tracey 1980) pallens (2 = 14, sample F2, ŠMARDA &KOČÍ 2003) served as external standard. A two-step procedure (OTTO, – scabrifolia type (Šmarda & Kočí 2003, F. glau- Stohr 1990) was used for sample preparation. tissue of ca cina ) 0.5 cm2 was chopped using a sharp razor blade in a glass Tracey – Steiermark-Kärnten type (sensu 1980) Petri dish containing 0.5 mL Otto I buffer (0.1M citric F. psammophila (Hack. ex Čelak.) Fritsch acid, 0.5% Tween 20). The crude nuclei suspension was fil- F. vaginata Waldst.etKit.exWilld. subsp. vagi- tered through a 50 µm nylon mesh. 1 mL of Otto II buffer nata (0.4M Na2HPO4.12H2O) supplemented with 2 µg/mL 4,6- subsp. dominii (Krajina) Soó diamidino-2-phenylindole (DAPI) was then added to the nuclei suspension. For verification of the results, ploidy F. valesiaca group (ser. Trachyphyllae PAW L U S level was also tested by flow cytometry for several samples with known chromosome numbers (ŠMARDA &KOČÍ, 2003). +ser.Valesiacae PAW L U S ): R. Tracey They are marked by asterisks in the appendix. F. brevipila Coordinates of the localities in Austria, Germany and F. carnuntina R. Tracey Slovakia were calculated from 1:50 000 maps, those of Czech F. pseudodalmatica Krajina ex Domin Republic were obtained through the program Geobáze F. pseudovina Hack.exWiesb. (GEODÉZIE ČS, 1997–1998). For the remaining (France, F. rupicola Heuff. Hungary, Italy, Poland, and Romania) the program Encarta F. stricta Host World atlas 99 (MICROSOFT CORPORATION, 1995–1998) F. valesiaca Gaudin was used. F. wagneri (Degen, Thaisz et Flatt) Degen, Thaisz et Flatt Results and discussion

Festuca ovina group * tetraploid taxa of the supposed F. ovina × F. pallens In the F. ovina group, special attention was paid to var- hybrid origin, incl. population of the same hybrid combina- tion from Vihorlat Mts (F. × vihorlatica MÁJOVSKÝ nom. ious transitional types to F. pallens. Tetraploid ploidy inval.), excl. sporadic diploid hybrids. level was confirmed for the population of robust F. ovi- ** taxon with several karyologically and geographically na like plants from Moravský Krumlov (SW Moravia), differentiated types with unresolved taxonomic status. supposed to represent hybrids of F. ovina and F. pallens Ploidy level variability... 27

Fig. 1. Map of the localities of plants from the Festuca ovina group, F. amethystina, hybrids and Festuca sect. Variae for which ploidy level was investigated: white circle – F. alpestris (2n =2x); dark cir- cles – F. versicolor (2n =2x); checked circles – F. lemanii (2n =6x); dark tri- angles –F.ovina× F. pallens (2n =2x); white triangle – F. vaginata × ? F. vale- siaca –(2n =2x); white diamonds – F. amethystina (2n =4x); dark diamond – F. ovina subsp. guestfalica (2n =4x); white squares – F.“×”duernsteinensis (2n =4x). Altogether 30 ploidy level records are shown.

and sometimes being assigned to F. × duernsteinen- Festuca pallens group sis (Vetter, 1922; Šmarda & Kočí, 2003). A fur- In F. pallens, the supposed geographical dependence ther transitional population of assumed F. ovina × F. of both ploidy levels and currently distinguished types pallens origin from the Vihorlat Mts (called F. × vi- (Fig. 2) (Tracey, 1980; Pils, 1981; Šmarda & Kočí, horlatica, Májovský, 1962) was also proved to be 2003) was confirmed. The relatively wide distribu- tetraploid. Besides these populations, we found also tion of tetraploid F. pallens of the scabrifolia type in sporadically occurring plants of the expected F. ovina central Germany is of particular interest. This type × F. pallens hybrid origin in population of both species is unquestionably identical to F. cinerea var. lapi- in Woja (NE Bayern, Germany) and determined them dosa Stohr, which was recently raised to the species to be diploids. Because of the only sporadic occurrence, level as F. glaucina Stohr (Stohr, 2001). The ex- different ploidy level and consequently different origin pected occurrence of tetraploid plants of Pannonisches- they were treated separately from F. × duernsteinen- Hügelland type in Hungary, Slovakia and Austria was sis in this work. All samples of regular F. ovina were also proven (Fig. 2). Tetraploid ploidy level was also determined as tetraploids and associated with F. ovina observed in plants from the surroundings of Graz (Aus- subsp. guestfalica (Fig. 1), which agrees with the pre- tria, Steiermark-Kärnten type). Diploid plants of F. pal- vious results of Watson (1958), Pils (1980), Tracey lens belong to the Weizklamm type and the standard (1980), and Šmarda & Kočí (2003). Oberösterreich-Niederösterreich type (Fig. 2). Three Stout plants from siliceous rocks in SW Germany triploid plants of F. pallens from Germany and the (Mosel and Nahe valley) which had formerly been at- Czech and Slovak Republics were also documented. As tributed to the tetraploid F. heteropachys (St.-Yves) in the previous works (Baksay, 1956; Pólya, 1949; Patzke ex Auquier (Markgraf-Dannenberg, Schwarzová, 1967; Tracey, 1980), F. psammophila 1980; Korneck et al., 1983; Stohr, 2002) were found and both subspecies of F. vaginata were confirmed to to be hexaploid. These plants fall morphologically be exclusively diploid (Fig. 3). Diploidy was also found within the limits of the hexaploid F. lemanii,apoly- in a single hybrid plant of F. vaginata and F. valesiaca, morphic taxon with a broad distribution in France originating from a F. vaginata subsp. vaginata popula- (Kerguélen & Plonka, 1989, sub F. bastardii Ker- tion in Hungary (Fig. 1). Diploid chromosome number guélen & Plonka) and is also native in England for the hybrid plant of F. vaginata × F. valesiaca was (Wilkinson & Stace, 1991), Belgium (Auquier & also published by Tracey (1980). Rammeloo, 1973), and Luxembourg (Auquier & Festuca duvalii from the type location near Kall- Kerguélen, 1978: 51). Occurrence of F. lemanii in stadt was reported to be tetraploid by Kerguélen Germany was postulated by Bank-Signon & Patzke (1975). We determined the same ploidy level in the (1986) for Düren (Nordrhein-Westfalen) and by Den- material from another population in SW Germany. Fes- gler (1999) for Schleswig-Holstein. However, these as- tuca duvalii is known from Germany (SW Germany and sumptions were based exclusively on morphology and the central Main region), Belgium, and France (Alsace, were highly speculative because of considerable mor- Kerguélen & Plonka, 1989). Taxonomy and mor- phological overlap with similar taxa (e.g., F. ovina phological delimitation of this species are still prob- subsp. guestfalica). lematic and have been conceived differently by var- 28 P. Šmarda et al.

Fig. 2. Map of the localities of plants of the Fes- tuca pallens types for which ploidy level was in- vestigated, part 1: dark circles – F. pallens scabri- folia type (2n =4x); white circles – F. pallens Ober¨osterreich-Nieder¨osterreich type (2n =2x); dark/white circles – F. pallens triploid plants (2n =3x); dark triangles – F. pallens Steiermark- K¨artnen type (2n =4x); white diamond – F. pal- lens Weizklamm type (2n =2x); dark squares – F. pallens Pannonisches-H¨ugelland type (2n =4x). Altogether 122 ploidy level records are shown.

Fig. 3. Map of the localities of plants of the Fes- tuca pallens group for which ploidy level was in- vestigated, part 2: small white circle – F. billyi (2n =6x); large white circle – F. psammophila (2n =2x); dark circle – F. gracilior (2n =2x); dark squares – F.vaginata subsp. vaginata (2n = 2x); white squares – F. vaginata subsp. dominii (2n =2x); white triangles – F. cinerea (2n =4x); dark triangles – F. degenii (2n =4x); dark dia- mond – F. duvalii (2n =4x). Altogether 42 ploidy level records are shown. ious authors (e. g. Markgraf-Dannenberg, 1958; and the other with rather marginal and central strands, Stohr, 1960, 2001; Tzvelev 1972; Pawlus, 1985; could serve as an analogy for the further study of this Kerguélen & Plonka, 1989). Regular plants of F. topic. duvalii have marginal and central sclerenchyma strands Among the (sub)mediterranean species of the F. (like those of F. valesiaca group), but also individuals pallens group, F. gracilior was found to be diploid, F. with uniform sclerenchyma rings can be found among cinerea and F. degenii tetraploid, and F. billyi hexaploid typical representatives, e.g. on dunes of the upper Rhine (Fig. 3). These results are in concordance with the kary- plains and on andesite rocks in Rheinhessen (Flon- ological data presented by Litardiere` (1949, F. gracil- heim). Plants with the uninterrupted sclerenchyma ring ior sub F. ovina var. occitana f. mucronulata Litard.), resemble morphologically F. pallens,ataxonwhich Bidault (1966: 182, F. degenii,subF. ovina var. glauca on the other hand also especially in tetraploid popu- Hack.), Kerguélen (1975, F. cinerea; 1987, F. gracil- lations can often form leaves with partly interrupted ior), Kerguélen & Plonka (1991, F. billyi), Ker- sclerenchyma ring. Hence, we suppose F. duvalii to be guélen et al. (1994, F. billyi), and Foggi & Rossi probably closely related to F. pallens. Festuca longifo- (1996, F. billyi). Plants from Spain previously assigned lia Thuill. subsp. longifolia and subsp. pseudocostei to F. gracilior and reported to be tetraploid (Fuente Auquier & Kerguélen (= F. patzkei Markgr.- &Ortúnez˜ , 1998; Fuente et al., 2001) were recently Dann., Auquier & Kerguélen, 1978), a pair of close described as new species, F. michaelis Cebolla & Ri- diploid relatives, one with a uniform sclerenchyma ring vas Ponce (Cebolla & Rivas Ponce, 2001), and Ploidy level variability... 29

Fig. 4. Map of the localities of plants from the Festuca valesiaca group for which ploidy level was investigated: dark circles – F. rupicola (2n =6x); white circles – F. pseudodalmatica (2n =4x); dark/white circles – F. carnutina (2n =6x); white triangles – F. wagneri (2n =4x); dark tri- angles – F. brevipila (2n =6x); dark dia- mond – F. stricta (2n =6x); dark squares – F. pseudovina (2n =2x); white squares – F. valesiaca (2n = 14). Altogether 40 ploidy level records are shown. do not correspond with the diploid ones reported in some numbers and the results of this work. Due to this work from France. Our record of F. billyi,hith- the high morphological variability of F. valesiaca group erto known from the Massif Central (Portal, 1999) and potential hybridization, it is impossible to discuss and the Apennine (Foggi & Rossi, 1996), is the first these results without detailed knowledge of the respec- karyologically proven evidence from the Alps. Portal tive herbaria specimens. (1999) and Jordan & Farille (2000) supposed this taxon to be found in the French Alps, but there were Other groups some doubts because of strong morphological similarity In the section Variae, the diploid level was found in with the octoploid F. laevigata Gaudin. both F. alpestris and F. versicolor subsp. versicolor (Fig. 1). The same ploidy level was reported in F. ver- Festuca valesiaca group sicolor subsp. versicolor from the Western Carpathians In the F. valesiaca group, F. valesiaca and F. pseu- by Uhríková (1970), Mizianty & Frey (1973) and dovina were found to be diploid, F. pseudodalmatica Murín & Májovský (1978, 1987). and F. wagneri tetraploid, and F. brevipila, F. car- The first karyological records of F. amethystina nuntina, F. rupicola and F. stricta hexaploid (Fig. 4). from the Czech and Slovak Republics are documented All these results agree with the previous ones from the in this work. All samples studied were determined as study area given by Alexeev et al. (1988, F. brevi- tetraploids (Fig. 1), which agree with the results of pila sub F. trachyphylla, F. pseudodalmatica, F. pseu- Wittmann & Strobl (1984) from Austria. dovina, F. valesiaca), Baksay (1961, F. wagneri sub F. conflicta Baksay), Činčura (1967, F. pseudodal- Determination of ploidy level of the herbarium speci- matica), Jarolímová (1992, F. valesiaca), Mizianty mens &Pawlus(1984, F. carnuntina, F. brevipila, F. rupi- With the method used, we were able to determine cola, F. stricta, F. valesiaca), Pils (1984, F. rupicola ploidy level in 28 of the 35 investigated herbarium spec- sub F. stricta subsp. sulcata (Hack.) Patzke ex J. imens. Signals of 1/2–2-year-old herbarium specimens Müller, F. valesiaca), Tracey (1980, all mentioned were in quality comparable to those of living samples species, F. pseudovina sub F. valesiaca subsp. parvi- and do not differ in expected position to the standard. flora (Hack.) R. Tracey), Tveretinova (1977, F. Three specimens of F. picturata Pils from Romania, brevipila, F. pseudovina, F. pseudodalmatica, F. rupi- which had been dried under wet conditions in the field cola, F. valesiaca), and Váchová (1987, F. valesiaca). for several days, showed very degrade signal and there- Literature records of tetraploid F. stricta from Slovakia fore they could not be determined. No signal was ob- (Uhríková & Májovský, 1983) probably refer to served in one 20-year old and three 6–7-year old spec- tetraploid F. pallens, which we document from the same imens of F. brevipila and in the leaves of herbarium locality in the present study. Reports of tetraploid F. specimens which had died naturally in the tufts before brevipila (Tveretinova, 1977; Alexeev et al., 1988), herbarisation (brown leaves). hexaploid F. valesiaca (Mizianty & Pawlus, 1984) The use of flow cytometry for dried material anal- and various sources reporting tetraploid or hexaploid ysis, however, is an object of speculation and has not F. pseudovina (Felföldy, 1947, Tracey, 1980; Ryb- been published yet. It is especially interesting whether nická, 1987) contrast with the most frequent chromo- older specimens and plants of other genera are suitable 30 P. Šmarda et al. to be determined and to what extent this process is und Hamburg. Kieler Not. Pflanzenk. Schleswig-Holstein influenced by xeromorphic structure (e.g. parenchyma Hamburg, 25/26: 6–32. leaf cells protected by sclerenchyma ring in F. pallens) DOLEŽEL, J. 1997. Application of flow cytometry for the study of plant genomes. J. Appl. Genet. 38: 285–302. or other eco-physiological adaptations. All these ques- FELFÖLDY, L. 1947. Chromosome numbers of certain Hungarian tions are subject for further study. Success of flow cy- plants. Arch. Biol. Hung. 17: 101–103. tometry estimation will possibly be influenced also by FOGGI,B.&ROSSI, G. 1996. A survey of the genus Festuca L. the length and conditions of drying process. This should (Poaceae) in Italy. 1. The species of the summit flora in the Tuscan-Emilian Apennines and Apuan Alps. Willdenowia 26: be proceeded fast (as indicated by failing of analysis of 183–215. naturally dried and died leaves and of F. picturata spec- FUENTE,V.DE LA &ORTÚNEZ˜ , E. 1998. Biosistemática de la imens pressed under humid conditions), under drought sección Festuca del género Festuca L. (Poaceae) en la Penín- and probably at moderate temperatures. sula Ibérica. Universidad Autónoma, Madrid, 126 pp. FUENTE,V.DE LA,FERRERO,L.M.&ORTÚNEZ˜ , E. 2001. Chromosome counts in the genus Festuca section Festuca Acknowledgements (Poaceae) in the Iberian Peninsula. Bot. J. Linn. Soc. 137: 385–398.  GEODÉZIE ČS a.s. 1997–1998. GeoBáze Prohlížeč Standard For help with plant collecting, we are much obliged to our verze 2.5. Geodézie ČS a.s., Česká Lípa. colleagues whose names appear in the particular locality de- HUFF,D.R.&PALAZZO, A. J. 1998. Fine fescue determination scriptions in Appendix. The text was translated into English by laser flow cytometry. Crop. Sci., Madison, 38: 445–450. by Sierra Stoneberg HOLT and was improved by anonymous JAROLÍMOVÁ, V. 1992. Chromosome count for Festuca valesiaca. reviewer. This project was partially supported by the grant In: MĚSÍČEK,J.&JAROLÍMOVÁ, V., List of chromosome GAČR 206/03/0228. numbers of the Czech vascular plants. Academia, Praha. JORDAN,D.&FARILLE, M. A. 2000. Révision du genre Festuca L. en Haute-Savoie (France – région Rhône-Alpes). Monde References Pl. 95(468): 1–8. KERGUÉLEN, M. 1975. Les Gramineae de la flore fran˛caise. Essai ALEXEEV,E.B.,SOKOLOVSKAJA,A.P.&PROBATOVA,N. de mise au point taxonomique et nomenclaturale. Lejeunia, S. 1988. Taksonomiya, rasprostranenie i chisla chromosom Nouv. Sér. 75: 1–343. ovsyanits (Festuca L., Poaceae) flory SSSR. 3. sektsiya Fes- KERGUÉLEN, M. 1987. Données taxonomiques, nomenclaturales tuca: F. tschujensis – F. beckeri. (Taxonomy, distribution and et chorologiques pour une révision de la flore de France. Leje- chromosome numbers of fescues (Festuca L., Poaceae) in the unia, Nouv. Sér. 120: 1–263. flora of the USSR. 3. The Section Festuca: F. tschujensis – KERGUÉLEN,M.&PLONKA, F. 1989. Les Festuca de la flore de F. beckeri. Byull. Moskovsk. Obshch. Isp. Prir., Otd. Biol. France (Corse comprise). Bull. Soc. Bot. Centre-Ouest, Num. 93(2): 90–99. Spéc. 10: 1–368. ARUMUGANATHAN,K.,TALLURY,S.P.,FRASER,M.L., KERGUÉLEN,M.&PLONKA, F. 1991. Une nouvelle esp`ece de BRUNEAU,A.H.&QU, R. 1999. Nuclear DNA content of Festuca du Massif Central (France: Cantal: Puy-de-Dôme). thirteen turfgrass species by flow cytometry. Crop. Sci., Madi- Bull. Soc. Échange Pl. Vasc. Eur. Occid. Bass. Médit. 23: son, 39: 1518–1521. 87–89. AUQUIER,P.&KERGUÉLEN, M. 1978. Un groupe embrouillé KERGUÉLEN,M.,PLONKA,F.&CHAS, E. 1994. Nouvelle con- de Festuca (Poaceae): Les taxons désignés par l’épith`ete tribution aux Festuca (Poaceae) de France. Lejeunia, Nouv. “glauca” en Europe occidentale et dans les régions voisines. Sér. 142: 1–42. Lejeunia, Nouv. Sér. 89: 1–82. KORNECK,D.,PATZKE,E.&MARKGRAF-DANNENBERG,I. AUQUIER,P.&RAMMELOO, J. 1973. Nombres chromosomiques 1983. Festuca ovina-Gruppe, pp. 211–215. In: OBERDOR- dans le genre Festuca en Belgique et dans les régions limitro- FER, E., Pflanzensoziologische Exkursionsflora, E. Ulmer, phes. Bull. Soc. Roy. Bot. Belgique 106: 317–328. Stuttgart. BAKSAY, L. 1956. Cytotaxonomical studies on the flora of Hun- LEWITSKY,G.A.&KUZMINA, N. E. 1927. Kariologicheskii gary. Ann. Hist.-Nat. Mus. Natl. Hung., Ser. Nova 7: 321–334. metod v sistematike i filogenetike roda Festuca (podr. Eu- BAKSAY, L. 1961. Report on chromosome number of Festuca con- Festuca). (Karyological investigations on the systematics and flicta.In:LÖVE,A.&LÖVE, D. (eds), Chromosome numbers phylogenetics of the genus Festuca). Trudy Prikl. Bot. 13: 3– of Central and Northwest European plant species. Opera Bot. 36. 5: 42. LITARDIERE` ,R.DE 1923. Contribution l’étude des Festuca (sub- BANK-SIGNON,I.&PATZKE, E. 1986. Schützenswerte Gebiete gen. Eu-Festuca)dunorddelaFrance(Nord,Pas-de-Calais) im Raum Düren: 1. Der Dürener Vorbahnhof (TK 5105/3). et de Belgique. Bull. Soc. Roy. Bot. Belgique 55: 92–133, Göttinger Florist. Rundbr. 19: 104–109. 149–154. BIDAULT, M. 1966. Remarques sur les Festuca ovina L. var. LITARDIERE` ,R.DE 1949. Un Festuca méconnu de Provence et duriuscula et var. glauca des Alpes-Maritimes. Bull. Soc. Bot. du Languedoc: F. ovina L. subsp. eu-ovina HACK.var.occi- France 113: 173–183. tanica R. LIT. Bull. Soc. Bot. France 95: 280–283. CEBOLLA,C.&RIVAS PONCE, M. A. 2001. Festuca michaelis MÁJOVSKÝ, J. 1962. Adnotationes ad species gen. Festuca flo- (Poaceae), une nouvelle esp`ece pour la Péninsule Ibérique. rae Slovakiae additamentum 1. Acta Fac. Rerum. Nat. Univ. Flora Medit. 11: 363–371. Comen., Bot. 7: 317–335. CLAYTON,W.D.&RENVOIZE, S. A. 1986. Genera graminum: MARKGRAF-DANNENBERG, I. 1958. Zur Festuca duvalii-Frage im Grasses of the World. Kew Bull., Addit. Ser. 13: 1–389. mitteleuropäischen Raum. Ber. Bayer. Bot. Ges. 32: 83–93. ČINČURA, F. 1967. Príspevok k cytológii druhu Festuca pseu- MARKGRAF-DANNENBERG, I. 1980. Festuca L., pp. 125–153. In: dodalmatica KRAJ. z území východného Slovenska. (Contri- TUTIN,T.G.,HEYWOOD,V.H.,BURGES,N.A.,MOORE, bution to the cytology of Festuca pseudodalmatica in East D. M., VALENTINE,D.H.,WALTERS,S.M.&WEBB,D.A. Slovakia). Biologia, Bratislava, 22: 462–467. (eds), Flora europaea 5. Cambridge University Press, Cam- DENGLER, J. 1999. Neues von den schmalblättrigen Schwingel- bridge.  Sippen (Festuca ovina agg. und F. rubra agg.) in Deutschland MICROSOFT CORPORATION 1995–1998. Encarta World Atlas. unter besonderer Berücksichtigung von Schleswig-Holstein Microsoft corporation, Redmont, WA. Ploidy level variability... 31

MIZIANTY,M.&FREY, L. 1973. Liczby chromosomów kilku UHRÍKOVÁ, A. 1970. Report on chromosome number of Festuca ro´slin naczyniowych z Bieszczadów Zachodnich. (Chromo- versicolor.In:MÁJOVSKÝ, J. et al., Index of chromosome some numbers of some vascular plants in the western numbers of Slovakian flora 1. Acta Fac. Rerum. Nat. Univ. Bieszczady Mts.). Fragm. Florist. Geobot. 19: 265–270. Comen., Bot. 16: 1–16. MIZIANTY,M.&PAWLUS, M. 1984. Chromosome numbers of VÁCHOVÁ, M. 1987. Karyological study of the Slovak flora 21. some Polish species from the genus Festuca,groupOvina Acta Fac. Rerum Nat. Univ. Comen., Bot. 34: 27–32. (part 1). Fragm. Florist. Geobot. 28: 363–369. VETTER, J. 1922. Neue Pflanzenfunde aus Niederösterreich und MURÍN,A.&MÁJOVSKÝ, J. 1978. Report on chromosome num- Tirol. Verh. Zool.-Bot. Ges. Wien 72: 110–121. ber of Festuca versicolor.In:LÖVE, A. (ed.), IOPB chromo- WALLOSSEK, C. 1999. The acidophilous taxa of the Festuca varia some number reports 61. Taxon 27: 376. group in the Alps: New studies on taxonomy and phytosoci- MURÍN,A.&MÁJOVSKÝ, J. 1987. Karyological study of the Slo- ology. Folia Geobot. 34: 47–75. vak flora 19. Acta Fac. Rerum. Nat. Univ. Comen., Bot. 34: WATSON,L.&DALLWITZ, M. J. 1999. Grass genera of the world: 3–20. Descriptions, illustrations, identification, and information re- OTTO, F. 1990. DAPI staining of fixed cells for high-resolution trieval; including synonyms, morphology, anatomy, phys- flow cytometry of nuclear DNA. In: CRISSMAN,H.A.& iology, phytochemistry, cytology, classification, pathogens, th DARZYNKIEWICZ,Z.(eds),Meth.CellBiol.33: 105–110. world and local distribution, and references. Version: 18 , PAWLUS, M. 1985. Systematyka i rozmieszczenie gatunków grupy August 1999. http: Festuca ovina L. w Polsce. (Taxonomy and distribution of the //biodiversity.bio.uno.edu/delta/grass/www/festuca.htm. Festuca ovina group in Poland). Fragm. Florist. Geobot. 29: WATSON, P. J. 1958. The distribution in Britain of diploid and 219–295. tetraploid races within the Festuca ovina group. New Phytol. PILS, G. 1980. Beiträge zur Karyologie,Verbreitung und System- 57: 11–18. atik der Gattung Festuca in den Ostalpenländern. Diss. Phil., WILKINSON,M.J.&STACE, C. A. 1991. A new taxonomic treat- Univ. Wien, Wien. ment of the Festuca ovina aggregate (Poaceae) in the British PILS, G. 1981. Karyologie und Verbreitung von Festuca pallens Isles. Bot. J. Linn. Soc. 106: 347–397. HOST in Osterreich.¨ Linzer Biol. Beitr. 13: 231–241. WITTMANN,H.&STROBL, W. 1984. Beitrag zur Kenntnis von PILS, G. 1984. Systematik, Karyologie und Verbreitung der Fes- Festuca amethystina L. im Bundesland Salzburg. Florist. tuca valesiaca-Gruppe (Poaceae) in Osterreich¨ und Südtirol. Mitt. Salzburg 9: 3–8. Phyton (Horn) 24: 35–77. PÓLYA, L. 1949. Chromosome numbers of some Hungarian plants. Received March 15, 2003 Acta Geobot. Hung. 6: 124–137. Accepted Oct. 12, 2004 PORTAL, R. 1999. Festuca de France. Author, Le Puy-en-Velay. RYBNICKÁ, M. 1987. Reports on chromosome number of Fes- Appendix tuca pseudovina, p. 378. In: MÁJOVSKÝ J., MURÍN,A.,FER- ÁKOVÁ,V.,HINDÁKOVÁ,M.,SCHWARZOVÁ,T.,UHRÍKOVÁ, List of taxa and localities of ploidy level determined plants A., VÁCHOVÁ,M.&ZÁBORSKÝ, J. 1987. Karyotaxonomický and specimens. The name just before the colon represents the prehľad flóry Slovenska. Veda, Bratislava. nearest town/village. Collector name, date of collection and plant SCHWARZOVÁ, T. 1967. Beitrag zur Lösung taxonomischer Prob- cultivation numbers are given in parentheses at the end of the leme der Festuca vaginata W. K. und Festuca psammophila locality description. The letter F indicates cultivated plants, H HACK. Acta Fac. Rerum Nat. Univ. Comen., Bot. 14: 381– samples in which only herbarium specimen was available. Sam- 414. ples with previously known chromosome numbers are marked by STOHR, G. 1960. Gliederung der Festuca ovina-Gruppe in Mit- asterisks; samples in which ploidy level was determined from dry teldeutschland unter Einschluß einiger benachbarter Formen. material or herbarium specimens are marked by # before the Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Na- sample number. Observed ploidy level and expected chromosome turwiss. Reihe 9: 393–414. numbers are in parentheses by the taxon name.

TOHR

ÐÔ×ØÖ × n x S , G. 2001. Kommentare zur Neubearbeitung der Exkur- º Roem. et Schult. (2 =2 =14): Italy: Prov. sionsflora von Deutschland, Band 4 (Kritischer Band): 2. Trento, Riva del Garda: Bocca Sperone saddle, 2.5 km SW of the Taxonomisch-nomenklatorische Änderungen in der Arten- town, glade in brush on W exp. limestone rocky slope, common, gruppe Festuca ovina agg. Schlechtendalia 7: 29–33. 950 m a.s.l., 45◦5239N, 10◦4921E(P.ŠMARDA, 10.6.2000; STOHR, G. 2002. Poaceae, pp. 829–893. In: JÄGER,E.& F1122*) ERNER n x W ,K.(eds),ExkursionsfloravonDeutschland4.Spek- º ÑØ Ý×Ø Ò L. (2 =4 =28): Czech Republic: district trum, Heidelberg, Berlin. Hodonín, Mutěnice: 3.8 km SE of the railway station in the vil- ŠMARDA,P.&KOČÍ, K. 2003. Chromosome number variability lage, 100 m SE of the crossroad of Topolová alej forest track and in Central European members of the Festuca ovina and F. the road (also railway), open stand thermophilous oak forest, pallens groups (sect. Festuca). Folia Geobot. 38: 65–95. edge of a moist depression on sand, small colony, 180 m a.s.l., TRACEY, R. 1980. Beiträge zur Karyologie, Verbreitung und Sys- 48◦5304N, 17◦0502E(V.GRULICH &K.KOČÍ , 20.5.1995; tematik des Festuca ovina-Formenkreises im Osten Osterreichs.¨ F111*). Slovakia: Veľká Fatra Mts., district Martin, Blatnica: Diss. Phil., Univ. Wien, Wien. Top part of Tlstá Mt. (1373 m), limestone rockeries, common, TVERETINOVA, V. V. 1977. Festuca, pp. 265–320. In: PROKUDIN, 1350 m a.s.l., 48◦5601N, 18◦5828E(K.KOČÍ &M.KOČÍ, YU.N.,VOVK,A.G.,PETROVA,O.A.,ERMOLENKO,E. 29.10.2000; F147*, F148, F151*)

ERNICHENKO U

 Ð ÐÝ n x D. & V ,Y . V., Zlaki Ukrainy (Grasses of the º Kerguélen et Plonka (2 =6 =42): France: Ukraine). Naukova Dumka, Kiev. Dép. Var, Grand Canyon du Verdon, Aiguines: 1.5 km E of TZVELEV, N. N. 1971. K sistematike i filogenii ovsyanits (Fes- the village, above the canyon near Col Iloire view point, steep, tuca L.) flory SSSR. 1. Sistema roda i osnovnye napravleniya rocky limestone slopes, small colony, 1040 m a.s.l., 43◦4644N,

evolyutsii. (On the taxonomy and phylogeny of fescues (Fes- 06◦1517E(P.ŠMARDA, 8.6.2000; F1123)

ÖÚ Ô Ð n x tuca L.) of the USSR flora. 1. The system of the genus and º R. Tracey (2 =6 =42): Czech Republic: main evolution trends). Bot. Zhurn. 56: 1252–1262. district Cheb, Hájek: SOOS Nature Reserve, 200 m N of the TZVELEV, N. N. 1972. Rod ovsjanitsa (Festuca L.) v SSSR. (The village, fringe of nature trail near the wood, some plants, 440 m genus fescue (Festuca L.) in the USSR). Novosti Sist. Vyssh. a.s.l., 50◦0853N, 12◦2412E(O.ROTREKLOVÁ &P.ŠMARDA, Rast. 9: 15–46. 12.7.2000; F1215) – district Karlovy Vary, Bečov nad Teplou: 800 UHRÍKOVÁ,A.&MÁJOVSKÝ, J. 1983. Report on chromosome m NE of the railway station, on an artificial rise on top of the number of Festuca stricta.In:LÖVE, A. (ed.), IOPB chromo- ridge of the slope above the railway tunnel, in deeper soil on some number reports 80. Taxon 32: 507. siliceous substrate, small colony, 560 m, 50◦0522N, 12◦5013E 32 P. Šmarda et al.

(P. Šmarda, 9.10.1999; F1043, F1044) – district Karlovy Vary, small colony, 5.6.2000, P. ŠMARDA, 250 m a.s.l., 43◦3064N, Boč: 600 m SSW of the railway station, above the railway, 06◦5453E (F1127)

× ÙÖÒ×Ø ÒÒ× × n x edge of siliceous rockery, small colony, 350 m a.s.l., 50 21 19 N, º J. Vetter (2 =4 =28): Czech Re- 13◦0435E(P.ŠMARDA, 10.10.1999; F1040) – district Kolín, public: Moravský Krumlov: Pod Floriánkem Nature Reserve, Konárovice: 0.7 km SSE of the church in the village in the lo- platform near the edge of the NW exp. slope of the reserva- cal waterworks site, on sand in open vegetation in pine-wood tion (near “312” elevation point), on Křepelčin vrch hill, deeper glade, small colony, 200 m a.s.l., 50◦0159N, 15◦1721E(P. sandy soil on basic conglomerate rock, together with Festuca sp. ◦ ◦ ŠMARDA, 18.6.2000; F1143) – district Litoměřice, Bechlín: 1.7 div, rare, 310 m a.s.l., 49 02 48 N, 16 19 17 E(P.ŠMARDA, km N of the church in the village, 600 m E of Klouček (209.7 24.5.1998; F1094, F1095, F1096). Slovakia: Vihorlat Mts., dis- m) elevation point, near the road to Předonín village, sunny trict Snina, Zemplínske Hámre: rocky platform on the top of pine-wood edge on sand, small colony, 168 m a.s.l., 50◦2618N, Sninský kameň hill, andesite rock, abundant, 1006 m a.s.l., ◦ ◦ 14◦1903E(M.CHYTRÝ &P.ŠMARDA, 2.6.1999; F81) – dis- 48 55 78 N, 22 11 22 E(P.ŠMARDA, 4.8.2000; F1222, F1223, trict Mělník, Tišice: Písčiny u Tišic Nature Reserve, sandy SE F1224, F1225, F1226)

ÙÚÐ n x exp. slopes of the reservation, common, 160 m a.s.l., 50 15 49 N, º (St.-Yves) Stohr (2 =4 =28): Germany: 14◦3246E(P.ŠMARDA, 31.5.1999; F68) – district Nymburk, Rheinland-Pfalz, Kreis Alzey-Worms, Flonheim: S of the village, ENE Auleimermühlen, dry grassland on andesite, 240 m a.s.l., Kersko: NE part, 1.15 km SW of the church in the village of ◦ ◦ Hradišťko, near the fence near the road, grassland along the for- 49 46 58 N, 08 01 55 E(J.MÜLLER et al. 6710, 17.4.1999; est track, in pine-wood on sand, together with F. psammophila, #H343)

◦ ◦

Ö Ð ÓÖ n x small colony, 185 m a.s.l., 50 09 45 N, 14 55 20 E(P.ŠMARDA, º (Hack.) Markgr.-Dann. (2 =2 =14): 3.6.1999; F80) – district Nymburk, Lysá nad Labem: 1.05 km France: Grand Canyon du Verdon, Dép. Var, Aiguines: 1.5 km E ENE of “226.2 m” elevation point, sandy clearing in the pine- of the village, above the canyon near Col Iloire view point, steep, rocky limestone slopes, small colony, 1040 m a.s.l., 43◦4644N, wood adjacent to Hrabanovská černava Nature Reserve, small ◦ dense colony, 185 m a.s.l., 50◦1312N, 14◦4946E(P.ŠMARDA, 06 15 17 E(P.ŠMARDA, 8.6.2000; F1124) – Grand Canyon du 29.5.1999; F67) – district Rychnov nad Kněžnou, Čermná nad Verdon, Dép. Var, Aiguines: 9 km SE of the village, slopes below Orlicí-Čížová: 0.5 km NW of the church in the village, wood edge les Cavaliers hut, sunny, rocky limestone slopes, common, 800 ◦ ◦ MARDA on sand, abundant, 270 m a.s.l., 50◦0433N, 16◦0842E(P. m a.s.l., 43 44 33 N, 06 19 49 E(P.Š , 8.6.2000; F1117, FILIPPOV, 26.5.2000; F1115) – district Rychnov nad Kněžnou, F1118, F1139) – Dép. Var, Comps-sur-Atruby: along the road in Zdelov: near the agricultural cooperative at the locality of As- the town, low, rocky limestone slope, small colony, 900 m a.s.l., ◦ ◦ MARDA

tragalus arenarius, on sand, abundant, 270 m a.s.l., 50◦0603N, 43 42 70 N, 06 30 45 E(P.Š , 8.6.2000; F1125, F1126)

ÐÑÒ n x ◦ º Bastard (2 =6 =42): Germany: Rheinland- 16 08 42 E(P.FILIPPOV, 26.5.2000; F1116) – district Tachov, Pfalz, Kreis Mainz-Bingen, Dorsheim: Eierfels, NE of the vil- Malovice: 1.1 km SE of the village, 100 m W of the railway bridge lage, Permian conglomerate rock, 160 m a.s.l., 49◦5545N, over the Hracholusky dam, siliceous rocky slope, on a platform 07◦5222E(J.MÜLLER 6986, 24.5.2000; #H341) – Rheinland- near the cottage in denser growth of grass, rare, 380 m a.s.l., Pfalz, Kreis Mayen-Koblenz, Dieblich: E of the village, upper SW 49◦4712N, 13◦0419E(P.ŠMARDA, 8.10.1999; F1042) – dis- slope of the Blumsley, schistaceous cliff, 200 m a.s.l., 50◦1839N, trict Ústí nad Orlicí, Choceň: Peliny Nature Reserve, 1.3 km 07◦2830E (J. Müller 6984, 24.5.2000; #H342)

NE of the railway station in the town, wood edge above the

ÓÚ Ò Ù×ØÐ  n º subsp. (Rchb.) K. Richt. (2 = river, argillite rock edge, in places, 350 m a.s.l., 50◦0011N, 4x =28): Czech Republic: district Praha-město, Praha-Liboc: 16◦1404E(K.KOČÍ &M.KOČÍ, 12.10.2000; F139). Germany: Divoká Šárka Nature Reserve, 300 m a.s.l. N of Džbán eleva- Bayern, Kreis Kronach, Stoffelsmühle: near the branch road to tion point, NW exp. siliceous rocks with growth of Avenella Nordhalben, in railway yard below a siliceous rocky slope, small ◦ ◦ flexuosa, in places, 350 m a.s.l., 50 05 53 N, 14 19 18 E(P. colony, 450 m a.s.l., 50◦2133N, 11◦3119E(O.ROTREKLOVÁ ŠMARDA, 21.11.1999; F1065) – district Třebíč, Senohrady: 1.55 MARDA &P.Š , 12.7.2000; F1212, F1213) – Bayern, Kreis Kulm- km NNW of the church in the village near Senohradský bach, Stadtsteinach: end of the railway on E village periphery, mlýn mill, siliceous slope, common, 290 m a.s.l., 49◦0815N, crushed stone heaps (probably transported from a quarry), small 16◦1418E(T.VYMYSLICKÝ, 25.9.1999; F1035) – district Zno- ◦ ◦ OTREKLOVÁ colony, 330 m a.s.l., 50 09 49 N, 11 30 49 E(O.R jmo, Tvořihráz: “238.9 m” elevation point on the ESE village MARDA &P.Š , 12.7.2000; F1214). Slovakia: Východné Karpaty periphery, closed growth of grass on siliceous rocks, abundant, Mts., district Snina, Jalová: road breakthrough, 100 m E of “539.6 230 m a.s.l., 48◦5502N, 16◦0828E(P.ŠMARDA, 29.8.1999; m” elevation point, 4 km ENE of the church in the village, ◦ ◦ F1029). Slovakia: district Senica, Šišulákovci: 1 km NE of the road bank, common, 500 m a.s.l., 49 02 95 N, 22 17 74 E(P. village, sands of S exp. sunny pine-wood margin, small colony,

ŠMARDA, 5.8.2000; F1220, F1221) 210 m a.s.l., 48◦3465N, 17◦0894E(P.ŠMARDA &T.VYMYS-

ÖÒÙÒØ Ò n x º R. Tracey (2 =6 =42): Austria: LICKÝ, 26.6.2000; F1181, F1184*)

Niederösterreich, Hundheim-Neusiedlung: Nature Reserve on NE

× º ÔÐ ÐÒ× n x cf. º ÓÚ Ò (2 =2 =14): Germany: Bayern, village periphery, rocky steppe on SW exp. dolomite slope, ◦ ◦ Kreis Hof, Woja: 0.7 km SSW of the village, slopes of Nature common, 400 m a.s.l., 48 08 00 N, 16 56 04 E(P.KARLÍK, Reserve above the railway, S exp. rocky serpentine slope, plants

20.5.2000; F1190, F1191) of this type only rare, 510 m a.s.l., 50◦1517N, 11◦5828E(O.

 ÒÖ n x º Vill. (2 =4 =28): France: Dép. Alpes Mar- ROTREKLOVÁ &P.ŠMARDA, 12.7.2000; F1206, F1207)

itimes, Tende: ±7 km NNW of the town, below Col de Tende, road

ÔÐ ÐÒ× º Host–Oberösterreich-Niederösterreich type border on S exp. stony calcareous slopes, common, 1300–1600 m (2n =2x =14): Austria: Burgenland, Forchtenstein near Mat- ◦ ◦ a.s.l., ±44 08 44 N, 07 44 10 E(P.ŠMARDA, 9.6.2000; F1128, tesburg: 300 m NW of Forchtenstein castle, dolomitised lime- F1129*, F1131, F1132*, F1133, F1134, F1135) – Dép. Var; Grand stone rocks, common, 580 m a.s.l., 47◦4243N, 16◦1943E(K. Canyon du Verdon, Aiguines: 9 km SE of the village, slopes below KOČÍ, –.5.2000; F1085) – Niederösterreich, Aggsbach-Dorf: 0.7 les Cavaliers hut, heap of fine limestone gravel, small colony, 800 km S of main crossroad, W exp. limestone rocks above the ◦ ◦ m a.s.l., 43 44 33 N, 06 19 50 E(P.ŠMARDA, 8.6.2000; F1120, Donau river, abundant, 280 m a.s.l., 48◦1713N, 15◦2428E(K. F1121) – Dép. Var; Grand Canyon du Verdon, Aiguines: 9 km KOČÍ, –.5.2000; F1088) – Niederösterreich, Mödling: 0.5 km E of SE of the village, slopes below les Cavaliers hut, sunny limestone Ruine Burg Mödling elevation point, edge of N exp. dolomite ◦ ◦ rocky slopes, small colony, 800 m a.s.l., 43 44 33 N, 06 19 49 E rocky slope in autochthonous Pinus nigra wood, small colony,

(P. ŠMARDA, 8.6.2000; F1119) 340 m a.s.l., 48◦0450N, 16◦1632E(K.KOČÍ,P.ENGLMAIER

Ò n x º (St.-Yves) Markgr.-Dann. (2 =4 =28): &P.ŠMARDA, 30.5.2000; F1112) – Niederösterreich, Schottwien France: Massif de l’Esterel, Dép. Alpes-Maritimes, Cannes- (near Gloggnitz): NW village periphery, gorge near the road, la Napoule: Tremblant, la Caldére, rock below Maure-Vieil rocky slopes, abundant, 600 m a.s.l., 47◦3933N, 15◦5214E(K. monastery, acidic andesite rockery with species-poor vegetation, KOČÍ,P.ENGLMAIER &P.ŠMARDA, 30.5.2000; F1097). Czech Ploidy level variability... 33

Republic: district Beroun, Beroun: 1.3 km ENE of Beroun rail- the railway station in the village, SW exp. dolomite rock, 400 way station, above a purification plant, limestone rockery on m a.s.l., 49◦4625N, 11◦1935E(J.MÜLLER 6862, 6.6.2000; SE exp. slope, abundant, 250 m a.s.l., 49◦5738N, 14◦0535E #H334) – Bayern, Kreis Forchheim, Streitberg: above houses (P. ŠMARDA, 8.10.1999; F1039) – district Blansko, Josefov: Býčí along the road to Störnhof, 0.5 km NNW of the church in the skála elevation point, S exp. slope on top of a vertical lime- village, limestone rocks, small colony, 400 m a.s.l., 49◦4901N, stone cliff, dense colony, 350 m a.s.l., 49◦1830N, 16◦4145E 11◦1307E(O.ROTREKLOVÁ &P.ŠMARDA, 11.7.2000; F1204) (P. ŠMARDA, 23.4.1998; F2*) – district Blansko, Sloup: Pustý – Bayern, Kreis Hof, Woja: 0.7 km SSW of the village, slopes of žleb valley, 4 km SSW of the church in the village, Koňský spád the Nature Reserve above the railway, S exp. serpentine rocky elevation point, top of W exp. limestone rock face, abundant, slope, 510 m a.s.l., 50◦1517N, 11◦5828E(O.ROTREKLOVÁ & 480 m a.s.l., 49◦2244N, 16◦4341E(P.ŠMARDA, 28.4.2000; P. ŠMARDA, 12.7.2000; F1208, F1209) – Bayern, Kreis Kelheim, F1070) – district Brno-venkov, Nové Bránice: 300 m NW of Lohstadt: NNE of the village, SE exp. Jurassic limestone slope, Šibeniční vrch (296.6 m) elevation point, above the road oppo- 370 m a.s.l., 48◦5720N, 11◦5910E(J.MÜLLER 7625, 2.6.2000; site the quarry, siliceous rocky promontory, small colony, 215 m #H331) – Bayern, Kreis Lichtenfels, Kleinziegenfeld: above the a.s.l., 49◦0410N, 16◦2704E(P.ŠMARDA, 24.5.1999; #F49*) road in the village, limestone rocks, small colony (abundant – district České Budějovice, Kamenný Újezd: 2.0 km WNW in marble quarry near this locality), 430 m a.s.l., 50◦0123N, of the village, near Maškovec ruin, siliceous rocks, common, 11◦1201E(O.ROTREKLOVÁ &P.ŠMARDA, 12.7.2000; F1205) 450 m a.s.l., 48◦5406N, 14◦2510E(V.GRULICH, 5.11.1999; – Bayern, Kreis Nürnberger Land, Rupprechtstegen: NE of the F1063) – district Český Krumlov, Třísov: 900 m NE of the vil- village, E of Mühlberg, foot of S exp. Jurassic limestone cliff, 370 lage, Dívčí kámen ruin, in ruin wall, abundant, 500 m a.s.l., m a.s.l., 49◦3617N, 11◦2923E(J.MÜLLER 6973, 4.6.2000; 48◦5321N, 14◦2127E(K.KOČÍ, 20.7.2000; F1235, F1236) – #H332) – Bayern, Kreis Regensburg, Eich: SE foot of the Eichen- district Český Krumlov, Záluží: 1.1 km W of the village, “U berg, SW of the village, Jurassic limestone rock, 360 m a.s.l., Rohana” rocks on the right bank of the Vltava river, gran- 49◦1025N, 11◦5812E(J.MÜLLER 6923, 2.6.2000; #H329) – ulite rocks (Alysso-Festucion pallentis), common, 500 m a.s.l., Bayern, Kreis Regensburg, Etterzhausen: 1.4 km NE of the rail- 48◦5232N, 14◦2154E(V.GRULICH, 5.11.1999; F1062) – dis- way station in the village, edge of limestone quarry above the trict Cheb, Mnichov: 450 m SE of Skalka (719.8 m) elevation Naab river, small colony, 410 m a.s.l., 49◦0214N, 11◦5947E point, 2.6 km ENE of the church in the village, E exp. siliceous (O. ROTREKLOVÁ &P.ŠMARDA, 11.7.2000; F1200, F1201) – rocks above the road, small colony, 490 m a.s.l., 50◦0232N, Bayern, Kreis Regensburg, Kallmünz: 300 m NW of “434 m” ele- 12◦4919E(O.ROTREKLOVÁ &P.ŠMARDA, 13.7.2000; F1210, vation point in NW part of the village, 350 m NW of the church F1211) – district Jičín, Újezd pod Troskami: Trosky ruin, 2.3 in the village, grassy edge of the slope beside the road, on cal- km NW of the village, 480 m a.s.l., 50◦3058N, 15◦1358E careous bedrock, scattered, 350 m a.s.l., 49◦0954N, 11◦5654E (M. HORSÁK, 11.7.2000; F1217) – district Karlovy Vary, Boč: (O. ROTREKLOVÁ &P.ŠMARDA, 11.7.2000; F1202, F1203) – 1.6 km SSW of the church in the village, 400 m W of Čedičová Bayern, Kreis Regensburg, Sulzbach a. d. Donau: village pe- žíla Boč Nature Reserve, above the road on left bank of the riphery, S exp. siliceous rocks above the Danube river, abun- Ohře river, scree habitat on rocky basalt cliff, common, 350 m dant, 400 m a.s.l., 49◦0139N, 12◦1444E(O.ROTREKLOVÁ a.s.l., 50◦2101N, 13◦0416E(J.VOZANKA, 24.10.1999; F1057) &P.ŠMARDA, 11.7.2000; F1196, F1197) – Bayern, Stadt Pas- – district Nový Jičín, Štramberk: Bílá hora hill (557.0 m), lime- sau, Passau-Ilstadt: Klosterberg hill, siliceous S exp. rocky slopes stone rock, common, 540 m a.s.l., 49◦3542N, 18◦0723E(V. near the Danube river, abundant, 320 m a.s.l., 48◦3437N, GRULICH, 8.7.1999; F1055) – district Nový Jičín, Štramberk: 13◦2909E(O.ROTREKLOVÁ &P.ŠMARDA, 11.7.2000; F1193, Kotouč Nature Reserve, limestone rocks, common, 450 m a.s.l., F1194) – Bayern, Stadt Regensburg, Schwabelweis: Fellingerberg 49◦3516N, 18◦0703E(V.GRULICH, 8.7.1999; F1054) – dis- Nature Reserve, N of the village, S exp. limestone slope, scat- trict Praha-město, Praha-Trója: Jabloňka Nature Reserve, S exp. tered, 360 m a.s.l., 49◦0150N, 12◦0927E(O.ROTREKLOVÁ slopes of a siliceous rockery above the Vltava river, sparse, 240 &P.ŠMARDA , 11.7.2000; F1199) – Thüringen, Kreis Saalfeld- m a.s.l., 50◦0701N, 14◦2621E(T.VYMYSLICKÝ, 19.11.1999; Rudolstadt, Obernitz: Bohlen, N of the village, W exp. schis- F1064) – district Šumperk, Raškov u Hanušovic: Modřínový vrch taceous limestone slope, 280 m a.s.l., 50◦3752N, 11◦2304E Nature Reserve, 1.2 km NW of the church in the village, S exp. (J. MÜLLER 6935, 21.5.2000; #H324) – Thüringen, Saale-Orla- serpentine rocks, abundant, 580 m a.s.l., 50◦0228N, 16◦5315E Kreis, Blankenberg: W of the village, S exp. schistaceous rock (P. ŠMARDA, 17.6.2000; F1150) – district Třebíč, Třebíč-Hrádek: along the Saale river, 430 m a.s.l., 50◦2421N, 11◦4234E(J. 40 m NE of the foot-bridge, blue marked hiking trail from the MÜLLER 7663, 18.6.2000; #H322). Poland: Krakow region, Jerz- centre of the town, siliceous sunny SSW exp. slopes above the manovice: Lysa skala hill on NW village centre periphery, top of Jihlava river, abundant, 405 m a.s.l., 49◦1301N, 15◦5302E limestone rock, some tufts, 480 m a.s.l., 50◦1248N, 19◦4500E (P. ŠMARDA, 26.6.1999; #H187, #H188, #H189) – district Ústí (O. ROTREKLOVÁ, 15.6.2000; F1137, F1138) – Nowosadeckie re- nad Orlicí, Choceň: Peliny Nature Reserve, 1.3 km NE of the gion, Pieniny National Park, Kro´scienko nad Dunajcem: Sokol- railway station in the town, edge of argillite rock above the river, nica hill, 2.7 km SSW of the church in the village, limestone in places, 350 m a.s.l., 50◦0012N, 16◦1403E(K.KOČÍ &M. rocks, common, 700 m a.s.l., 49◦2507N, 20◦2640E(K.KOČÍ, KOČÍ , 12.10.2000; F140, F141) – district Znojmo, Dyje: Dyjské 30.10.1999; F1060). Slovakia: Biele Karpaty Mts., district Ilava, svahy Nature Reserve, 1.1 km SSE of the church in the village, Vršatské Podhradie: Vršatec hill on W village periphery, lime- above the dirt track along the Dyje river, siliceous rocky outcrops, stone rocks, common, 700 m a.s.l., 49◦0401N, 18◦0904E(J. abundant, 210 m a.s.l., 48◦5017N, 16◦0721E(P.ŠMARDA, NĚMEC, 1.5.2000; F1071) – Biele Karpaty Mts., district Trenčín, 25.5.1999; #F51*) – district Znojmo, Havraníky u Znojma: Dolná Súča: below Krasín (516.2 m) elevation point, 750 m NW of Nad Papírnou elevation point, above the Dyje river, 200 m W the church in the village, rocky slope on limestone, common, 500 from “400.6 m” elevation point, rocky siliceous slopes, common, m a.s.l., 48◦5740N, 18◦0112E(J.NĚMEC, 1.5.2000; F1072) – 300 m a.s.l., 48◦4931N, 15◦5853E(P.ŠMARDA, 27.5.1999; district Košice, Malá Lodina: Bokšov Nature Resreve, S of the vil- #H2*). Germany: Bayern, Kreis Bayreuth, Pottenstein: rock lage, 500 m N of Bokšovská skala (810.2 m) elevation point, lime- block above the crossroad by Teufelshöhle cave, 2.5 km SE of stone rocks below the ridge, abundant, 700 m a.s.l., 48◦5195N, the village, limestone rock, common, 390 m a.s.l., 49◦4510N, 21◦0805E(V.GRULICH, 5.7.2000; F1192) – district Levoča, 11◦2540E(O.ROTREKLOVÁ &P.ŠMARDA, 11.7.2000; F1216) Spišské Podhradie: Spišský hradný vrch Nature Reserve, 1 km – Bayern, Kreis Bayreuth, Pottenstein: SE of the village, be- E of the village, S exp. calcareous rocks, common, 580 m a.s.l., tween Schüttersmühle and Teufelshöhle, 430 m a.s.l., 49◦4518N, 48◦5951N, 20◦4543E(P.ŠMARDA, 8.5.2000; F1218, F1219) 11◦2533E(J.MÜLLER 6870, 6.5.2000; #H320) – Bayern, Kreis – Kremnické vrchy hills, district Prievidza, Ráztočno: large lime- Eichstätt, Schernfeld: S of the village, S exp. Jurassic limestone stone quarry, rocky terrace, scattered, 450 m a.s.l., 48◦4554N, cliff, 470 m a.s.l., 48◦5355N, 11◦0641E(J.MÜLLER 7605, 18◦4636E(P.ŠMARDA, 7.5.2000; F1076) – Malé Karpaty hills, 3.6.2000; #H328) – Bayern, Kreis Forchheim, Gößweinstein: near district Trnava, Buková: 2 km ENE of the church in the vil- 34 P. Šmarda et al. lage (Horné Mlyny settlement), limestone rock, abundant, 280 m lage, 600 m SE of the sandpit, grass-covered flattish siliceous a.s.l., 48◦3275N, 17◦2600E(P.FILIPPOV, 8.5.2000; F1084) – hill, on shallow soil without rocky outcrops, rare scattered tufts, Muráňský kras Mts., district Revúca, Muráň: 1.4 km SE of Velká 230 m a.s.l., 48◦4928N, 16◦1117E(P.ŠMARDA, 25.5.1999; Stožka (1296.9 m) elevation point, along yellow-marked hiking #F55*) – district Znojmo, Hostěradice: NE village periphery, U trail, rocky limestone outcrop (view point), common, 1180 m Kapličky Nature Reserve, S exp. siliceous rocky steppe slopes, a.s.l., 48◦4600N, 19◦5755E(P.ŠMARDA, 9.5.2000; F1079) – scattered, 240 m a.s.l., 48◦5712N, 16◦1547E(T.VYMYS- Muráňský kras Mts., district Revúca, Muráň: 900 m SE of Velká LICKÝ, 1.5.2000; F1069) – district Znojmo, Moravský Krumlov: Stožka (1296.9 m) Mt., edge of limestone rocky slopes, abundant, Pod Floriánkem Nature Reserve, Křepelčin vrch hill, near “312“ 1210 m a.s.l., 48◦4629N, 19◦5750E(P.ŠMARDA, 9.5.2000; elevation point, platform near the edge of the NW exp. basic con- F1080) – Muráňský kras Mts., district Revúca, Muráň: S edge glomerate slope, scattered, 310 m a.s.l., 49◦0248N, 16◦1908E of Muráň ruin, ruined walls, common, 930 m a.s.l., 48◦4544N, (O. ROTREKLOVÁ, 24.5.1999; #F62*) – district Znojmo, Načer- 20◦0331E(P.ŠMARDA, 8.5.2000; F1078) – Slovenský Kras hills, atice: 200 m S of Načeratický kopec (291 m) hill, S exp. acidic district Košice, Zádiel: 2 km N of the church in the village, up- rocky granodiorite slope, scattered, 275 m a.s.l., 48◦4930N, per edge of limestone canyon, common, 560 m a.s.l., 48◦3805N, 16◦0552E(T.VYMYSLICKÝ, 1.5.2000; F1067) – district Zno- 20◦5007E(P.ŠMARDA, 8.8.2000; F1230) – Slovenský Kras hills, jmo, Oleksovice: Oleksovické vřesoviště Nature Reserve 0.8 km district Košice, Zádiel: 200 m from Zadielsky kameň (600.6 m) el- SSE of the church in the village, on deep sand bank, small evation point, 900 m NE of the church in the village, upper edge of colony, 240 m a.s.l., 48◦5351N, 16◦1505E(T.VYMYSLICKÝ, limestone canyon, common, 580 m a.s.l., 48◦3738N, 20◦5019E 1.5.2000; F1066) – district Znojmo, Tasovice: W part of Nad (P. ŠMARDA, 8.8.2000; F1229*) – Slovenský raj National Park, Splavem Nature Reserve, 1.6 km W of the bridge in the village, S district Rožňava, Stratená: next to the road through Straten- exp. steppe siliceous rocky slope above the Dyje river, common, ská dolina valley, 1.3 km W of Remlaška (1167.6 m) elevation 210 m a.s.l., 48◦5006N, 16◦0755E(P.ŠMARDA, 25.5.1999; point, E exp. limestone rock, common, 830 m a.s.l., 48◦5318N, #F53*). Hungary: Veszprém County, Király-Szentistván: N vil- 20◦1888E(P.ŠMARDA, 11.5.2000; F1081) – Slovenský raj Na- lage periphery, grazing steppe on calcareous bedrock, abundant, tional Park, district Spišská Nová Ves, Hrabušice: in Vyšný Kyseľ 300 m a.s.l., 47◦0630N, 18◦0258E(P.ŠMARDA &T.VYMYS- brook valley, 3.4 km N of Bykarka (1057.9 m) elevation point, S LICKÝ, 24.6.2000; F1172, F1173) – Budai-hegy hills, Pest County, exp. limestone rocky slope, common, 900 m a.s.l., 48◦5665N, Nagykovácsi: N village periphery, S exp. calcareous rocks with 20◦2417E(P.ŠMARDA, 11.5.2000; F1074) – Slovenský raj steppe vegetation (Seselio leucospermi-Festucetum pallentis), National Park, district Spišská Nová Ves, Hrabušice: Prielom common, 500 m a.s.l., 47◦3527N, 18◦5250E(P.ŠMARDA &T. Hornádu Nature Reserve, above the Hornád river near Mni- VYMYSLICKÝ, 23.6.2000; F1167, F1168) – Pilis hills, Pest County, chova díra elevation point, limestone rock, abundant, 550 m a.s.l., Csobánka: E village periphery, W exp. limestone steppe slopes, 48◦5749N, 20◦2483E(P.ŠMARDA, 1.5.2000; F1075) – Veľká common, 400 m a.s.l., 47◦3756N, 18◦5819E(P.ŠMARDA & Fatra Mts., district Martin, Blatnica: Blatnická dolina valley, 1.1 T. VYMYSLICKÝ, 22.6.2000; F1157) – Pilis hills, Pest County, km SW of Ostrá Mt. (1247 m), limestone rockeries above the foot- Dobogók¨o: 1.7 km SW of the village, rocky limestone promon- path, common, 700 m a.s.l., 48◦5441N, 18◦5724E(K.KOČÍ tory above the road, small colony, 600 m a.s.l., 47◦4228N, &M.KOČÍ, 29.10.2000; F146) – Veľká Fatra Mts., district Mar- 18◦5306E(P.ŠMARDA &T.VYMYSLICKÝ , 22.6.2000; F1156). tin, Blatnica: top of Ostrá Mt. (1247 m), limestone rockeries, Slovakia: district Bratislava, Devín: Devínská Kobyla Nature common, 1240 m a.s.l., 48◦5508N, 18◦5804E(K.KOČÍ &M. Reserve, 0.8 km N of the church in the village, W exp. rocky

KOČÍ, 29.10.2000; F144, F145) dolomite slopes, common, 340 m a.s.l., 48◦1094N, 16◦5946E

ÔÐ ÐÒ× n x MARDA YMYSLICKÝ º Host (2 =3 =21): Czech Republic: district (P. Š &T.V , 25.6.2000; F1176, F1177) – Znojmo, Plaveč: 1.7 km NW of the church in the village, left bank district Bratislava, Devín: Devínský hrad ruin area, dolomite of the Jevišovka river, opposite the mouth of Plenkovický potok fissures, common, 230 m a.s.l., 48◦1041N, 16◦5888E(P. brook, overgrown siliceous rocky outcrop (deciduous trees and ŠMARDA &T.VYMYSLICKÝ, 25.6.2000; F1175)

◦ ◦

Ð ÐÒ× n x grass cover), small colony, 245 m a.s.l., 48 56 17 N, 16 03 46 E º Ô Host – scabrifolia type (2 =4 =28): Czech (P. ŠMARDA, 29.8.1999; F1025*). Germany: Bayern, Kreis Hof, Republic: district Litoměřice, Hrdly: 0.6 km NE of the railway Woja: natural reserve 0.7 km SSW of the village, S exp. serpen- station in the village, S exp. sunny, sandy pine-wood margin, tine slopes, 520 m a.s.l., 50◦1520N, 11◦5828E(J.MÜLLER scattered, 160 m a.s.l., 50◦2921N, 14◦1053E(P.ŠMARDA, 6864, 6.5.2000; #H318). Slovakia: Pieniny National Park, dis- 19.6.2000; F1149) – district Litoměřice, Kleneč: Klenečská stráň trict Stará Ľubovňa, Lesnica: 2.5 km WNW of the church in the Nature Reserve, dry sandy slope (Plantagini-Festucetum ovinae), village, Dunajec river canyon, near the footpath to the “Sedem on the edge of the S part of the reserve shaded by trees, rare, 220 mníchov” rocks, limestone, common, 500 m a.s.l., 49◦2424N, m a.s.l., 50◦2320N, 14◦1524E(M.CHYTRÝ &P.ŠMARDA,

20◦2613E(K.KOČÍ, 30.10.1999; F1059*) 2.6.1999; F73*) – district Litoměřice, Libotenice: 0.8 km W of

ÔÐ ÐÒ× n º Host – Pannonisches-Hügelland type (2 = the cemetery, grassland with F. valesiaca on sandy S exp. pine- 4x =28): Austria: Niederösterreich, Dürnstein: 1.5 km NNE wood margin, small colony, 185 m a.s.l., 50◦2845N, 14◦1258E of the church in the village near the way to Vogelberg hill, (P. ŠMARDA, 19.6.2000; F1147) – district Litoměřice, Oleško: 0.5 W exp. limestone rocky slopes, very abundant, 400 m a.s.l., km NW of the church in the village, SW exp. sunny, sandy pine- 48◦2431N, 15◦3141E(K.KOČÍ, – 5. 2000; F1089; F1090, wood margin, small abundant colony, 160 m a.s.l., 50◦2903N, F1091) – Niederösterreich, Hundheim-Neusiedlung: Nature Re- 14◦1134E(P.ŠMARDA, 19.6.2000; F1145, F1146) – district Lit- serve on NE village periphery, rocky steppe on SW exp. dolomite oměřice, Oleško: 300 m E of the church in the village, in Robinia slopes, common, 340 m a.s.l., 48◦0750N, 16◦5548E(P.KAR- pseudacacia grove, on sand along the dirt track, small colony, LÍK, 20.5.2000; F1189/1, F1189/2) – Niederösterreich, Hundheim- 165 m a.s.l., 50◦2850N, 14◦1207E(P.ŠMARDA, 19.6.2000; Neusiedlung: Nature Reserve on NE village periphery, rocky F1151) – district Litoměřice, Velké Žernoseky: 1.25 km NNW steppe on upper SW exp. edge of dolomite slope, 400 m a.s.l., of the church in the village, slopes above the railway below 48◦0741N, 16◦5625E(K.KOČÍ, –.5.2000; F1073). Czech Re- the “(ttt)“ wiev point, S exp. gneiss rocky terraces, abundant, public: district Břeclav, Pavlov: Děvín Nature Reserve, on the 260 m a.s.l., 50◦3250N, 14◦0253E(P.ŠMARDA, 10.10.1999; top of the hill near the transmitter, elevation with deeper sandy F1048) – district Praha-město, Praha-Hlubočepy: Děvín Nature soil on bunker ruin, a single tuft isolated here, 530 m a.s.l., Reserve in the Dalejský potok valley, S of Jezírko reservoir, top 48◦5210N, 16◦3900E(P.ŠMARDA, 22.5.1998; F23*) – dis- of the limestone rocky faces, abundant, 260 m a.s.l., 50◦0230N, trict Znojmo, Derflice: Kamenná hora Nature Reserve, 850 m 14◦2255E(P.ŠMARDA &M.HORSÁK, 3.11.1998; F31*). Ger- NE of the chapel in the village, granodiorite steppe slope, scat- many: Nordrhein-Westfalen, Hochsauerlandkreis, Padberg: S of tered, 220 m a.s.l., 48◦4851N, 16◦0904E(T.VYMYSLICKÝ, the village, upper SW slope of the Lüchtenberg, siliceous rock, 430 1.5.2000; F1068) – district Znojmo, Hodonice: Vraní vrch (232.4 m a.s.l., 51◦2330N, 08◦4611E(J.MÜLLER 6854, 14.5.2000; m) elevation point, 2.5 km SE of the railway station in the vil- #H339) – Sachsen-Anhalt, Burgenlandkreis, Freyburg: SE of the Ploidy level variability... 35 village, SSE of the Neuenburg, dry grassland on Triassic lime- 190 m a.s.l., 48◦4696N, 16◦4204E(P.ŠMARDA, 25.5.2000; stone, 200 m a.s.l., 51◦1230N, 11◦4636E(J.MÜLLER 6868, F1092). Slovakia: Slovenský Kras hills, district Rožňava, Sil- 7.6.2000; #H335) – Sachsen-Anhalt, Burgenlandkreis, Saaleck: ica: N village periphery by the cemetery, grassland on limestone 500 m SSW of the village, dry grassland on Triassic limestone, karst pastures, common, 560 m a.s.l., 48◦3359N, 20◦3184E

140 m a.s.l., 51◦0633N, 11◦4152E(J.MÜLLER 6881, 1.6.2000; (P. ŠMARDA, 10.8.2000; F1231)

ÖÙÔ ÓÐ n x #H337) – Sachsen-Anhalt, Burgenlandkreis, Saaleck: SE of the º Heuff. (2 =6 =42): Austria: Steiermark, village, W of the Rudelsburg, W exp. Triassic limestone cliff, 180 Kraubath an der Mur: Gulsenberg hill, 2.85 km SSW of the m a.s.l., 51◦0638N, 11◦4220E(J.MÜLLER 6883, 1.6.2000; church in the village, glades in pine-wood on serpentine screes, #H336) – Thüringen, Kreis Saalfeld-Rudolstadt, Remschütz: rare, 620 m a.s.l., 47◦1659N, 14◦5545E(K.KOČÍ,P.EN- Kellerberg, NW of the village, S exp. sandstone cliff, 230 m a.s.l., GLMAIER &P.ŠMARDA, 30.5.2000; F1098, F1099). Czech Re- 50◦4030N, 11◦2103E(J.MÜLLER 6936, 21.5.2000; #H323) – public: district Blansko, Josefov: between Býčí skála and Krkavčí Thüringen, Kyffhäuserkreis, Bad Frankenhausen: Wüstes Kalk- skála elevation points, wood footpath fringe on limestone slope, tal at the lower slope of the Schlachtberg, N of the village, dry 350 m a.s.l., 49◦1834N, 16◦4132E(P.ŠMARDA, 23.4.1998; grassland on gypsum, 200 m a.s.l., 51◦2153N, 11◦0605E(J. F4*). Hungary: Szentendre river island, Pest County, Sziget- MÜLLER 6869, 7.5.2000; #H325) – Thüringen, Stadt Eisenach, monostor: 1 km S of the village, drifting sand steppe grassland Eisenach: SW of the town, below the Wartburg, S exp. conglom- in young pine-wood, very abundant, 150 m a.s.l., 47◦4145N, erate cliff, 370 m a.s.l., 50◦5759N, 10◦1827E(J.MÜLLER 19◦0531E(P.ŠMARDA &T.VYMYSLICKÝ, 23.6.2000; F1160).

7679, 12.6.2000; #H340) Romania: Retezat Mts., Hunedoara region, Hat¸eg: main val-

ÔÐ ÐÒ× n x º Host – Steiermark-Kärnten type (2 =4 = ley 10 km NW of Peleaga (2509 m) peak, 27 km SSW of the 28): Austria: Steiermark, Zlatten: above the road opposite a town, rocky siliceous slope above the road, common, 650 m power station near a bridge, calcareous rocky face, abundant, a.s.l., 45◦2406N, 22◦4640E(P.ŠMARDA, –.8.1999; F204). 490 m a.s.l., 47◦2210N, 15◦1906E(K.KOČÍ,P.ENGLMAIER Slovakia: district Malacky, Malacky: 10 km NE of the village, &P.ŠMARDA, 30.5.2000; F1110) – Steiermark, Kraubath an sands on pine-wood margin near the road, small colony, 190 m der Mur: Wintergraben valley, 2.1 km SE of the Chromwerk a.s.l., 48◦3030N, 17◦0694E(P.ŠMARDA &T.VYMYSLICKÝ, village, bare loamy slopes with fine stony debris at the edge 26.6.2000; F1180) – district Nové Zámky, Čenkov: Čenkovská of Erico-Pinetea forest, small colony, 800 m a.s.l., 47◦1715N, lesostep Nature Reserve, 0.5 km NW of the village, sand steppe 14◦5818E(K.KOČÍ,P.ENGLMAIER &P.ŠMARDA, 30.5.2000; grassland, abundant, 108 m a.s.l., 47◦4615N, 18◦3141E(P.

F1107) – Steiermark, Pernegg: 1.05 km NE of the church in the ŠMARDA &T.VYMYSLICKÝ, 21.6.2000; F1154)

×ØÖ Ø n x village, serpentine outcrop near the forest track, small colony, º Host (2 =6 =42): Austria: Niederösterreich, 790 m a.s.l., 47◦2154N, 15◦2135E(K.KOČÍ,P.ENGLMAIER Mödling: 0.5 km E of Ruine Burg Mödling elevation point, edge of &P.ŠMARDA, 30.5.2000; F1104, F1105, F1106) – Steiermark, N exp. dolomite rocky slope in autochthonous Pinus nigra wood, Kraubath an der Mur: Gulsenberg hill, 2.8 km SSW of the scattered, 340 m a.s.l., 48◦0450N, 16◦1632E(K.KOČÍ,P. church in the village, serpentine rocks, very abundant, 600–700 ENGLMAIER &P.ŠMARDA, 30.5.2000; F1111) – Niederösterreich, m a.s.l., ±47◦1700N, 14◦5538E(K.KOČÍ,P.ENGLMAIER & Mödling: 1 km SE of Ruine Burg Mödling elevation point, low P. ŠMARDA, 30.5.2000; F1100, F1101, F1102, F1103) steppe grassland on dolomite in autochtonous Pinus nigra wood,

◦ ◦

ÔÐ ÐÒ× n x OČÍ º Host – Weizklamm type (2 =2 =14): scattered, 320 m a.s.l., 48 04 25 N, 16 16 42 E(K.K ,P. Austria: Steiermark, Weiz: Weizklamm valley, W exp. lime- ENGLMAIER &P.ŠMARDA, 30.5.2000; F1108, F1109)

◦ ◦

ÓÑ Ò n x stone slopes, abundant, 600 m a.s.l., 47 16 23 N, 15 34 50 E º Ú ÒØ subsp. (Krajina) Soó (2 =2 =14): (K. KOČÍ, –.5.2000; F1086, F1087) Slovakia: district Malacky, Malacky: 10 km NE of the village, n x º Ô×ÑÑÓÔ Ð (Hack. ex Čelak.) Fritsch (2 =2 =14): sands on pine-wood margin near the road, small colony, 190 Czech Republic: district Kolín, Konárovice: 0.7 km SSE of the m a.s.l., 48◦3030N, 17◦0694E(P.ŠMARDA &T.VYMYS- church in the village in the local waterworks site, on sand in LICKÝ, 26.6.2000; F1179) – district Malacky, Mikulášov: between open vegetation in pine-wood glade, small colony, 200 m a.s.l., Mikulášov and Plavecký Mikuláš villages, 2.2 km SE of the 50◦0159N, 15◦1721E(P.ŠMARDA, 18.6.2000; F1141, F1142) Mikulášov village, near the road on sand, in places, 220 m a.s.l., – district Kolín, Konárovice: 600 m E of the church in the village, 48◦3315N, 17◦1350E(P.FILIPPOV, 8.5.2000; F1082, F1083) sunny S exp. sandy slopes on pine-wood margin, small colony, – district Malacky, Plavecký Štvrtok: 0.9 km NE of Plavecký Štvr- 200 m a.s.l., 50◦0220N, 15◦1738E(P.ŠMARDA, 18.6.2000; tok railway station, sands in pine-wood next to the road, small F1144) – district Kolín, Tři Dvory: 0.5 km NE of the centre of colony, 160 m a.s.l., 48◦2282N, 17◦0126E(P.ŠMARDA &T. the village opposite the agricultural cooperative by the road, S VYMYSLICKÝ, 26.6.2000; F1178) – district Senica, Horné Valy: exp. sandy pine-wood margin, 4 tufts, 202 m a.s.l., 50◦0203N, 0.5 km NE of the village, sunny place in pine-wood on sand slope, 15◦1536E(P.ŠMARDA, 17.6.2000; F1148) – district Nymburk, small colony, 200 m a.s.l., 48◦3448N, 17◦0742E(P.ŠMARDA Kostelní Lhota: 1.5 km WNW of the church in the village, W exp. &T.VYMYSLICKÝ, 26.6.2000; F1185, F1186, F1187, F1188) – grassy pine-wood margin, some obviously overgrowned tufts, 186 district Senica, Šišulákovci: 1 km NE of the village, sands of S exp. m a.s.l., 50◦0754N, 15◦0042E(P.ŠMARDA, 19.6.2000; F1140) sunny pine-wood margin, small colony, 210 m a.s.l., 48◦3465N, – district Nymburk, Písty u Nymburku: 700 m NE of the village, 17◦0896E(P.ŠMARDA &T.VYMYSLICKÝ, 26.6.2000; F1182,

250 m SE of Na Ptáku (185.6 m) elevation point, S exp. small F1183)

Ú ÒØ Ú ÒØ bare sand slope on the pine-wood edge, small colony, 185 m a.s.l., º Waldst. et Kit. ex Willd. subsp.

50◦1000N, 15◦0041E(P.ŠMARDA, 3.6.1999; F77) (2n =2x =14): Hungary: Szentendre river island, Pest County,

Ô×ÙÓÐÑØ  n x º Krajina ex Domin (2 =4 =28): Sziget-monostor: 1 km N of the village, steppe stand of grass on Austria: Burgenland, Rumpersdorf: 0.95 km SSE of the church sand dune near the road, abundant, 150 m a.s.l., 47◦4251N, in the village, road bank, small colony, 380 m a.s.l., 47◦1829N, 19◦0607E(P.ŠMARDA &T.VYMYSLICKÝ, 23.6.2000; F1161, 16◦2005E(K.KOČÍ, –.5.2000; F1113, F1114). Hungary: Fe- F1162, F1163) – Szentendre river island, Pest County, Sziget- jér County, Pákozd: Reservation 1 km N of the village, steppe, monostor: 1 km S of the village, drifting sand steppe grassland species-poor vegetation on rocky acidic siliceous substrate, com- in young pine-wood, very abundant, 150 m a.s.l., 47◦4145N, mon, 300 m a.s.l., 47◦1423N, 18◦3243E(P.ŠMARDA &T. 19◦0528E(P.ŠMARDA &T.VYMYSLICKÝ, 23.6.2000; F1158) VYMYSLICKÝ, 23.6.2000; F1171) – Veszprém County, Tihány: 1.5 – Szentendre river island, Pest County, Táhitotfalu: 2 km S of the km WNW of the village, N part of the peninsula, road fringe on village, slightly ruderalized steppe grass stand on drifting sand shallow andesite bedrock, scattered, 200 m a.s.l., 46◦5431N, near the road, abundant, 150 m a.s.l., 47◦4512N, 19◦0606E

17◦5224E(P.ŠMARDA &T.VYMYSLICKÝ, 24.6.2000; F1174) (P. ŠMARDA &T.VYMYSLICKÝ, 23.6.2000; F1165). Slovakia:

Ô×ÙÓÚ Ò n x º Wiesb. (2 =2 =14): Czech Republic: district Nové Zámky, Čenkov: Čenkovská lesostep Nature Re- district Břeclav, Sedlec u Mikulova: Slanisko u Nesytu Nature serve, 0.5 km NW of the village, sand steppe grassland, abun- Reserve on SE village periphery, halophilous meadow, scattered, dant, 108 m a.s.l., 47◦4612N, 18◦3142E(P.ŠMARDA &T. 36 P. Šmarda et al.

VYMYSLICKÝ, 21.6.2000; F1153) – district Nové Zámky, Čenkov: a.s.l., 48◦5433N, 19◦0540E(K.KOČÍ &M.KOČÍ, 29.10.2000; Čenkovská lesostep Nature Reserve, 1.5 km N of the village, F153*, F154) – Veľká Fatra Mts., district Martin, Blatnica: saddle in N-S forest track, sand steppe grassland, abundant, 108 m between Ostrá (1247 m) and Tlstá (1373 m) hills, limestone rock- a.s.l., 47◦4696N, 18◦3171E(P.ŠMARDA &T.VYMYSLICKÝ, eries, common, 1100 m a.s.l., 48◦5532N, 18◦5845E(K.KOČÍ

21.6.2000; F1152) &M.KOČÍ, 29.10.2000; F142, F143) – Veľká Fatra Mts., dis-

× º ÚÐ×  n x º Ú ÒØ (2 =2 =14): Hungary: Szen- trict Ružomberok, Liptovské Revúce: Čierny-kameň Nature Re- tendre river island, Pest County, Sziget-monostor: 1 km S of the serve, rockeries below the Čierny-kameň Mt. (1479 m), limestone village, drifting sand steppe grassland in young pine-wood, very outcrops, common, 1450 m a.s.l., 48◦5614N, 19◦0909E(K. abundant, 150 m a.s.l., 47◦4145N, 19◦0532E(P.ŠMARDA & KOČÍ &M.KOČÍ, 29.10.2000; F152*) – Vysoké Tatry National

T. VYMYSLICKÝ , 23.6.2000; F1159) Park, district Poprad, Starý Smokovec: 1 km E of Slavkovský štít

ÚÐ×  n x º Gaudin (2 =2 =14): Slovakia: Slovenský peak, alpine grassland on siliceous rocks, common, 2100 m a.s.l.,

Kras hills, district Košice, Turňa nad Bodvou: Turnianský hradný 49◦1060N, 20◦0902E(P.ŠMARDA, 12.5.2000; F1077*) ÛÒÖ vrch Nature Reserve, steppe SW exp. rocky calcareous slopes, º (Degen, Thaisz & Flatt) Degen, Thaisz & abundant, 260 m a.s.l., 48◦3657N, 20◦5236E(P.ŠMARDA, Flatt (2n =4x =28): Hungary: Szentendre river island, Pest

8.8.2000; F1227, F1228) County, Táhitotfalu: 2 km S of the village, slightly ruderalized

ÓÐÓÖ ÚÖ× ÓÐÓÖ n x º ÚÖ×  Tausch subsp. (2 =2 =14): Slo- steppe grass stand on drifting sand near the road, common, 150 m vakia: Veľká Fatra Mts., disrict Ružomberok, Liptovské Revúce: a.s.l., 47◦4512N, 19◦0606E(P.ŠMARDA &T.VYMYSLICKÝ, Suchý vrch Mt. (1549 m), top of limestone rocks, common, 1540 m 23.6.2000; F1164, F1166) (2)

Šmarda P. et Kočí K. (2003):

Chromosome number variability in Central European members of Festuca ovina and F. pallens groups (sect. Festuca).

Folia Geobot. 38: 65–95.

Folia Geobotanica 38: 65–95, 2003

CHROMOSOME NUMBER VARIABILITY IN CENTRAL EUROPEAN MEMBERS OF THE FESTUCA OVINA AND F. PALLENS GROUPS (SECT. FESTUCA)

Petr Šmarda1) & Kateøina Koèí1, 2)

1) Department of Botany, Faculty of Science, Masaryk University, Kotláøská 2, CZ-611 37 Brno, Czech Republic; fax +420 5 4121 1214, e-mail [email protected]; [email protected] 2) Landscape Protected Area Beskydy, Nádraz¡ní 36, CZ-756 61 Roz¡nov pod Radhoštìm, Czech Republic; e-mail [email protected]

Abstract: Chromosome numbers for 98 plants of F. pallens,19ofF. psammophila, F. belensis and F. vaginata, and 44 of F. ovina (originating from Austria, the Czech Republic, Germany, Slovakia and Latvia) are given. In addition to the F. ovina and F. pallens groups, chromosome counts for the following taxa are also reported: F. alpestris (2n=14) reported for the first time in this work, F. amethystina subsp. amethystina (2n=28), F. brevipila (2n=42), F. cinerea (2n=28), F. rupicola subsp. rupicola (2n=42) and F. versicolor subsp. versicolor (2n=14). In F. pallens, two ploidy levels (2n=2x=14+0-1B, 2n=4x=28+0-1B) as well as two natural triploid plants (2n=21+0-1B), were found. In addition to the four F. pallens types that have been distinguished in Austria, one new tetraploid type (F. pallens “scabrifolia”) from the Czech Republic and Germany is reported and its taxonomy is discussed. The distributions of the Oberösterreich-Niederösterreich and Pannonisches-Hügelland F. pallens types outside of Austria are documented. Only the diploid chromosome number (2n=14) was found in F. psammophila and F. vaginata. Chromosome numbers for F. psammophila subsp. muellerstollii and F. belensis (both 2n=14) were determined here for the first time. Two ploidy levels, 2n=14+0-5B corresponding to F. ovina subsp. ovina and 2n=28 corresponding to F. ovina subsp. guestphalica and F. cf. duernsteinensis were confirmed in F. ovina. Differences in chromosome structure (simple and multiple secondary constrictions) between F. pallens as opposed to F. psammophila and F. vaginata are discussed. A complete survey of published chromosome counts for Central European species from the F. ovina and F. pallens groups is included. Keywords: Fescue, Karyology, Ploidy level distribution, Poaceae, Taxonomy

INTRODUCTION Species of the genus Festuca are morphologically very similar and often represent young taxa. Speciation is believed to be strongly influenced by hybridization and polyploidization (JENKIN 1955a,b,c, MALIK &THOMAS 1966, MALIK 1967, MÁJOVSKÝ 1962). This results in extreme taxonomical difficulties being associated with most of the taxa. The absence of strong differential morphological characters and character variability led to a broad species concept in the past. It was soon shown that these broad species contained miscellaneous polyploid complexes. Different ploidy levels correlated with some morphological characters and usually showed some kind of geographic coherence. This consequently led to the designation of plants of newly reported ploidy levels as separate species or subspecies. Classic examples of this practice are the works of AUQUIER &KERGUÉLEN (1977), 66 P. Šmarda & K. Kočí

KERGUÉLEN (1983) and more recently, the species checklists and conspects of MARKGRAF-DANNENBERG (1980), WILKINSON &STACE (1991), FUENTE GARCIA & ORTÚÑEZ RUBIO (1998) and PORTAL (1999). In the current species concept and in Festuca taxonomy as a whole, ploidy level plays a very important role and is often the main classification criterion. This is especially manifested in larger and taxonomically problematic groups. Both the F. ovina and F. pallens groups belong to this category. The concept of the Festuca pallens and F. ovina groups is not always uniform and, depending on the author and study area, various taxa are included in them. In this work, we followed the group concept of TRACEY (1980) that corresponds to the series divisions of PAWLUS (1985). This work addresses the following Central European species and infraspecific taxa:

F. ovina group (Festuca L. sect. Festuca ser. Festuca) F. ovina L. subsp. ovina subsp. bigoudenensis KERGUÉLEN et PLONKA subsp. hirtula (HACK.exTRAVIS) M.J. WILK. subsp. guestfalica (RCHB.) K. RICHT. subsp. ophioliticola (KERGUÉLEN) M.J. WILK. F. filiformis POURR. F. supina SCHUR F. airoides LAM. F. eggleri R. TRACEY ?F.“´”duernsteinensis J. VETTER (“= F. ovina ´ F. pallens”)

F. pallens group (Festuca sect. Festuca ser. Psammophilae PAWLUS) F. pallens HOST Oberösterreich-Niederösterreich type Weizklamm type Pannonisches-Hügelland type Steiermark-Kärnten type “scabrifolia” type (newly reported in this work) F. psammophila (HACK.exÈELAK.) FRITSCH subsp. psammophila subsp. muellerstollii M. TOMAN F.“´”belensis M. TOMAN (“= F. pallens ´ F. psammophila”) F. vaginata WALDST.etKIT.exWILLD. subsp. vaginata subsp. dominii (KRAJINA)SOÓ

From the other groups, the following taxa were investigated: Festuca L. sect. Festuca F. alpestris ROEM.etSCHULT. F. brevipila R. TRACEY F. cinerea VILL. F. rupicola subsp. rupicola HEUFF. Festuca chromosome number variability 67

F. versicolor TAUSCH subsp. versicolor Festuca sect. Aulaxyper DUMORT. F. amethystina L. subsp. amethystina

The first chromosome counts for F. ovina can be found in the works of LITARDIÈRE (1923) and LEWITSKY &KUZMINA (1927). These data are of only limited use in current systematic studies. The main problems are an especially broad species concept and insufficient or missing localization, in most cases preventing unambiguous assignment of the data to species in the current concept. The broad species concept of F. ovina (according to HACKEL 1882) led to obscurity in the beginning and all chromosome numbers ranging from 2n=14, 21... to 2n=70 have been reported. In the current, narrow F. ovina species concept, only two main ploidy levels are documented: diploid 2n=14 and tetraploid 2n=28 (see Appendix 2). Plants of the diploid type are commonly distributed in northern, Central and eastern Europe and are classified as the nominate subspecies F. ovina subsp. ovina. Plants of the tetraploid cytotype comprise a morphologically heterogeneous group in western Europe. Most of them were described at the subspecific (F. ovina subsp. hirtula, F. ovina subsp. bigoudenensis, F. ovina subsp. ophioliticola) or the specific level (e.g. F. armoricana KERGUÉLEN) during the last 30 years. Detailed karyological investigation of tetraploid plants from Central Europe and the Pannonian region have been carried out only in Austria (TRACEY 1974, 1980, PILS 1980, 1981). Also in this region F. ovina tetraploids are very difficult taxonomically and probably represent several different taxa (cf. ENGLMAIER 1995, EHRENBERGEROVÁ 2001). In this work we unite them under the provisional name F. ovina subsp. guestphalica. Two ploidy levels (2n=2x=14 and 2n=4x=28) are also known in F. eggleri (TRACEY 1980), an endemic species of Austria. Different ploidy levels were also published for a group of mountain species from the F. airoides-F. supina complex, usually comprising F. supina, F. airoides and F. niphobia (ST.-YVES)KERGUÉLEN from the Pyrenees. Festuca filiformis is known to be only diploid. A situation similar to that in F. ovina is also found in F. pallens. Two main ploidy levels are known (2n=14, 2n=28), reports of 2n=21 are rare, and those of 2n=42 probably refer to other taxa. More detailed karyological information is known from Austria, less is available from Hungary and Belgium (see Appendix 2). Based on morphological characters and karyological data, TRACEY (1980) and PILS (1981) divided F. pallens in Austria into 4 main types: diploid Oberösterreich-Niederösterreich and Weizklamm types and tetraploid Pannonisches- -Hügelland and Steiermark-Kärnten types. All these groups show some geographic coherence, however their distribution outside of Austria has not yet been sufficiently explored. A wider distribution of one diploid type (Oberösterreich-Niederösterreich type, ŠMARDA in prep.) is indicated for example, by karyological data from Belgium and France (AUQUIER &RAMELOO 1973, KERGUÉLEN 1975), Slovakia and Hungary (UHRÍKOVÁ & MÁJOVSKÝ 1978, BAKSAY 1956, HORÁNSZKY et al. 1972, GALLI et al. 2001). The data by HOLUB (1970) and part of those in BAKSAY (1956) from Hungary and Slovakia refer to the Pannonisches Hügelland type. In F. psammophila and F. vaginata, only diploids are known (SCHWARZOVÁ 1967, BAKSAY 1956). 68 P. Šmarda & K. Kočí

This work presents the preliminary results of a chromosome number study undertaken within a more extensive taxonomical study of both the F. ovina and F. pallens groups. In addition to original chromosome counts from these groups (Appendix 1), a survey of the previously published karyological data of the above-mentioned taxa in Europe (Appendix 2) and some original counts from other groups are included (Appendix 1).

MATERIALS AND METHODS Chromosome numbers were determined in plants cultivated in the Botanical Garden of Masaryk University in Brno, beginning in 1997. Plants originated mostly from the Czech Republic and its wider surroundings. A full list of localities is given in Appendix 1. One to six samples were investigated from the same locality. Herbarium specimens of all plants studied are stored in the Herbarium of the Department of Botany of Masaryk University, Brno (BRNU). For the karyological study of the F. ovina group, the rapid squash aceto-orcein method was used. Root tips from plants cultivated in vitro in water were pre-treated in para-dichlorbenzene, then fixed for 2 hours in a mixture of ethanol and acetic acid (3 : 1). They were then macerated in a mixture of 96% ethanol and concentrated hydrochloric acid (1 : 1) for about 1 minute at room temperature. For F. pallens, the following modification of the same method was used. The meristem of root tips sampled directly from plants cultivated outdoors in pots was used for chromosome counts. The best results were achieved by sampling on sunny mornings with high air and soil humidity, between 8–10 a.m., about 3 months after transplanting. Fully developed, thick root tips with yellowish ends were most useful. Most root tips were pre-treated for 2–3 hours in para-dichlorbenzene, sample F21 was pre-treated in 8-hydroxychinoline, samples F3 and F6 were pre-treated in ice cold water, and sometimes pre-treatment was eliminated. Then they were fixed for 2 hours in a mixture of ethanol and acetic acid (3 : 1). Maceration proceeded in a mixture of 96% ethanol and concentrated hydrochloric acid (1 : 1) at 31–32 °C for about 50–60 sec. (depending on root thickness). The whole milk-coloured or about 1–2 mm of the top part of the root was cut off and suspended on a microscope slide in a small amount of water using fine preparation needles. The root fragment was mashed onto the slide and the larger debris were brushed away. Lacto-propionic orcein dye was added, the slide was covered with a cover slip and immediately examined.

RESULTS AND DISCUSSION Festuca ovina group In concordance with the results of previous studies, we found two ploidy levels in 44 investigated F. ovina plants (2n=14+0-5B, 2n=28). This improved our knowledge about their distribution in Central Europe. Taking previously published data into consideration, we can conclude that the different ploidy levels have different geographical ranges in Europe (Fig. 1). Diploid plants seem to be common throughout the entire European species range. They dominate especially in northern Europe and in Scandinavian countries. Tetraploid plants occupy mainly western and Central Europe. The present karyological data and routine field observation indicate that in Central Europe tetraploids are concentrated mainly in the Festuca chromosome number variability 69

Fig. 1. Map of the localities of karyologically investigated plants and the localities of previously published chromosome number literature data of F. ovina: empty circles – F. ovina subsp. ovina (2n=14); dark circles – F. ovina subsp. guestfalica (2n=28); empty triangles – F. ovina “cf. F. ´duernsteinensis” (2n=28); dark squares – F. ovina subsp. hirtula + F. ovina subsp. ophioliticola (2n=28); dark diamond – F. ovina subsp. bigoudenensis (2n=28); altogether 135 chromosome number records are shown.

Pannonian area (Fig. 1). Although the Central European tetraploids in Pannonia have been designated as F. ovina subsp. guestphalica, they do not represent a homogeneous group. Remarkably different are some tetraploid F. ovina-like plants from siliceous river canyons in southern Moravia (Czech Republic). These plants mainly occupy slope edges; they are robust (with large and lemmas) and in appearance resemble F. pallens, which always occurs nearby and which in contrast has completely smooth leaves. These plants can probably be associated with the name F. ´duernsteinensis (= F. ovina ´ F. pallens), according to the original description (type material not seen). Besides the type locality near the village of Dürnstein (Austria, Danube valley), other localities of this taxon in the Austrian part of the Dyje river valley were presented in the original work (VETTER 1922). These localities are close to those from the Czech part of the Dyje valley presented in this paper (Appendix 1). Discovering to what extent these plants are the result of hybridization processes, habitat conditions or other mechanisms is the subject of further study by the authors. Only previously published data for the other taxa from the F. ovina group are shown in Fig. 2. The F. airoides-F. supina complex, which is united as the single species F. airoides in Flora Europea (MARKGRAF-DANNENBERG 1980) is especially interesting. Conversely KERGUÉLEN (1983) and EHRENBERGEROVÁ (2001) argue for the distinguishing of two 70 P. Šmarda & K. Kočí

Fig. 2. Map of the localities of previously published chromosome number literature data from the F. ovina group: empty circles – F. filiformis (2n=14); empty triangles – F. eggleri (2n=14); dark triangles – F. eggleri (2n=28); empty squares – F. airoides/F. supina complex (2n=14); dark squares – F. airoides/F. supina complex (2n=28, 35); altogether 44 chromosome number records are shown. species, mainly based on different ploidy levels and geographic distributions. While diploids should be associated with F. airoides, described from the Massif Central Mts. (France), tetraploids probably refer to F. supina. The lectotype of the name F. supina SCHUR Enum. Pl. Transs.: 784, 1866, has not been selected yet. Because of this, it is not clear whether F. supina refers to the tetraploid or pentaploid populations of the Western Carpathians or to some of the diploid ones from Romania (EHRENBERGEROVÁ 2001).

Festuca pallens group In F. pallens, 98 plants were karyologically investigated. Two main ploidy levels, diploid with 2n=14+0-1B and tetraploid with 2n=28+0-1B were observed. In addition, two natural triploid plants (2n=21+0-1B) from two different localities were found (Appendix 1). Diploid plants corresponded to the Oberösterreich-Niederösterreich morphological type and seem to be distributed throughout most of the studied region. Tetraploid plants corresponded to one of four other morphological variants, each with a more restricted geographical distribution (Fig. 3). A tetraploid chromosome count for the Pannonian type (Pannonisches-Hügelland type) was recorded for the first time in the Czech Republic. The other types (Steiermark-Kärnten and Weizklamm types) represent local types for Austria and were not observed in this study. In addition to these, one new tetraploid type was found. This type is Festuca chromosome number variability 71

? ?

Fig. 3. Map of the localities of karyologically investigated plants and the localities of previously published chromosome number literature data of the F. pallens group: empty circles – F. pallens Oberösterreich- -Niederösterreich type (2n=14); empty/dark circles – F. pallens triploid plants (2n=21); dark circles – F. pallens Steiermark-Kärtnen type (2n=28); dark triangles – F. pallens “scabrifolia” type (2n=28); empty triangles – F. pallens Weizklamm type (2n=14); dark squares – F. pallens Pannonisches-Hügelland type (2n=28); continuous line defines the supposed F. pallens natural range; altogether 147 chromosome number records are shown. distributed mainly in Bohemia (Czech Republic) and Thüringen (Germany). Distribution in Bohemia corresponds with the localities of F. cinerea VILL. subsp. cinerea given by TOMAN (1974). In this paper it is designated as the F. pallens “scabrifolia” type. This tetraploid type fully corresponds to F. glauca var. scabrifolia HACK.exROHLENA (type material seen, PRC) described from the surroundings of the village of Libèice nad Vltavou (Czech Republic, Vltava river canyon). The name F. glauca var. scabrifolia HACK.exROHLENA Vìstn. Král. Èes. Spol. Nauk, cl. math.-natur, 24: 3, 1899 was combined as F. pallens var. scabrifolia (HACK.exROHLENA)MARKGR.-DANN.inJANCHEN Catal. Fl. Austr., Ergänzungsheft 1: 109, 1963 and F. pallens subsp. scabrifolia (HACK.exROHLENA)ZIELONK. Hoppea 31: 177, 1973 (nom. inval., Art. 33.3). The invalidly published name F. pallens subsp. scabrifolia was subsequently also used in Flora Europea (MARKGRAF-DANNENBERG 1980). There are significant differences between the conception of this taxon in our work and that found in the Flora Europaea (MARKGRAF-DANNENBERG 1980) and ZIELONKOWSKI (1973). Both MARKGRAF-DANNENBERG (1980) and ZIELONKOWSKI (1973) primarily mentioned Bavarian populations under the var./subsp. scabrifolia, but our results show (Appendix 1, ŠMARDA &KOÈÍ, in prep.) that these Bavarian populations are exclusively diploid and also morphologically different from the tetraploids of Bohemia and Thüringen and therefore can 72 P. Šmarda & K. Kočí

Fig. 4. Map of the localities of karyologically investigated plants and the localities of previously published chromosome number literature data from the F. pallens group: empty circles – F. psammophila subsp. psammophila (2n=14); dark circles – F. psammophila subsp. muellerstollii (2n=14); empty triangles – F. vaginata subsp. vaginata (2n=14); dark triangles – F. vaginata subsp. dominii (2n=14); empty square – F. “´”belensis (2n=14); the continuous line defines the F. psammophila natural range, the dotted line the range of F. vaginata; altogether 28 chromosome number records are shown. not be combined with them. In this work, diploid Bavarian plants are presented together with the Oberösterreich-Niederösterreich type. Another interesting variant is represented by tetraploid plants from sands in the wider surroundings of the village of Oleško (Czech Republic, near Roudnice nad Labem). These plants are sometimes classified as F. duvalii (ST.-YVES)STOHR (TOMAN 1990), but this tetraploid species is found on andesite rocks in western Germany and eastern France and evidently cannot be associated with the plants from Oleško. The plants from Oleško are most similar to the F. pallens “scabrifolia” type and are included within the “scabrifolia” type in Appendix 1. Festuca psammophila and F. vaginata were found in all cases to be only diploid (altogether 19 plants were investigated, Appendix 1, Fig. 4). Diploid chromosome numbers recorded here for F. psammophila subsp. muellerstollii and F. “´”belensis (2n=14) represent the first published data for these two taxa. The conceptions of F. psammophila subsp. muellerstollii and F. “´”belensis are still confusing and have yet to be explained. Both taxa occur practically together in the only existing locality of F. “´”belensis (Bìlá pod Bezdìzem, Czech Republic) and their descriptions are based on relatively variable quantitative morphological characters. Other localities of these taxa given in the original works (TOMAN 1974, 1990) refer mainly to F. pallens. Festuca chromosome number variability 73

Mixed ploidy populations During the study, the existence of mixed ploidy populations of the same species has been demonstrated. This is the case for F. ovina near Hodonín (FO01, FO02, FO05, FO08) and for F. pallens near Zruè nad Sázavou (samples F84, F85, F86) and Moravský Krumlov (samples F24, F25, F26, F62) (Appendix 1). In Moravský Krumlov, for example, tetraploid plants form a small colony on a ruderal terrace above the slopes of “Pod Floriánkem” Nature Reserve, while diploid plants occupy the relict conglomerate rocky slopes of the Reserve itself. While no reliable morphological differences were found between the diploid and the tetraploid F. ovina plants from Hodonín, in the case of F. pallens, both from Zruè nad Sázavou and Moravský Krumlov, different ploidy levels are relatively well distinguished from each other. The origin of the tetraploid F. pallens plants in these localities can be explained in several ways. One is the autotetraploid origin hypothesis, supported by the occurrence of triploid plants in some natural populations as is documented this work. On the other hand, some ecological and morphological differences support the hypothesis that their origin was connected to a hybridization event. Lastly, due to the similarity of these tetraploids to the tetraploid plants of the Pannonisches-Hügelland type, we can consider this situation to be the simple co-occurrence of two independent taxa. However, an unambiguous solution would require using more precise taxonomic methods. In any case, this relatively common phenomenon must be considered in further taxonomic studies of these groups.

Chromosome constrictions Although we do not present the complete karyotype of the investigated taxa, some additional karyological data are worth mentioning. Secondary chromosome constrictions were observed in several taxa (Fig. 5A–U). Based on these observations, distinguishing F. pallens from the other psammophilous taxa (F. psammophila and F. vaginata) seems to be possible. Diploid F. pallens usually contains one or two pairs of chromosomes with a single secondary constriction (Fig. 5A, F); tetraploid plants usually have only one pair, and the triploid plant from South Moravia has two (Fig. 5C, K). An interesting exception is a tetraploid F. pallens (sample F73, Fig. 5M) from Kleneè, whose karyotype contains about six pairs of chromosomes with secondary constrictions, some of which are multiple. This chromosome structure more closely resembles that of some psammophilous taxa. The karyotype of psammophilous taxa of the F. pallens group also shows chromosomes with multiple secondary constrictions. In F. psammophila, all four chromosome pairs that have secondary constrictions have multiple constrictions (Fig. 5Q). In F. vaginata multiple constriction was usually observed only on a single chromosome (Fig. 5E, I). These results do not agree with those obtained by SCHWARZOVÁ (1967), who reported three pairs of chromosomes with a single secondary constriction in both F. psammophila and F. vaginata. In addition to the normal chromosome number, some accessory chromosomes (B chromosomes) were observed in one F. ovina (sample FO29) and four F. pallens plants (samples F1, F36, F38, F1025) (Appendix 1). 74 P. Šmarda & K. Kočí

B A B

C

F D

E

Fig. 5. Selected somatic metaphases of karyologically investigated plants. Species name, reported chromosome number and plant cultivation number are given. Photos and drawings made by Petr Šmarda are indicated by an ”s” after the plant cultivation number, those by Kateøina Koèí by a ”k”. Scale bars 10 µm. A – F. pallens 2n=14+1B (F1)s; B – F. rupicola 2n=42 (F4)s; C – F. pallens 2n=21+1B (F1025)s; D – F. pallens 2n=14 (F6)s; E– F. vaginata subsp. dominii 2n=14 (F18)s; F – F. pallens 2n=14 (F1032)s. Festuca chromosome number variability 75

H

G

I

J

K

Fig. 5. Selected somatic metaphases of karyologically investigated plants. Species name, reported chromosome number and plant cultivation number are given. Photos and drawings made by Petr Šmarda are indicated by an ”s” after the plant cultivation number, those by Kateøina Koèí by a ”k”. Scale bars 10 µm. G – F. vaginata subsp. dominii 2n=14 (F13)s; H – F. pallens 2n=28 (F22)s; I – F. vaginata subsp. dominii 2n=14 (F19)s; J – F. pallens 2n=14 (F25)s; K – F. pallens 2n=28+1B (F36)s. 76 P. Šmarda & K. Kočí

L M

FO20 2n=14 N O

FO21 2n=28P

Q

Fig. 5. Selected somatic metaphases of karyologically investigated plants. Species name, reported chromosome number and plant cultivation number are given. Photos and drawings made by Petr Šmarda are indicated by an ”s” after the plant cultivation number, those by Kateøina Koèí by a ”k”. Scale bars 10 µm. L – F. pallens 2n=28+1B (F38)s; M – F. pallens 2n=28 (F73)s; N – F. ovina ? F. duernsteinensis 2n=28 (F64/2)s; O – F. ovina 2n=14 (FO20)k; P – F. ovina 2n=28 (FO21)k; Q – F. psammophila 2n=14 (F76)s. Festuca chromosome number variability 77

FO08 2n=28 R S

FO26 2n=14 FO02 2n = 14 T U

Fig. 5. Selected somatic metaphases of karyologically investigated plants. Species name, reported chromosome number and plant cultivation number are given. Photos and drawings made by Petr Šmarda are indicated by an ”s” after the plant cultivation number, those by Kateøina Koèí by a ”k”. Scale bars 10 µm. R – F. ovina 2n=28 (FO08)k; S – F. ovina 2n=28+5B (FO29)k; T – F. ovina 2n=14 (FO26)k; U – F. ovina 2n=14 (FO02)k.

Other taxa Altogether 15 chromosome records of taxa, out of the F. ovina and F. pallens groups, are documented (Appendix 1). For the first time, chromosome number for F. alpestris (2n=14) was estimated. Diploid chromosome number was also found in F. versicolor subsp. versicolor. Tetraploid chromosome numbers (2n=28) are documented for three F. cinerea and three F. amethystina subsp. amethystina plants. In F. rupicola and F. brevipila the hexaploid number (2n=42) was proved (Fig. F). These data are in concordance with the previously published chromosome numbers for these species in the regions studied (BRANDENBERG 1948, PÓLYA 1949, BAKSAY 1956, KERGUÉLEN 1975, MURÍN &MÁJOVSKÝ 1978, TRACEY 1980, MIZIANTY &PAWLUS 1984). 78 P. Šmarda & K. Kočí

Acknowledgements: We would like to thank Mgr. Olga Rotreklová for her helpful comments and assistance with the employed methods. For help with plant collecting, we are much obliged to our colleagues whose names appear in the particular locality descriptions in Appendix 1. English revision was done by Mgr. Sierra Stoneberg Holt. This project was partialy supported by the grant MSM 143100010 (formerly CEZ: J07/98:143100010) Spatial and Temporal Biodiversity Dynamics in Ecosystems of Central Europe.

REFERENCES

ALEXEEV E.B. (1974): Khromosomnye chisla nekotorykh ovsyanits (Chromosome numbers of some fescues). Vestn. Moskovsk. Univ. Nauch. Zhurn. 6, 29: 61–65. ALEXEEV E.B., SOKOLOVSKAYA A.P. & PROBATOVA N.S. (1990): Taksonomiya, rasprostranenie i chisla khromosom ovsyanits (Festuca L., Poaceae) flory SSSR. 4. sektsiya Festuca: F. ovina – F. filiformis (Taxonomy, distribution and chromosome numbers of fescues (Festuca L., Poaceae) in the USSR flora, 4. Section Festuca: F. ovina – F. filiformis). Byull. Moskovsk. Obshch. Isp. Prir., Otd. Biol. 95: 71–78. AROHONKA T. (1982): Chromosome counts of vascular plants of the island Seili in Nauvo, SW Finland. Turun Yliop. Biol. Laitok. Julk. 3: 1–12 [non vidi, cit. sec. UOTILA &PELLINEN 1985] AUQUIER P. (1976): Commentaires à propos de quelques récoltes de Festuca distribués dans le fascicule 16. Soc. Éch. Pl. Vasc. Eur. Occid. Bassin Médit. 16: 141–150. AUQUIER P. (1977): Taxonomie et nomenclature de quelques Festuca tétraploides du groupe de Festuca ovina L. s. l. en Europe moyenne. Bull. Jard. Bot. Belg. 47: 99–116. AUQUIER P. & KERGUÉLEN M. (1977): Un groupe embrouillé de Festuca (Poaceae): les taxons désignés par l épithète “glauca” en Europe occidentale et dans les regions voisines. Lejeunia, Ser. Nova 89: 1–82. AUQUIER P.&RAMELOO J. (1973): Nombres chromosomiques dans le genre Festuca en Belgique et dans les régions limitrophes. Bull. Soc. Roy. Bot. Belgique 106: 317–328. BAKSAY L. (1956): Cytotaxonomical studies on the flora of Hungary. Ann. Hist.-Nat. Mus. Natl. Hung., Ser. Nova 7: 321–334. BAKSAY L. (1961): [Report on chromosome number of Festuca pallens]. In: LÖVE Á.&LÖVE D., Chromosome numbers of Central and Northwest European plant species, Opera Bot. 5: 364. BIDAULT M. (1963): Etudes expérimentale de quelques populations de Festuca du groupe ovina et ses conséquences taxonomiques. Bull. Soc. Bot. France 110: 372–380. BIDAULT M. (1964a): Relations entre la polyploidie, les longuers des cellules épidermiques et le diamètre des grains de pollen chez quelques types de Festuca ovina L. s. l. Bull. Soc. Bot. France 111: 111–119. BIDAULT M. (1964b): Sur la présence de chromosomes surnumérarires dans divers taxa du Festuca gr. ovina L. Compt. Rend. Hebd. Séances Acad. Sci. 259: 4779–4782. BIDAULT M. (1968): Essai de taxonomie expérimentale et numérique sur Festuca ovina L. s. l. dans le sud-ouest de la France. Rev. Cytol. Biol. Vég. 31: 217–356 [non vidi, cit. sec. PILS 1981]. BORGEN L.&ELVEN R. (1983): Chromosome numbers of flowering plants from northern Norway and Swalbard. Nordic J. Bot. 3: 301–306. BRANDENBERG B. (1948): On the chromosome numbers of some species of Festuca sect. Ovinae. Ark. Bot. 33B: 1–4. CATALÁN RODRIGUEZ P. & GARCÍA HERRAN M. C. (1990): Números chromosomáticos de plantas occidentales, 568–573. Anales Jard. Bot. Madrid 47: 185–188. CHURCH G.L. (1936): Cytological studies in the Gramineae. Amer. J. Bot. 23: 12–16. DAWE J.C. (1989): Sectional survey of Giesma C-banded karyotypes in Festuca L. (Poaceae: Festuceae): Systematic and evolutionary implications. Diss. Universität Wien, Wien. [non vidi, cit.sec. DOBEŠ &VITEK 2000]. DMITRIEVA S. A. (1985): Chisla khromosom predstavitelei semeistv Lamiaceae i Poaceae flory Belorussii (Chromosome numbers in the representatives of the families Lamiaceae and Poaceae of Belorussian flora). Bot. Zhurn. 70: 128–130. DOBEŠ C.&VITEK E. (2000): Documented chromosome number checklist of Austrian vascular plants. Verlag des Naturhistorischen Museums Wien, Wien. Festuca chromosome number variability 79

EHRENBERGEROVÁ K. (2001): Pøehled taxonomických názorù na èlenìní Festuca ser. Festuca v ÈR a støední Evropì (A rewiew of taxonomic opinions on division of Festuca ser. Festuca in the Czech Republic and Central Europe). Zprávy Èes. Bot. Spoleèn. 35 (2000): 129–144. ENGLMAIER P. (1995): Die tetraploiden Festuca ovina Sippen Österreichs und ihre Stellung innerhalb des europäischen Formenkreises. Carinthia 2: 18–21. FLOVIK K. (1938): Cytological studies of Arctic grasses. Hereditas 24: 265–376. FREDERIKSEN (1981): Festuca vivipara (Poaceae) in the North Atlantic area. Nordic J. Bot. 1: 277–292. FUENTE GARCIA V.&ORTÚÑEZ RUBIO E. (1998): Biosistematica de la sección Festuca del genero Festuca L. (Poaceae) en la Peninsula Iberica. Ediciones de la Universidad Autónoma de Madrid, Madrid. GADELLA T.W.J. & KLIPHUIS E. (1968): Chromosome numbers of flowering plants in the Netherlands 4. Proc. Roy. Netherlands Acad. Sci., Ser. C 71: 168–183. GADELLA T.W.J. & KLIPHUIS E. (1971): Chromosome numbers of flowering plants in the Netherlands 5. Proc. Kon. Ned. Acad. Wetensch. C 74: 335–343. GADELLA T.W.J. & KLIPHUIS E. (1973): Chromosome numbers of flowering plants in the Netherlands 6. Proc. Kon. Ned. Acad. Wetensch. C 76: 303–311. GAGNIEU A. & BRAUN A. (1961): Observations caryologiques sur les Fétuques de la flore d´Alsace. Bull. Soc. Bot. France 106: 142–144. GALLI Z., PENKSZA K., KISS E., BUCHERNA N.&HESZKY L. (2001): Festuca fajok molekuláris taxonómiai vizsgálata a F. ovina csoport RAPD és AP-PCR analízise. (Molecular taxonomic analysis of Festuca species: RAPD and AP-PCR analysis of the F. ovina group). Növénytermelés 50: 375–384. GHORAI A.&SHARMA A. (1981): Chromosome studies in some Festucaceae. J. Indian Bot. Soc. 60: 148–153. HACKEL E. (1882): Monographia Festucarum Europearum. Kassel, Berlin. HADAÈ E.&HAŠKOVÁ V. (1956): Taxonomické poznámky o tatranských rostlinách ve vztahu k jejich cytologii (Taxonomic comments on plants of the Vysoké Tatry Mts. with relation to their cytology). Biologia (Bratislava) 11: 717–723. HARBERD D.J. (1961): [Report on chromosome number of Festuca ovina]. In: SNAYDON R. W. & BRADSHAW A.D., Differential response to calcium within the species Festuca ovina L., New Phytol. 60: 219–234. HOLUB J. (1970): [Report on chromosome number of Festuca pallens]. In: HOLUB J., MÌSÍÈEK J. & JAVÙRKOVÁ V., Annotated chromosome counts of Czechoslovak plants (1–15), Folia Geobot. Phytotax. 5: 339–368. HORÁNSZKY A., JANKÓ B.&VIDA G. (1971): Zur biosystematik der Festuca ovina – Gruppe in Ungarn. Ann. Univ. Sci. Budapest. Rolando Eötvös, Sect. Biol. 13: 95–101. HORÁNSZKY A., JANKÓ B. & VIDA G. (1972): Problems in biosystematic studies of Hungarian Festuca ovina (sensu lato) representatives. Symp. Biol. Hung. 12: 177–182. HUFF D. R. & PALAZZO A. J. (1998): Fine fescue determination by laser flow cytometry. Crop. Sci. (Madison) 38: 445–450. HUON A. (1968): Essai de synthése biogéographique des populations de Festuca dans l’Ouest, le Sud-Ouest de la France et sur le littoral basque espagnol. Compt. Rend. Hebd. Séances Acad. Sci., Sér. D 267: 1570–1573. HUON A. (1970): Les fétuques de l’Ouest de la France. Ph. D. thesis University of Rennes, Rennes. JANCHEN E. (1963): Catalogus florae Austriae. Pteridophyten und Anthophyten (Farne und Blütenpflanzen). Ergänzungsheft 1. Springer-Verlag, Wien. JENKIN T.J. (1955a): Interspecific and intergeneric hybrids in herbage grasses. 12. Festuca capillata in crosses. J. Genet. 53: 105–111. JENKIN T.J. (1955b): Interspecific and intergeneric hybrids in herbage grasses. 13. The breeding affinities of Festuca heterophylla. J. Genet. 53: 112–117. JENKIN T.J. (1955c): Interspecific and intergeneric hybrides in herbage grasses. 14. The breeding afinities of Festuca ovina. J. Genet. 53: 118–124. KERGUÉLEN M. (1975): Les Gramineae de la flore française. Essai de mise au point taxonomique et nomenclaturale. Lejeunia, Ser. Nova 75: 1–343. KERGUÉLEN M. (1983): Les Graminées de France au travers de “Flora Europea” et de la “Flore” du C.N.R.S. Lejeunia, Ser. Nova 110: 1–79. KERGUÉLEN M. & PLONKA F. (1989): Les Festuca de la Flore de la France (Corse comprise). Bull. Soc. Bot. Centre-Ouest, Ser. Nova 10: 1–368. 80 P. Šmarda & K. Kočí

KNABEN G.&ENGELSKJON T. (1967): Chromosome numbers of Scandinavian arctic-alpine plant species. 2. Acta Boreal., A. 21: 1–57. KNABEN G. & ENGELSKJON T. (1979): [Report on chromosome number of Festuca ovina]. In: ENGELSKJON T., Chromosome numbers in vascular plants from Norway, including Swalbard, Opera Bot. 52: 1–38. KOZHUHAROV S.I. & PETROVA A.V. (1991): Chromosome numbers of Bulgarian angiosperms. Fitologiya 39: 72–77. LEWITSKY G.A. & KUZMINA N.E. (1927): Kariologicheskii metod v sistematike i filogenetike roda Festuca (podr. Eu-Festuca) (Karyological investigations on the systematics and phylogenetics of the genus Festuca (subg. Eu-Festuca)). Trudy Prikl. Bot. 13: 3–36. LIPTÁKOVÁ G. (1963): Rozbor populácií Festuca supina SCHUR vo Vysokých Tatrách (Analysis of populations of Festuca supina SCHUR in the Vysoké Tatry Mts.). Diploma thesis, Komenský University, Bratislava [non vidi, cit. sec. MÁJOVSKÝ 1970]. LITARDIÈRE R. de (1923): Contribution l étude des Festuca (subgen. Eu-Festuca) du nord de la France (Nord, Pas-de-Calais) et de Belgique. Bull. Soc. Roy. Bot. Belgique 55: 92–133, 149–154. LÖVE Á. &LÖVE D. (1956): Cytotaxonomical conspectus of the Icelandic flora. Acta Horti Gothob. 20: 65–291. MÁJOVSKÝ J.&UHRÍKOVÁ A. (1985): Karyotaxonomisches Studium einiger Arten der Slowakischen Flora 5. Acta Fac. Rerum Nat. Univ. Comen., Bot. 32: 59–65. MÁJOVSKÝ J.&VÁCHOVÁ M. (1986): Karyological study of the Slovak flora 13. Acta Fac. Rerum Nat. Univ. Comen., Bot. 33: 63–67. MÁJOVSKÝ J. (1962): Adnotationes ad species gen. – Festuca florae Slovakiae additamentum 1. Acta Fac. Rerum Nat. Univ. Comen., Bot. 7: 317–335. MÁJOVSKÝ J. et al. (1970): Index of chromosome numbers of Slovakian flora (Part 1). Acta Fac. Rerum Nat. Univ. Comen., Bot. 16: 1–26. MALIK C.P. (1967): Hybridization of Festuca species. Canad. J. Bot. 45: 1025–1029. MALIK C.P. & THOMAS P.T. (1966): Karyotypic studies in some Lolium and Festuca species. Caryologia (Firenze) 19: 167–196. MARKGRAF-DANNENBERG I. (1980): Festuca L. In: TUTIN T.G., HEYWOOD V.H. et al. (eds.), Flora europaea 5, Cambridge University Press, Cambridge, pp. 125–153. MIZIANTY M.&PAWLUS M. (1984): Chromosome numbers of some Polish species from the genus Festuca, group ovina (part 1). Fragm. Florist. Geobot. 28(1982): 363–369. MURÍN A. & MÁJOVSKÝ J. (1978): [Report on chromosome number of Festuca versicolor]. In: LÖVE Á., IOPB Chromosome number reports 61, Taxon 27: 376. MURÍN A.&PACLOVÁ L. (1979): [Reports on chromosome numbers of Festuca airoides-supina complex]. In: LÖVE Á., IOPB Chromosome numbers reports 64, Taxon 28: 403–405. NAKAJIMA G. (1930): On the chromosome number in some agricultural plants. Jap. J. Genet. 5: 172–176. NAKAJIMA G. (1931): The chromosome numbers in cultivated and wild Angiosperms. Bot. Mag. (Tokyo) 45: 7–11. ÖNDER A.&JONG K. (1977): The occurrence of B chromosomes in Festuca ovina L. sensu lato from Scotland. Watsonia 11: 327–330. PARREAUX M. J. (1971): Étude du nombre chromosomique de quelques espece xérophiles du Jura. Actes Colloq. Fl. Veg. Chaines Alpine Jurassiene. Ann. Litt. Univ. Besançon 125, Les Belles Lettres 95: 113–126. PASHUK K. T. (1987): Khromosomnye chisla vidov subal’piiskogo poyasa Cherngory (Ukrainskie Karpaty) (Chromosome numbers in species of subalpine belt of Chernogora (Ukrainian Carpatians)). Bot. Zhurn. 72: 1069–1074. PAWLUS M. (1985): Systematyka i rozmieszczenie gatunków grupy Festuca ovina L. w Polsce – Taxonomy and distribution of the Festuca ovina group in Poland. Fragm. Florist. Geobot. 29(1983): 219–295. PAZOURKOVÁ Z.&PAZOUREK J. (1960): Rychlé metody botanické mikrotechniky (Fast methods of botanical microtechnique). SZN, Praha. PILS G. (1980): Beiträge zur Karyologie,Verbreitung und Systematik der Gattung Festuca in den Ostalpenländern. Diss. Phil., Univ. Wien, Wien. PILS G. (1981): Karyologie und Verbreitung von Festuca pallens HOST in Österreich. Linzer Biol. Beitr. 13: 231–241. PILS G. (1985): Das Festuca vivipara-Problem in den Alpen. Pl. Syst. Evol. 149: 19–45. Festuca chromosome number variability 81

PIOTROWICZ M. (1950): [Reports on chromosome numbers of Festuca airoides-supina complex]. In: SKALIÑSKA M., Studies in chromosome numbers of Polish angiosperms, Acta Soc. Bot. Poloniae 20: 45–68. PIOTROWICZ M. (1954): Badania cytologiczne i anatomiczne nad zyworodnymi formami z grupy Festuca ovina L. (Cytological and anatomical studies in viviparous biotypes of Festuca ovina L.). Acta Soc. Bot. Poloniae 23: 43–58. PÓLYA L. (1949): Chromosome numbers of some Hungarian plants. Acta Geobot. Hung. 6: 124–137. PORTAL R. (1999): Festuca de France. Author, Le Puy-en-Velay. PROBATOVA N.S. & SOKOLOVSKAYA A.P. (1978): Khromosomnye chisla i taksonomiya nekotorykh zlakov Kavkaza (Chromosome numbers and taxonomy of some grasses in Caucasus). Bot. Zhurn. 63: 1121–1131. ROHWEDER H. (1937): Versuch zur Erfassung der mengenmässigen Bedeckung des Darss und Zingst mit polyploiden Pflanzen. Ein Beitrag zur Bedeutung der Polyploidie bei der Eroberung neuer Lebensräume. Planta 27: 501–549. SALVESEN P.H. (1979): [Reports on chromosome numbers of Festuca ovina, Festuca filiformis]. In: ENGELSKJON T., Chromosome numbers in vascular plants from Norway, including Swalbard, Opera Bot. 52: 1–38. SALVESEN P.H. (1986): Festuca vivipara in southern Norway, infraspecific differentiation and systematic affinities. Symb. Bot. Upsal. 27: 155–167. SETHI B.L. (1931): A study of some species and types of Phleum, Phalaris, and Festuca with regard to their chromosome numbers and breeding properties. Ph.D. thesis, University of Wales, Wales [non vidi, cit. sec. JENKIN 1955a]. SCHWARZOVÁ T. (1967): Beitrag zur Lösung taxonomischer Probleme der Festuca vaginata W.K. und Festuca psammophila HACK. Acta Fac. Rerum Nat. Univ. Comen., Bot. 14: 381–414. SOKOLOVSKAYA AP.&STRELKOVA O.S. (1940): Karyological investigation of the alpine flora on the main Caucasus range and the problem of geographical distribution of polyploids. Dokl. Akad. Nauk S.S.S.R., Ser. Nova 29: 415–418 SOKOLOVSKAYA A.P. & STRELKOVA O.S. (1948): Geograficheskoye raspredelenie poliploidov 3. Issledovanie flory alpiiskoi oblasti tsentralnogo kavkazskovo khrebta (Geographical distribution of polyploids 3. Observation of alpine flora of the Central Caucasus mountain range). Uchen. Zap. Leningradsk. Gosud. Univ., Ser. Biol Nauk. 66: 195–216. SOKOLOVSKAYA A.P. (1970): Kariologicheskoe issledovanie flory Basseina r. Usy (Komi ASSR) (Karyological investigation of the flora of the Usa river basin (Komi ASSR)). Vestn. Leningradsk. Univ., Ser. Biol. 2, 15: 106–114. SOÓ R. (1963): Species et combinationes novae florae Europae praecipue Hungariae 1. Acta Bot. Acad. Sci. Hung. 9: 419–431. STEFANIK V.I., YAKIMCHUK N.K. & VAINAGII V.I. (1989): Karyologicheskaya kharakteristika nekotorykh vidov semeistva Poaceae Ukrainskikh Karpat (Karyological characteristics of some species of the Poaceae family from the Ukrainian Carpathians). In: Thesizy 2. Symp. Plant Karyology, Novosibirsk, pp. 37–39. THOMAS P.T. (1939): [Report on chromosome number of Festuca filiformis]. In: MAUDE P.F., The Merton catalogue, A list of the chromosome numerals of species of British flowering plants, New Phytol. 38: 1–31. TOMAN M. (1974): Populationsanalyse der Sammelart Festuca cinerea in Böhmen. Feddes Repert. 85: 533–574. TOMAN M. (1990): Ein weiterer Beitrag zur Kenntnis der Populationsstruktur und zur Taxonomie von Festuca sect. Festuca in Böhmen. Feddes Repert. 101: 1–40. TRACEY R. (1974): Cytosystematische Untersuchungen an der Festuca ovina-Gruppe im Raum von Wien (vorläufige Mitteilung). Hausarb. Biol. Umweltk., Inst. Bot. Univ. Wien, Wien. TRACEY R. (1980): Beiträge zur Karyologie, Verbreitung und Systematik des Festuca ovina-Formenkreises im Osten Österreichs. Diss. Phil., Univ. Wien, Wien. TURESSON G. (1930): Studien über Festuca ovina L. 2. Chromosomenzahl und Viviparie. Hereditas 13: 177–184. TURESSON G. (1938): Chromosome stability in Linnean species. Ann. Roy. Agric. Coll. Sweden 5: 405–416. TVERETINOVA V. V. (1977): [Reports on chromosome numbers of Festuca ovina, Festuca filiformis, F. airoides-supina complex]. In: PROKUDIN YU.N., VOVK A.G., PETROVA O.A., ERMOLENKO E.D. & VERNICHENKO YU.V. (1977): Zlaki Ukrainy (Grasses of the Ukraine), Naukova Dumka, Kiev. 82 P. Šmarda & K. Kočí

UHRÍKOVÁ A. & DÚBRAVCOVÁ Z. (1997): The chromosome numbers of some selected plant species of flora in Slovakia. Oecol. Montana 6: 1–3. UHRÍKOVÁ A.&MÁJOVSKÝ J. (1978): [Report on chromosome number of Festuca pallens]. In: LÖVE Á., IOPB chromosome numbers reports 61, Taxon 27: 378–379. UHRÍKOVÁ A. (1974): [Report on chromosome number of Festuca pallens]. In: MÁJOVSKÝ J. et al. (1974): Index of chromosome numbers of Slovakian flora (Part 3), Acta Fac. Rerum Nat. Univ. Comen., Bot. 22: 1–20. UHRÍKOVÁ A. et al. (1983): [Reports on chromosome numbers of Festuca airoides-supina complex]. In: LÖVE Á., IOPB Chromosome numbers reports 80, Taxon 32: 507. UOTILA P.&PELLINEN K. (1985): Chromosome numbers in vascular plants from Finland. Acta Bot. Fenn. 130: 1–37. VETTER J. (1922): Neue Pflanzenfunde aus Niederösterreich und Tirol. Verh. Zool.-Bot. Ges. Österreich 72: 110–121. WATSON P.J. (1954): Quoted report of British ecological society meeting Edinburgh, 1953. J. Ecol. 42: 572. WATSON P.J. (1958): The distribution in Britain of diploid and tetraploid races within the Festuca ovina group. New Phytol. 57: 11–18. WILKINSON M.J. & STACE C.A. (1991): A new taxonomic treatment of Festuca ovina L. aggregate (Poaceae)in the British Isles. Bot. J. Linn. Soc. 106: 347–397. ZIELONKOWSKI W. (1973): Wildgrasfluren der Umgebung Regensburgs. Vegetationskundliche Untersuchungen an einem Beitrag zur Landespflege. Hoppea 31: 0–181.

Received 17 May 2002, revision received 14 October 2002, accepted 4 November 2002 Festuca chromosome number variability 83

APPENDIX 1

List of localities of the karyologically investigated plants. Country of sample origin is indicated at the beginning of the locality description by the following abbreviations: (A – Austria, Cz – Czech Republic, Fr – France, Ge – Germany, It – Italy, Lt – Latvia, Sk – Slovakia). The name just before the colon represents the nearest town/village. The cultivation numbers of plants are given after the collector’s name. Observed chromosome number is presented in the right column.

F. ovina group (Festuca L. ser. Festuca)2n

Festuca ovina L. (cf. Festuca ´duernsteinensis J. VETTER) Cz; Podyjí National Park, Èíz¡ov: Hardeggská vyhlídka view, 2.8 km SSW of the village – cleft on the gneiss rock edge, small colony, 360 m a.s.l., 48°51¢22²N, 15°51¢36²E, 26.5.1999, coll. P. ŠMARDA (F58) 28 Cz; Podyjí National Park, Hnanice: above the Dyje river, Nad papírnou elevation point, 2 km NNW of the church in the village – W exp. rocky slope (composed of rocky blocks), common, 285 m a.s.l., 48°48¢58²N, 15°58¢58²E, 27.5.1999, coll. P. ŠMARDA (F64/2) 28 Cz; Lukov (near Znojmo): Sloní høbet elevation point, 1.5 km E of Lukovská horka (420.7 m) elevation point – rockeries on the S exp. siliceous slope edge, small colony, 340 m a.s.l., 48°51¢39²N, 15°52¢40²E, 26.5.1999, coll. P. ŠMARDA (F60) 28 Cz; Tøebíè-Hrádek: 40 m NE of the footbridge from the town centre (blue marked hiking trail) – sunny SSW exp. siliceous slopes above the Jihlava river, this type only in scattered tufts (compared to the diploid F. pallens, which dominates), 405 m a.s.l., 49°13¢01²N, 15°53¢02²E, 26.6.1999, coll. P. ŠMARDA (F1021, F1022, F1023) 28

Festuca ovina subsp. guestphalica (RCHB.) K. RICHT. Cz; Dešov: 3.0 km SW of the church in the village, above the road and the Želetavka river, near Koberùv mlýn mill – rocky siliceous slopes with pine, abundant, 400 m a.s.l., 48°57¢44²N, 15°40¢52²E, 10.9.1999 coll. P. ŠMARDA (F1033) 28 Cz; Horní Kounice: 1 km N of the church in the village, on the right bank of the Rokytná river, above Valùv mlýn mill – rocky outcrop in oak forest, near the edge of the slope, abundant, 300 m a.s.l., 49°02¢24²N, 16°09¢02²E, 29.8.1999, coll. P. ŠMARDA (F1026) 28 Cz; Pluz¡ná (near Mladá Boleslav): Na borovém elevation point, 800 m SW of Panská horka (294.4 m) elevation point, near an electric pole – sunny pine wood margin, on the edge of a small slope on sandstone, scattered, 280 m a.s.l., 50°29¢01²N, 14°48¢28²E, 15.6.1999, coll. P. ŠMARDA (F99, F1000) 28 Cz; Tavíkovice: 600 m SW of “386.2 m” elevation point, edge of the road through the wood to Vilímùv mlýn mill (on the right bank of the Rokytná river) – siliceous rocky slope, in places, 315 m a.s.l., 49°01¢49²N, 16°05¢32²E, 29.8.1999, coll. P. ŠMARDA (F1028) 28 Cz; Podyjí National Park, Èíz¡ov: Hardeggská vyhlídka view, 2.8 km SSW of the village – cleft on the gneiss rock edge, small colony, 360 m a.s.l., 48°51¢22²N, 15°51¢36²E, 26.5.1999, coll. P. ŠMARDA (F59) 28 Cz; Brno-Kohoutovice: 1.5 km NE of Kamenný kopec (378.6 m) hill, behind the Myslivna hotel – – acidophilous oak forest on NE exp. siliceous slope, common, 350 m a.s.l., 49°11¢22²N, 16°33¢15²E, 1997, coll. K. KOÈÍ (FO39) 28 Cz; Bruntál: 650 m NE of Uhlíøský vrch hill – in linden avenue on the way to a church, small colony, 560 m a.s.l., 49º58¢38²N, 17º26¢43²E, 1997, coll. K. KOÈÍ (FO38) 28 Cz; Dukovany: 300 m SW from Dukovanská pøehrada dam, 2.4 km NNW of the centre of the village – NW exp. granulite slope, common, 320 m a.s.l., 49º05¢47²N, 16º11¢52²E, 1996, coll. V. ØEHOREK (FO22) 28 Cz; Dukovany: Dukovanský mlýn Nature Reserve, 2.4 km NNW of the church in the village – acidophilous oak forest on N exp. serpentine slope over the dam, abundant, 350 m a.s.l., 49º05¢57²N, 16º10¢38²E, 1995 coll. V. GRULICH (FO12) 28 Cz; Dukovany: Dukovanský mlýn Nature Reserve, 2.5 km NNW of the church in the village – acidophilous oak forest edge on NW exp. granulite slope over the dam, abundant, 350 m a.s.l., 49º05¢46²N, 16º10¢15²E, 1995, coll. V. GRULICH (FO21) 28 84 P. Šmarda & K. Kočí

Cz; Dukovany: Dukovanský mlýn Nature Reserve, 2.6 km NNW of the church in the village – serpentine pine forest (Thlaspio montani-Pinetum) in a stand of Sesleria albicans, abundant, 360 m a.s.l., 49º05¢54²N, 16º10¢25²E, 1995, coll. M. CHYTRÝ (FO13, FO14) 28 Cz; Hodonín: Hovoranská cesta forest track, “191.2” elevation point, 4.3 km NNW of the railway station in the town – thermophilous oak forest on sand, abundant, 190 m a.s.l., 48º53¢28²N, 17º06¢03²E, 1995 coll. K. KOÈÍ &V.GRULICH (FO04) 28 Cz; Hodonín: Èervené domky crossing, 1.9 km NW of the railway station in the town – thermophilous oak forest on sand, abundant, 175 m a.s.l., 48º51¢59²N, 17º06¢05²E, 1995, coll. K. KOÈÍ &V.GRULICH (FO08) 28 Cz; Hodonín: between Èerné blato and Svatý Jan elevation points, on Holanova alej forest track, 2.6 km NW of the railway station in the town – thermophilous oak forest on sand, abundant, 175 m a.s.l., 48º52¢14²N, 17º05¢40²E, 1995, coll. K. KOÈÍ &V.GRULICH (FO05) 28 Cz; Hodonín: crossroad by the small cross, Svatý Jan, 3.5 km NW of the railway station in the town – thermophilous oak forest on sand, abundant, 170 m a.s.l., 48º52¢18²N, 17º04¢48²E, 1995, coll. K. KOÈÍ &V.GRULICH (FO01) 28 Cz; Jamolice: above Jihlava river, near the forest track to the Templštejn ruin, 2.7 km NNW of the church in the village – ENE exp. granulite slope, pine forest, abundant, 340 m a.s.l., 49º05¢45²N, 16º14¢29²E, 1996, coll. K. KOÈÍ &V.GRULICH (FO34) 28 Cz; Jamolice: Templštejn ruin, 2 km NNW of the church in the village – pine forest on serpentine, abundant, 385 m a.s.l., 49º05¢26²N, 16º14¢47²E, 1996, coll. K. KOÈÍ &V.GRULICH (FO33) 28 Cz; Lhánice (near Mohelno): 1 km SSW of the centre of the village, near Mohelnièka Nature Reserve – pine forest on serpentine rocky slope, abundant, 290 m a.s.l., 49º06¢00²N, 16º12¢58²E, 1996, coll. M. CHYTRÝ (FO30) 28 Cz; Mohelno: slopes near the road on the right bank of the Jihlava river, near Mohelenský most bridge, 1.7 km S of the church in the village – NE exp. granulite slope, pine forest, abundant, 295 m a.s.l., 49º05¢56²N, 16º11¢37²E, 1996, coll. K. KOÈÍ &V.GRULICH (FO31, FO32) 28 Cz; Podyjí National Park, Popice (near Znojmo): Sealsfieldùv kámen view point, 2.2 km NW of the church in the village – NW exp. siliceous slope above Dyje river, acidophilous oak forest, abundant, 370 m a.s.l., 48º50¢12²N, 15º59¢40²E, 1995, coll. K. KOÈÍ (FO09) 28 Cz; Raškov: Modøínový vrch Nature Reserve, on the crest of Modøínový vrch (625.3 m) hill, 1.3 km NW of the church in the village – W exp. serpentine rocks, abundant, 620 m a.s.l., 50º02¢37²N, 16º53¢26²E, 1996, coll. K. KOÈÍ &M.KOÈÍ (FO36) 28 Cz; Svojanov: near weekend cottages 1.3 km E of the church in the village – SE exp. grassy ridge, some tufts, 540 m a.s.l., 49º37¢31²N, 16º23¢33²E, 1996, coll. K. KOÈÍ &M.KOÈÍ (FO35) 28 Cz; Znojmo: Kraví hora hill on the SSW town periphery – heath on N exp. granite slopes above Dyje river, abundant, 260 m a.s.l., 48º50¢51²N, 16º02¢16²E, 1995, coll. V. GRULICH (FO10, FO11) 28 Sk; Záhorská níina lowland, Šišulákovci: 1 km NE of the village – sands of sunny S exp. pine wood margin, scattered, 210 m a.s.l., 48°34¢64²N, 17°08¢93²E, 26.6.2000, coll. P. ŠMARDA &T.VYMYSLICKÝ (F1184) 28

Festuca ovina L. subsp. ovina Cz; Hodonínská doubrava woodland, Mutìnice: 3.8 km SE of the railway station in the village, 100 m SE of the crossroad of Topolová alej country road and the road – open thermophilous oak forest on sand, abundant, 170 m a.s.l., 48º53¢05²N, 17º05¢01²E, 1995, coll. K. KOÈÍ &V.GRULICH (FO02) 14 Cz; Holubov: Holubovské hadce Nature Reserve, 1.2 km E of the railway station in the village – S exp. serpentine pine forest (Asplenio cuneifolii-Pinetum) slope dominated by Festuca ovina and Brachypodium pinnatum, abundant, 480 m a.s.l., 48º55¢34²N, 14º20¢27²E, 1996, coll. M. CHYTRÝ (FO25) 14 Cz; Lovosice: Lovoš (569.7 m) hill, WNW of the town – thermophilous oak forest edge on S exp. basalt rocky slope, abundant, 520 m a.s.l., 50º31¢37’N, 14º01¢01²E, 1995, coll. V. GRULICH (FO16) 14 Cz; Milešov: S slope of Milešovka (836.6 m) hill, 1.5 km N of the church in the village – acidophilous oak forest on phonolite, abundant, 750 m a.s.l., 50º33¢08²N, 13º55¢51²E, 1995, coll. M. CHYTRÝ (FO15) 14 Festuca chromosome number variability 85

Cz; Miletínky (SE of Prachatice): Borek hill on the W village periphery – N exp. gentle slope of serpentine pine forest (Asplenio cuneifolii-Pinetum) in stand dominated by Molinia coerulea, abundant, 710 m a.s.l., 48º55¢22²N, 14º05¢00²E, 1996, coll. M. CHYTRÝ (FO24) 14 Cz; Prácheò (near Horaïovice): Prácheò Nature Reserve, 400mWofthecentre of the village – W exp. slope above the Otava river, siliceous rocky outcrops in a mixed oak-linden forest, in places, 480 m a.s.l., 49º19¢00²N, 13º40¢53²E, 1996, coll. M. CHYTRÝ (FO27) 14 Cz; Rený Újezd (near Lovosice): Boreè Nature Reserve on SW village periphery – NW exp. phonolite slope, acidophilous oak forest edge, abundant, 420 m a.s.l., 50º30¢52²N, 13º59¢14²E, 1995, coll. V. GRULICH (FO17) 14 Cz; the protected landscape area Blanský les, Lazec (NW of Èeský Krumlov): Lazecký vrch hill, 300 m NE of the centre of the village – W exp. marble slope, secondary pine forest dominated by Brachypodium pinnatum, scattered, 650 m a.s.l., 48º50¢16²N, 14º16¢17²E, 1996, coll. M. CHYTRÝ (FO26) 14 Cz; Holubov: Boøinka Nature Reserve, 1.05 km WNW of the railway station in the village – serpentine flat with pine forest (Asplenio cuneifolii-Pinetum), very abundant, dominating in the vegetation, 500 m a.s.l., 48º53¢42²N, 14º18¢37²E, 1996, coll. M. CHYTRÝ (FO29) 14+5B Lt; Gaujas National Park, Sigulda: 2 km NW of the centre of the village, Gauja river valley – acidophilous oak forest on SE exp. sandstone rocky slope, abundant, 150 m a.s.l., 57º10¢02²N, 24º51¢00²E, 1995, coll. V. GRULICH (FO20) 14

F. pallens group (Festuca ser. Psammophilae PAWLUS)

Festuca “´”belensis M. TOMAN (“F. pallens ´ F. psammophila”) Cz; Bìlá pod Bezdìzem-Páterov: 650 m NE of the railway station Bìlá pod Bezdìzem, between houses number 817 and 818 or 1008, above the local road (type locality) – small sandstone steppe slope, small colony, 260 m a.s.l., 50°29¢31²N, 14°50¢36²E, 14.6.1999, coll. P. ŠMARDA (F96, F97) 14

Festuca pallens HOST Oberösterreich-Niederösterreich type A; Retz: Parapluieberg elevation point, NW of the town – rocky outcrops on the top of the steppe hillock, common, 370 m a.s.l., 48°45¢36²N, 15°56¢02²E, 27.5.1999, coll. K. KOÈÍ (F1032) 14 A; Retz: top crest of Gotllisch hill, SW of the town, common, 310 m a.s.l., 48°45¢64²N, 15°56¢33²E, 27.5.1999, coll. K. KOÈÍ (F1031) 14 Cz; Bìlá pod Bezdìzem: 650 m SW of Panská horka (294.4 m) elevation point, above the road from Bìlá pod Bezdìzem to Pluz¡ná, 280 m from the railroad crossing – small bare sandstone slope, small colony, 285 m a.s.l., 50°29¢11²N, 14°48¢24²E, 15.6.1999, coll. P. ŠMARDA (F1001) 14 Cz; Bezdìz: 50 m SE of Bezdìz (603.5 m) castle, near the red marked hiking trail to the castle – basalt rocky slope, small colony, 560 m a.s.l., 50°32¢18²N, 14°43¢17²E, 16.6.1999, coll. P. ŠMARDA (F1005) 14 Cz; Bítov: 1.1 km WSW of the church in the village, below the Cornštejn ruin – S exp. siliceous rockeries on the slope above the road, small colony, 390 m a.s.l., 48°56¢02²N, 15°42¢54²E, 10.9.1999, coll. P. ŠMARDA (F1034) 14 Cz; Boè (near Karlovy Vary): Èedièová z¡íla Boè Nature Reserve – small basalt rocky terraces in the lower part of the reserve, common, 400 m a.s.l., 50°20¢07²N, 13°03¢56²E, 24.10.1999, coll. J. VOZANKA (F1056) 14 Cz; Boršov nad Vltavou: 0.6 km WSW of the church in the village – siliceous rockeries on the edge of the quarry in the Vltava river valley, common, 430 m a.s.l., 48°55¢07²N, 14°25¢36²E, 20.7.1999 coll. V. GRULICH (F1051) 14 Cz; Èeské Støedohoøí hills, Povrly: Kozí vrch Nature Reserve – SW exp. slopes of an andesite hill, common, 200 m a.s.l., 50°40¢35²N, 14°07¢56²E, 22.6.1999, coll. O. ROTREKLOVÁ (F1019) 14 Cz; Èeský Krumlov: 500 m SSE of the railway station, above the urban clearway to Èeské Budìjovice – limestone rock in the town, common, 500 m a.s.l., 48°49¢05²N, 14°19¢13²E, 22.7.1999, coll. V. GRULICH (F1052) 14 Cz; Davle: 400 m NE of the railway station, directly beside the railway in front of the railway tunnel – siliceous rocky slope, abundant, 210 m a.s.l., 49°53¢26²N, 14°24¢15²E, 20.6.1999, coll. P. ŠMARDA (F1014) 14 86 P. Šmarda & K. Kočí

Cz; Dìkovka: 700mEofthechapel in the village, E part of Plešivec (477.2 m) hill – basalt rocky terraces, abundant, 450 m a.s.l., 50°29¢26²N, 13°56¢24²E, 10.10.1999, coll. P. ŠMARDA (F1046) 14 Cz; Dyje (near Znojmo): Dyjské svahy Nature Reserve, 1.1 km SSE of the church in the village, above the dirt track along the Dyje river – siliceous rocky outcrops, abundant, 210 m a.s.l., 48°50¢17²N, 16°07¢21²E, 25.5.1999, coll. P. ŠMARDA (F51) 14 Cz; Podyjí National Park, Havraníky: Havranické vøesovištì Nature Reserve, 0.5 km NNE of Staré vinice elevation point – S exp. small rise on the heath, on deeper gravel soil together with Pinus sylvestris, Cerasus avium, small colony, 325 m a.s.l., 48°48¢49²N, 15°59¢33²E, 27.5.1999, coll. P. ŠMARDA (F63) 14 Cz; Podyjí National Park, Havraníky: Havranické vøesovištì Nature Reserve, Staré vinice elevation point, 0.9 km W of the church in the village – rocky bank of a footpath on the heathland, rare tufts, 325 m a.s.l., 48°48¢42²N, 15°59¢45²E, 26.5.1999, coll. M. KOÈÍ &P.ŠMARDA (F61) 14 Cz; Podyjí National Park, Hnanice: above the Dyje river, Nad papírnou elevation point, 2 km NNW of the church in the village – W exp. rocky slope (rocky blocks), common, 285 m a.s.l., 48°48¢58²N, 15°58¢58²E, 27.5.1999, coll. P. ŠMARDA (F64) 14 Cz; Horní Kounice: 1.1 km N of the church in the village, on the left bank of Rokytná river, opposite the Valùv mlýn mill – siliceous rocks, common, 305 m a.s.l., 49°02¢28²N, 16°09¢05²E, 29.8.1999 coll. P. ŠMARDA (F1027) 14 Cz; Hradiško-Brunšov (opposite Štìchovice): 400mEofthebridge over the Vltava river, in the quarry near the road – rocky slope on SE exp. siliceous rock, cover 60%–70%, 210 m a.s.l., 49°51¢15²N, 14°24¢25²E, 20.6.1999, coll. P. ŠMARDA (F1015) 14 Cz; the protected landscape area Èeský Kras, Srbsko: 1.3 km SE of the church in the village – steep limestone slopes above the road, abundant, 230 m a.s.l., 49°55¢57²N, 14°09¢03²E, 21.6.1999, coll. O. ROTREKLOVÁ (F1018) 14 Cz; the protected landscape area Èeský Kras, Srbsko: 900 m SSE of the church in the village – steep limestone slopes above the road, abundant, 230 m a.s.l., 49°55¢55²N, 14°08¢37²E, 21.6.1999, coll. O. ROTREKLOVÁ (F1017) 14 Cz; Choceò: Peliny Nature Reserve, 1.35 km NE of the railway station in the town, W part of the reserve – at the top of argillite rocks, in places (on chimenies), 330 m a.s.l., 50°00¢13²N, 16°14¢04²E, 14.10.1999 coll. P. FILIPPOV (F1053) 14 Cz; Chvatìruby (near Kralupy nad Vltavou): 450 m SE of the church in the village, quarry edge on the Vltava river bank – siliceous rocky slope, common, 210 m a.s.l., 50°14¢14²N, 14°20¢33²E, 19.6.1999, coll. P. ŠMARDA (F1008) 14 Cz; Ivanèice: 450 m SSE of Réna elevation point – siliceous outcrop above the railway, common, 230 m a.s.l., 49°05¢12²N, 16°23¢35²E, 24.5.1999, coll. P. ŠMARDA (F50) 14 Cz; Josefov: Býèí skála elevation point – S exp. slope on top of a vertical limestone cliff, rich colony, 350 m a.s.l., 49°18¢30²N, 16°41¢45²E, 23.4.1998, coll. P. ŠMARDA (F3, F2) 14 Cz; Josefov: Krkavèí skála elevation point – limestone rocky outcrop, dense colony, 360 m a.s.l., 49°18¢33²N, 16°41¢32²E, 23.4.1998, coll. P. ŠMARDA (F5, F6) 14 Cz; Kopøivnice: Raškùv kámen elevation point – limestone rock, common, 480 m a.s.l., 49°34¢58²N, 18°09¢43²E, 20.6.1999, coll. J. DANIHELKA (F1006) 14 Cz; Libèice nad Vltavou: NW edge of the Vetrušická rokle Nature Reserve, 600 m SE of the research institute – overgrown rocky (spilite, schist) slopes, common, 220 m a.s.l., 50°11¢48²N, 14°22¢36²E, 19.6.1999, coll. P. ŠMARDA (F1010) 14 Cz; Malhostovice (near Brno): Malhostovická pecka Nature Reserve – cleft of limestone boulder (± 2 m high), in front of a cave at the foot of the slope in S part of the reserve, totally in Aesculus hippocastanum shadow, some individuals, 310 m a.s.l., 49°19¢31²N, 16°29¢42²E, 19.5.1999, coll. P. ŠMARDA (F41) 14 Cz; Malhostovice (near Brno): Malhostovická pecka Nature Reserve – S exp. limestone rocky faces, abundant, 320 m a.s.l., 49°19¢32²N, 16°29¢42²E, 19.5.1999, coll. P. ŠMARDA (F42 – foot of the slopes, at anthesis before all the others, F43 – steep part of the slopes) 14 Cz; Mladá Boleslav-Debø: Radouè Nature Reserve, 1.15 km SSE of the church in the town part, S part of the reserve – argillite outcrops, small colony, 250 m a.s.l., 50°25¢57²N, 14°53¢53²E, 14.6.1999, coll. P. ŠMARDA (F95) 14 Festuca chromosome number variability 87

Cz; Moravské Bránice: above the chapel in the village, 1.5 km NNW of Šibenièní vrch (296.6 m) elevation point – siliceous SSW exp. rockery, robust tufts in competition with a dense stand of Bromus sterilis (90% cover E1) and Robinia pseudacacia (30% cover E3), small colony, 215 m a.s.l., 49°04¢45²N, 16°26¢27²E, 24.5.1999, coll. P. ŠMARDA (F48) 14 Cz; Moravský Krumlov: Pod Floriánkem Nature Reserve – NW exp. basic conglomerate rocky slopes, abundant, 290 m a.s.l., 49°02¢50²N, 16°19¢16²E, 24.5.1998, coll. P. ŠMARDA (F25) 14 Cz; Moravský Krumlov: Pod Floriánkem Nature Reserve, under st. Florián’s chapel – SW exp. basic conglomerate rocky slopes, abundant, 285 m a.s.l., 49°03¢00²N, 16°19¢10²E, 24.5.1998, coll. P. ŠMARDA (F26) 14 Cz; Neveklov-Nebøich: 650 m ESE of the beginning of the bridge to the village, on the right bank of the Vltava river (by green trail mark) – at the top of a massive siliceous rocky slopes, abundant, 350 m a.s.l., 49°45¢60²N, 14°25¢20²E, 21.6.1999, coll. P. ŠMARDA (F1016) 14 Cz; Nové Bránice: 300 m NW of Šibenièní vrch (296.6 m) elevation point, above the road opposite the quarry – siliceous rocky promontory, small colony, 215 m a.s.l., 49°04¢10²N, 16°27¢04²E, 24.5.1999, coll. P. ŠMARDA (F49) 14 Cz; Rokytná (near Moravský Krumlov): Tábor Nature Reserve – slope on the top of a basic conglomerate rocky face, small colony, 290 m a.s.l., 49°03¢43²N, 16°19¢57²E, 24.5.1998, coll. P. ŠMARDA (F27) 14 Cz; Roztoky u Køivoklátu: Na Babì Nature Reserve, 300 m NE of the railway bridge over the Berounka river – NW exp. rocky edge of the reservation margin, common, 310 m a.s.l., 50°01¢50²N, 13°52¢15²E, 8.10.1999, coll. P. ŠMARDA (F1041) 14 Cz; Skála u Chrudimi: NNW village periphery, on the left bank of Žejbro brook – sunny wood edge on an argillite rock, common, 330 m a.s.l., 49°52¢13²N, 15°56¢49²E, 19.6.1999, coll. J. VOZANKA (F1030) 14 Cz; Štramberk: 0.6 km SSW of Babí hora (557 m) elevation point – limestone rocks in the larger of two quarries, common, 450 m a.s.l., 49°35¢25²N, 18°07¢25²E, 3.10.1999, coll. M. HORSÁK (F1038) 14 Cz; Tøebíè: 400 m up the river from the central bridge, above the Jihlava river in the park below the castle – S exp. siliceous rockery, small colony, 395 m a.s.l., 49°12¢57²N, 15°52¢16²E, 26.6.1999, coll. P. ŠMARDA (F1020) 14 Cz; Tøísov (near Èeské Budìjovice): 0.9 km NE of the railway station in the village – on the walls of the Dívèí kámen ruin, common, 500 m a.s.l., 48°53¢22²N, 14°21¢26²E, 20.7.1999, coll. V. GRULICH (F1050) 14 Cz; Tøísov (near Èeské Budìjovice): 1.05 km NE of the railway station in the village, 350 m NNW of the Dívèí kámen ruin – siliceous E exp. rocks in the Vltava river valley, common, 480 m a.s.l., 48°53¢30²N, 14°21¢16²E, 20.7.1999, coll. V. GRULICH (F1049) 14 Cz; Vladislav u Tøebíèe: 600 m ESE of the church in the village, above the road and the Jihlava river – SW exp. siliceous slopes, abundant, 400 m a.s.l., 49°12¢31²N, 15°59¢40²E, 26.6.1999, coll. P. ŠMARDA (F1024) 14 Cz; Vranné nad Vltavou: Zvolská homole Nature Reserve, 600mEofthechurch in the village – NW exp. siliceous rocky slopes of an open pine and oak grove, common, 310 m a.s.l., 49°56¢24²N, 14°23¢47²E, 20.6.1999, coll. P. ŠMARDA (F1013) 14 Cz; Zruè nad Sázavou: 1.1 km NW of the castle in the town, in Sázava river bend, above the railway to Èerèany – in pine wood, top of siliceous rocky outcrop, common, 370 m a.s.l., 49°44¢58²N, 15°05¢22²E, 5.6.1999, coll. P. ŠMARDA (F84) 14 Cz; Adamov: NE town periphery, road to the village Josefov – road ditch on deep sandy soil, 4 individuals, 270 m a.s.l., 49°18¢20² N, 16°39¢26²E, 23.4.1998, coll. P. ŠMARDA (F1) 14+1B Cz; Plaveè: 1.7 km NW of the church in the village, left bank of the Jevišovka river, opposite the mouth of Plenkovický potok brook – overgrown siliceous rocky outcrop, small colony, 245 m a.s.l., 48°56¢17²N, 16°03¢46²E, 29.8.1999, coll. P. ŠMARDA (F1025) 21+1B Ge; Bayern, Regensburg region, Schwabelweis: Fellingerberg Nature Reserve, N of the village – S exp. limestone slope, scattered, 360 m a.s.l., 49°01¢50²N, 12°09¢28²E, 11.7.2000, coll. O. ROTREKLOVÁ & P. ŠMARDA (F1198) 14 Ge; Niederbayern, Passau-Ilstadt: on Klosterberg hill – siliceous S exp. rocky slopes near the Dunaj river, abundant, 320 m a.s.l., 48°34¢37²N, 13°29¢06²E, 11.7.2000, coll. O. ROTREKLOVÁ &P.ŠMARDA (F1195) 14 88 P. Šmarda & K. Kočí

Sk; the protected landscape area Slovenský kras, Zádiel: 200 m from Zádielsky kameò (600.6 m) elevation point, 900 m NE of the church in the village – edge of limestone canyon, common, 580 m a.s.l., 48°37¢38²N, 20°50¢19²E, 8.8.2000, coll. P. ŠMARDA (F1229) 14 Sk; Pieniny National Park, Lesnica: 2.5 km WNW of the church in the village, Dunajec river canyon, near the footpath to the Sedem mníchov rocks – limestone, common, 500 m a.s.l., 49°24¢24²N, 20°26¢13²E, 30.10.1999, coll. K. KOÈÍ (F1059) 21

Festuca pallens HOST Pannonisches-Hügelland type Cz; Brno-Bedøichovice: Horky Nature Reserve, 650mEofthechurch in the town – edge of conglomerate rocky terrace, abundant, 260 m a.s.l., 49°10¢52²N, 16°43¢45²E, 20.5.1999, coll. P. ŠMARDA (F45 – middle part of the terrace, F46 – N part and F47 – NW part of the terrace) 28 Cz; Hodonice (near Znojmo): Vraní vrch (232.4 m) elevation point, 2.5 km SE of the railway station in the village, 600 m SE of the sandpit – completely grass-covered flatt siliceous hill, on shallow soil rwithout ocky outcrops, rare scattered tufts, 230 m a.s.l., 48°49¢28²N, 16°11¢17²E, 25.5.1999, coll. P. ŠMARDA (F55) 28 Cz; the protected landscape area Pálava, Mikulov: Svatý kopeèek Nature Reserve – limestone rocky steppe above the town, abundant, 340 m a.s.l., 48°48¢24²N, 16°38¢52²E, 7.5.1999, coll. T. VYMYSLICKÝ (F39, F40) 28 Cz; the protected landscape area Pálava, Pavlov: surrounding of the Dívèí hrad ruin – steppe on limestone rocky slope, abundant, 405 m a.s.l., 48°52¢34²N, 16°39¢47²E, 22.5.1998, coll. T. VYMYSLICKÝ (F37) 28 Cz; the protected landscape area Pálava, Pavlov: Dìvín Nature Reserve, 650 m SW of Dìvín (548.7 m) elevation point – SW exp. limestone cliffs, abundant, 480 m a.s.l., 48°51¢58²N, 16°38¢31²E, 22.5.1998 coll. P. ŠMARDA (F22) 28 Cz; the protected landscape area Pálava, Pavlov: Dìvín Nature Reserve, 700 m SSW of Dìvín (548.7 m) elevation point – cleft in S exp. limestone cliffs, abundant, 440 m a.s.l., 48°51¢48²N, 16°38¢35²E, 22.5.1998, coll. P. ŠMARDA (F21) 28 Cz; the protected landscape area Pálava, Pavlov: Dìvín Nature Reserve, on the top of the hill near the transmitter – elevation with deeper sandy soil on bunker ruin, a single tuft isolated here, 530 m a.s.l., 48°52¢10²N, 16°39¢00²E, 22.5.1998, coll. P. ŠMARDA (F23) 28 Cz; the protected landscape area Pálava, Pavlov: Dívèí hrad ruin – edge of the ruin wall, clay substrate on limestone, 405 m a.s.l., 48°52¢39²N, 16°39¢45²E, 22.5.1998, coll. P. ŠMARDA (F20) 28 Cz; Miroslav: Miroslavské kopeèky Nature Reserve, 500 m SE of Markùv kopec (303.0 m) elevation point – steppe hill with dense grass stand on rough basic conglomerate, in places, 285 m a.s.l., 48°56¢10²N, 16°18¢41²E, 25.5.1999, coll. P. ŠMARDA (F57) 28 Cz; Moravský Krumlov: Pod Floriánkem Nature Reserve, on Køepelèin vrch hill, near “312” elevation point – platform near the edge of the NW exp. basic conglomerate slope, scattered, 310 m a.s.l., 49°02¢48²N, 16°19¢08²E, 24.5.1999, coll. O. ROTREKLOVÁ (F62) 28 Cz; Moravský Krumlov: Pod Floriánkem Nature Reserve, platform near the edge of the NW exp. slope of the reservation (near “312² elevation point), on Køepelèin vrch hill – deeper sandy soil on basic conglomerate rock, scattered here, 310 m a.s.l., 49°02¢48²N, 16°19¢17²E, 24.5.1998, coll. P. ŠMARDA (F24) 28 Cz; Oleksovice: Oleksovické vøesovište Nature Reserve, 0.8 km SSE of the church in the village – in a dense stand of Calluna vulgaris, on deep sand bank, small colony, 240 m a.s.l., 48°53¢51²N, 16°15¢05²E, 25.5.1999, coll. P. ŠMARDA (F56) 28 Cz; Tasovice: Nad Splavem Nature Reserve, 1.4 km W of the bridge in the village – S exp. siliceous rocky promontory above the Dyje river, soil composed exclusively of stony debris, scattered, 210 m a.s.l., 48°49¢51²N, 16°08¢04²E, 25.5.1999, coll. P. ŠMARDA (F54) 28 Cz; the protected landscape area Pálava, Pavlov: surrounding of the Dívèí hrad ruin – steppe on limestone rocky slope, abundant, 405 m a.s.l., 48°52¢34²N, 16°39¢47²E, 22.5.1998, coll. T. VYMYSLICKÝ (F38) 28+1B Festuca chromosome number variability 89

Festuca pallens HOST “scabrifolia” type Cz; Budèice: 600 m NNW of railway station, above the railway above the Sázava river – siliceous rocky slopes, abundant, 350 m a.s.l., 49°43¢41²N, 15°10¢58²E, 5.6.1999, coll. P. ŠMARDA (F83) 28 Cz; Kleneè: Kleneèská stráò Nature Reserve – dry sandy slope (Plantagini-Festucetum ovinae), on the edge of the S part of the reserve shaded by trees, rare, 220 m a.s.l., 50°23¢20²N, 14°15¢24²E, 2.6.1999, coll. M. CHYTRÝ &P.ŠMARDA (F73) 28 Cz; Mimoò: below the top of Ralsko hill, 4 km ENE of the railway station in the town, along the red marked trail – E exp. basalt rocky outcrops, in places, 650 m a.s.l., 50º40¢28²N, 14º46¢06²E, 17.6.1999, coll. K. KOÈÍ (F1037) 28 Cz; Oleško (near Roudnice nad Labem): 1.1 km E of the chapel in the village – sands along the dirt track on S exp. pine wood margin, together with Jurinea cyanoides, Gypsophila fastigiata, common, 180 m a.s.l., 50°28¢50²N, 14°12¢48²E, 2.6.1999, coll. M. CHYTRÝ &P.ŠMARDA (F72) 28 Cz; Oleško (near Roudnice nad Labem): NE village periphery, 200 m NE of the chapel in the village – sands on S exp. pine wood margin, common, 170 m a.s.l., 50°28¢55²N, 14°11¢53²E, 2.6.1999, coll. M. CHYTRÝ &P.ŠMARDA (F70, F71) 28 Cz; Podmoráò: 250 m NW of the nearest railway station – schist rocky promontory above the village, abundant, 250 m a.s.l., 50°10¢18²N, 14°20¢55²E, 19.6.1999, coll. P. ŠMARDA (F1011) 28 Cz; Praha-Hluboèepy: Dalejský mlýn mill in the Dalejský potok valley – S exp. limestone rocky slope, common, 275 m a.s.l., 50°02¢35²N, 14°22¢30²E, 3.11.1998, coll. P. ŠMARDA &M.HORSÁK (F35) 28 Cz; Praha-Hluboèepy: Dìvín Nature Reserve in the Dalejský potok valley, S of Jezírko reservoir – top of the limestone rocky faces, abundant, 260 m a.s.l., 50°02¢30²N, 14°22¢55²E, 3.11.1998, coll. P. ŠMARDA &M.HORSÁK (F29, F30, F31) 28 Cz; Praha-Hluboèepy: Prokopské údolí Nature Reserve, Dalejský potok valley – top of the S exp. limestone rocky slopes, abundant, 250 m a.s.l., 50°02¢30²N, 14°22¢05²E, 3.11.1998, coll. P. ŠMARDA &M.HORSÁK (F28, F32, F33) 28 Cz; Praha-Hluboèepy: Prokopské údolí Nature Reserve, Dalejský potok valley – top of the S exp. limestone rocky slope, abundant, 280 m a.s.l., 50°02¢30²N, 14°22¢15²E, 3.11.1998, coll. P. ŠMARDA &M.HORSÁK (F34) 28 Cz; Praha-Hluboèepy: Dalejský mlýn mill in the Dalejský potok valley - S exp. limestone rocky slope, common, 275 m a.s.l., 50°02¢35²N, 14°22¢31²E, 3.11.1998, coll. P. ŠMARDA & M. HORSÁK (F36) 28+1B Cz; Roztoky-Žalov: 100mNofthechurch in the village – grassy siliceous rockeries below the cemetery, small colony, 230 m a.s.l., 50°10¢11²N, 14°22¢27²E, 19.6.1999, coll. P. ŠMARDA (F1012) 28 Cz; Velké Žernoseky: 850 m NNW of the church in the village, near the dirt track (green marked hiking trail) between the railway and Labe river – gneiss rock block, small colony, 150 m a.s.l., 50°32¢44²N, 14°03¢13²E, 10.10.1999, coll. P. ŠMARDA (F1047) 28 Cz; Zruè nad Sázavou: 1.25 km NW of the castle in the town, in a wood on the edge of the slope, where the road meets the red marked hiking trail leading from the wood (10 m from the road), highest point in the slope surrounding – siliceous rocky, small wooded flat, together with Festuca cf. filiformis and F. pallens 2n=14, scattered, 400 m a.s.l., 49°45¢03²N, 15°05¢14²E, 5.6.1999, coll. P. ŠMARDA (F85, F86) 28 Ge; Sachsen-Anhalt, district Halle, Friedrichsschwerz: 1.0 km NW of the village – steppe hillocks on bare porphyrite, abundant, 150 m a.s.l., 51°33¢25²N, 11°50¢03²E, 11.6.1999, coll. P. ŠMARDA (F92) 28 Ge; Sachsen-Anhalt, district Halle, Friedrichsschwerz: 1.2 km NW of the village – steppe hillocks on bare porphyrite, abundant, 150 m a.s.l., 51°33¢30²N, 11°49¢56²E, 11.6.1999, coll. P. ŠMARDA (F93) 28 Ge; Thüringen, Bottendorfer Hügel hills, Bottendorf: NE village periphery – stoney steppe slopes with a high amount of copper, abundant, 190 m a.s.l., 51°18¢32²N, 11°24¢35²E, 7.6.1999, coll. P. ŠMARDA (F87, F88) 28 Ge; Thüringen, Kyffhäuser Gebirge, Bad Frankenhausen: 3.0 km NW of the church in the village – S exp. gypsum slope, abundant, 210 m a.s.l., 51°22¢34²N, 11°03¢41²E, 7.6.1999, coll. P. ŠMARDA (F91) 28 Ge; Thüringen, Kyffhäuser Gebirge, Bad Frankenhausen: Kaffenburg Nature Reserve, 2.3 km NW of the church in the town – S exp. gypsum slope, abundant, 210 m a.s.l., 51°22¢30²N, 11°04¢45²E, 7.6.1999, coll. P. ŠMARDA (F89, F90) 28 90 P. Šmarda & K. Kočí

F. pallens ´ Festuca cf. valesiaca SCHLEICH.exGAUDIN Cz; Chvatìruby (near Kralupy nad Vltavou): 50 m NW of the church in the village – rocky place above the road, only 1 tuft in a stand dominated by Festuca valesiaca, 195 m a.s.l., 50°13¢59²N, 14°20¢29²E, 19.6.1999, coll. P. ŠMARDA (F1009) 14

Festuca psammophila subsp. psammophila (HACK.exÈELAK.) FRITSCH Cz; Hradiško (near Nymburk): S village periphery, 400 m WNW of the dairy barns – sunny, sandy pine wood margin, small colony, 185 m a.s.l., 50°09¢46²N, 14°56¢19²E, 3.6.1999, coll. P. ŠMARDA (F78, F79 – 2n=14 + ?B) 14 Cz; Písty u Nymburku: S part of Píseèný pøesyp Nature Reserve – on sands in an open pine wood, in closed vegetation with Avenella flexuosa, small colony, 185 m a.s.l., 50°09¢44²N, 14°59¢54²E, 3.6.1999 coll. P. ŠMARDA (F75) 14

Cz; Písty u Nymburku: S part of Píseèný pøesyp Nature Reserve – edge of bare sand-dune with open vegetation, small colony, 185 m a.s.l., 50°09¢48²N, 14°59¢55²E, 3.6.1999, coll. P. ŠMARDA (F76) 14

Festuca psammophila subsp. muellerstollii M. TOMAN Cz; Bìlá pod Bezdìzem: 1.1 km SE of Šibenièní vrch (336.8 m) elevation point, 100mWofthe westernmost edge of the road from Bìlá p. B. to Krupá, under birches and street lights near the dirt track to the house number 587 – sandstone rockery, small colony, 296 m a.s.l., 50°30¢16²N, 14°48¢23²E, 15.6.1999, coll. P. ŠMARDA (F1004) 14 Cz; Bìlá pod Bezdìzem: 1.2 km NNE of Panská horka (294.4 m) elevation point, 1.7 km NW of the Bìlá pod Bezdìzem railway station – SW exp. sandstone slope of a pine-birch grove with dense herb layer, common, 275 m a.s.l., 50°29¢54²N, 14°49¢09²E, 15.6.1999, coll. P. ŠMARDA (F1003) 14 Cz; Bìlá pod Bezdìzem: 100mSofŠibenièní vrch (336.8 m) elevation point – edge of the small sandstone quarry on a sunny pine grove margin, small dense colony, 310 m a.s.l., 50°30¢44²N, 14°47¢50²E, 15.6.1999, coll. P. ŠMARDA (F1002) 14 Cz; Nové Ouholice (near Kralupy nad Vltavou): 1.2 km SSW of the railway station in the village, 0.5 km SE of Na horách (253.7 m) elevation point – ESE exp. edge of sandstone slope in an open stand birch-pine-oak grove with dense Avenella flexuosa cover, 1 tuft, (locality of F. pallens cf. subsp. muellerstollii sensu TOMAN 1990) 200 m a.s.l., 50°17¢38²N, 14°18¢32²E, 19.6.1999, coll. P. ŠMARDA (F1007) 14

Festuca vaginata subsp. dominii (KRAJINA)SOÓ Cz; Bzenec: Cvièištì u Bzence Nature Reserve – sands in SW part of the reserve, about 40 tufts, 190 m a.s.l., 48°57¢25²N, 17°17¢24²E, 16.7.1998, coll. P. ŠMARDA (F12 ) 14 Cz; Bzenec: Cvièištì u Bzence Nature Reserve – sand steppe in the E part of the reserve, small colony, 195 m a.s.l., 48°57¢33²N, 17°17¢30²E, 16.7.1998, coll. P. ŠMARDA (F9, F10, F11) 14 Cz; Bzenec: Váté písky Nature Reserve – sand steppe along railway line, abundant, 185 m a.s.l., ±48°55¢45²N, ±17°16¢30²E, 16.7.1998, coll. P. ŠMARDA (F13, F14, F15, F16, F17, F18) 14 Cz; Bzenec: Váté písky Nature Reserve – dense growth of grass on sand steppe along railway line, rare, 185 m a.s.l., 48°56¢10²N, 17°17¢15²E, 16.7.1998, coll. P. ŠMARDA (F19) 14

OTHER TAXA

Festuca alpestris ROEM.etSCHULT. It; Riva del Garda (near Lago di Garda lake): Bocca Sperone saddle, 2.5 km SW of the town – glade in brush on W exp. limestone rocky slope, common, 950 m a.s.l., 45°52¢39²N, 10°49¢21²E, 10.6.2000, coll. P. ŠMARDA (F1122) 14 Festuca chromosome number variability 91

Festuca amethystina L. subsp. amethystina Cz; Hodonínská doubrava wood, Mutìnice: 3.8 km SE of the railway station in the village, 100 m SE of the crossroad of Topolová alej forest track and the road (also railway) – open stand thermophilous oak forest, edge of a wetter depression on sand, small colony, 180 m a.s.l., 48º53¢04²N, 17º05¢02²E, 20.5.1995, coll. V. GRULICH &K.KOÈÍ (F111) 28 Sk; Ve¾ká Fatra National Park, Blatnica: top part of Tlstá (1373 m) elevation point – limestone rockeries, common, 1350 m a.s.l., 48º56¢01²N, 18º58¢28²E, 29.10.2000, coll. K. KOÈÍ &M.KOÈÍ (F147, F151) 28

Festuca brevipila R. TRACEY Cz; Brno-Slatina: road toward Bedøichovice, 0.6 km E of the last crossroad, 2.1 km SE of Stránská skála (310.0 m) elevation point – loamy road edge (under the tuft of an anthill of cf. Lasius flavus), scattered, 255 m a.s.l., 49°10¢55²N, 16°42¢05²E, 20.5.1999, coll. P. ŠMARDA (F44) 42 Cz; Brno-Kohoutovice: between Stamicova and Voøíškova trolleybus stations (N of road) – dry anthropic grassy area, large dense community, 370 m a.s.l., 49°11¢47²N, 16°32¢13²E, 18.5.1998 coll. P. ŠMARDA (F8) 42 Cz; Brno-Kohoutovice: Bellova trolleybus station – anthropic grassy road edge, rare, 384 m a.s.l., 49°11¢20²N, 16°32¢05²E, 18.5.1998, coll. P. ŠMARDA (F7) 42 Ge; Niedersachsen, Döhle: 500mEofWilseder Berg elevation point – on sandy soil on the edge of the footpath across the heathland, scattered, 120 m a.s.l., 53°09¢29²N, 9°58¢08²E, 10.6.1999 coll. P. ŠMARDA (F94) 42

Festuca cinerea VILL. Fr; Alpes Maritimes, Tende: ±7 km NNW of the village, below the Col de Tende elevation point – local road border on S exp. stony partly limestone slopes, common, 1300–1600 m a.s.l., 44°08¢43²N, 7°44¢15²E, 9.6.2000, coll. P. ŠMARDA (F1129, F1130, F1132) 28

Festuca rupicola HEUFF. subsp. rupicola Cz; Dìkovka: 700mEofthechapel in the village, at the foot of Plešivec (477.2 m) hill – S exp. basalt rocky and scree slopes, abundant, 430 m a.s.l., 50°29¢25²N, 13°56¢23²E, 10.10.1999, coll. P. ŠMARDA (F1045) 42 Cz; Josefov: between Býèí skála and Krkavèí skála elevation points – wood footpath fringe on limestone slope, 350 m a.s.l., 49°18¢34²N, 16°41¢32²E, 23.4.1998, coll. P. ŠMARDA (F4) 42

Festuca versicolor TAUSCH subsp. versicolor Sk; Vysoké Tatry National Park, Starý Smokovec: 1 km E of Slavkovský štít peak – alpine grassland on siliceous rocks, common, 2100 m a.s.l., 49°10¢60²N, 20°09¢02²E, 12.5.2000, coll. P. ŠMARDA (F1077) 14 Sk; Ve¾ká Fatra National Park, Liptovské Revúce: Suchý vrch (1549 m) elevation point – top of limestone rockeries, common, 1540 m a.s.l., 48º54¢34²N, 19º05¢42²E, 29.10.2000, coll. K. KOÈÍ &M.KOÈÍ (F153) 14 Sk; Ve¾ká Fatra National Park, Liptovské Revúce: Èierny-kameò Nature Reserve, rockeries below Èierny-kameò (1479 m) elevation point – limestone outcrops, common, 1450 m a.s.l., 48º56¢14²N, 19º09¢09²E, 29.10.2000, coll. K. KOÈÍ &M.KOÈÍ (F152) 14 92 P. Šmarda & K. Kočí

APPENDIX 2

Previously published data on chromosome numbers of the Central European species of the Festuca ovina and Festuca pallens groups, in which only plants originating from Europe (according to the Flora Europaea) are indicated. If possible, the locality and number of investigated plants are given.

F. ovina group

F. ovina L. subsp. ovina

ALEXEEV 1974 2n=14 Russia, European part, 5 plants ALEXEEV et al. 1990 2n=14 former USSR, 25 plants AROHONKA 1982 2n=14 Finland, Ab Nauvo, Seili, originally identified as F. ovina s.l. BORGEN &ELVEN 1983 2n=14 Norway, Finnmark region, Neiden DMITRIEVA 1985 2n=14 Belarus, Minsk region, 1 locality FLOVIK 1938 2n=14 Norway, Tromsö FREDERIKSEN 1981 2n=14 5 populations from Norway, 2 from Great Britain (Wales and Scotland) GADELLA &KLIPHUIS 1973 2n=14 Netherlands, Friesland Province, Ameland island, Hollum, 1 plant GAGNIEU &BRAUN 1961 2n=14 France, Alsace region HARBERD 1961 2n=14 Great Britain, 1 population HORÁNSZKY et al. 1971 2n=14 Hungary, mentioned to be a typical Hungarian diploid species KNABEN &ENGELSKJON 1967 2n=14 Norway, Dovre Mts., Knutshö and Grimsdalen KNABEN &ENGELSKJON 1979 2n=14 Norway, 19 plants from 4 localities LEWITSKY &KUZMINA 1927 2n=14 Ukraine, Kiev LIPTÁKOVÁ 1963 2n=14 Slovakia, Belanské Tatry Mts., near Šalviové pramene elevation point LÖVE &LÖVE 1956 2n=14 Iceland, mentioned to grow together with tetraploid F. vivipara (L.) SM. MALIK &THOMAS 1966 2n=14 material from the Welsh Plant Breeding Station MIZIANTY &PAWLUS 1984 2n=14 Poland, Czestochowa province, Dzierzgów near Moskorzew PILS 1980 2n=14 Austria, Oberösterreich, Kempfendorfer Berg hill (N of Pregarten village) SALVESEN 1986 2n=14 S Norway, 24 plants without further localization SALVESEN 1979 2n=14 Norway and Sweden, altogether 35 plants from 13 localities SOKOLOVSKAYA 1970 2n=14 Russia, Usa river basin, Yun"-Yaga TURESSON 1930 2n=14 2 types from Öland island (Sweden) and 1 from Norway TURESSON 1938 2n=14 S Sweden, Stehag TVERETINOVA 1977 2n=14 Ukraine, 4 plants from Kiev and Zhitomirsk regions UHRÍKOVÁ &DÚBRAVCOVÁ 1997 2n=14 Slovakia, Vysoké Tatry Mts., Mt. Štrba WILKINSON &STACE 1991 2n=14+0-1B Great Britain, 11 plants; Norway 1 plant

Festuca ovina subsp. hirtula (HACK.exTRAVIS) M.J. WILK. + Festuca ovina subsp. ophioliticola (KERGUÉLEN) M.J. WILK.

AUQUIER 1977 2n=28 Belgium, Liège and Aix-la-Chapelle regions, more localities AUQUIER &RAMELOO 1973 2n=28 Belgium, Liège region, 5 plants CATALÁN RODRIGUÉS &GARCÍA 2n=28 Spain, Navarra region, Baztán, Puerto de Otxondo, 1 locality HERRAN 1990 GADELLA &KLIPHUIS 1971 2n=28 Netherlands, Limburg province, Cottessen GAGNIEU &BRAUN 1961 2n=28 France, Alsace region HARBERD 1961 2n=28 Great Britain, 9 population HUFF &PALAZO 1998 2n=28 material from Rutgers University, New Brunswick: cultivar Quatro HUON 1968 2n=28 France, SE part SETHI 1931 2n=28 locality and plant number not indicated SETHI 1931 2n=28 Great Britain, Wales region, plants from 3 localities WATSON 1958 2n=28 Great Britain, 95 populations, mainly S and W part of the country, localities not indicated WILKINSON &STACE 1991 2n=28 Great Britain, 14 localities; 4 others from Belgium, without further localization Festuca chromosome number variability 93

Festuca ovina subsp. bigoudenensis KERGUÉLEN et PLONKA

HUON 1970 2n=28 France, Finistère region, Pouldreuzic and Peumerit, at least 3 plants originally presented as “tetraploid”, later determined by KERGUÉLEN et al. 1989

Festuca ovina subsp. guestfalica (RCHB.)K.RICHT.

PILS 1980 2n=28+0-1B Austria, 10 populations from the whole country TRACEY 1980 2n=28 Austria, 9 populations from the whole country WATSON 1958 2n=28 Germany, Bavaria, 1 sample without further localization

Festuca eggleri R. TRACEY

PILS 1980 2n=14 Austria, Steiermark: Laufnitz Bach Graben (N of Frohnleiten) TRACEY 1980 2n=28 Austria, Steiermark-Kärtnen: Pernegg, 4 plants

Festuca filiformis POURR.

AUQUIER &RAMELOO 1973 2n=14 Belgium; Liège, Limbourg and East Flanders regions, altogether 4 localities BRANDENBERG 1948 2n=14 material from the Hohenheim botanical garden (originated from Germany) CHURCH 1936 2n=14 cultivated plant GADELLA &KLIPHUIS 1968 2n=14 Netherlands, Gelderland province, the surroundings of Speuld, 1 plant, originally presented as F. ovina L., determination corrected by GADELLA &KLIPHUIS 1971 GAGNIEU &BRAUN 1961 2n=14 France, probably Alsace region HORÁNSZKY et al. 1971 2n=14 Hungary, refered to as a typical diploid Hungarian species HUFF &PALAZO 1998 2n=14 material from Rutgers University, New Brunswick: cultivars Barok, duellacc4, duellacc5 and psuacc2 HUON 1970 2n=14 France, Gironde region, Caudos, Villecartier forest JENKIN 1955a 2n=14 locality and number of plants not indicated JENKIN 1955b 2n=14 locality and number of plants not indicated JENKIN 1955c 2n=14 locality and number of plants not indicated KERGUÉLEN 1975 2n=14 locality not indicated LEWITSKY &KUZMINA 1927 2n=14 ?Germany, Haage u. Schmidt LITARDIÈRE 1923 2n=14 ?France, without localization in the original work NAKAJIMA 1930 n=7, 2n=14 cultivated plant PARREAUX 1971 2n=14 France, Central Jura Mts. PILS 1980 2n=14 Austria, Oberösterreich: Kepfendorfer Berg hill (N of Pregarten village) SALVESEN 1986 2n=14 S Norway, 1 plant without further localization SALVESEN 1979 2n=14 Norway, Oslo region, Romsas THOMAS 1939 2n=14 locality and number of plants not indicated TRACEY 1980 2n=14 Austria, Niederösterreich: Amaliendorf/Schrems village TVERETINOVA 1977 2n=14 Ukraine, Ivano-Frankivsk region, Vorokhty WATSON 1958 2n=14 Germany, Bavaria, 2 samples without further localization WILKINSON &STACE 1991 2n=14 Great Britain, 6 populations

Festuca airoides LAM.-F. supina SCHUR complex

EHRENBERGEROVÁ 2001 2n=14 Romania; Retzat Mts. KOZHUHAROV &PETROVA 1991 2n=14 Bulgaria: West Frontier Mts., Osogovska planina, 1 locality KERGUÉLEN 1975 2n=14 France, Col de Finiels region, Mt. Lozère, ?1 plant PASHUK 1987 2n=14 Ukraine, Ukrainian Carpathian Mts., 1 plant PILS 1980 2n=14 Austria; Kärnten, Gurktaler Alpen Mts., 2 localities PILS 1985 2n=14 Austria, Kärtnen, Gurktaler Alpen Mts., 3 plants STEFANIK et al. 1989 2n=14 Ukraine, Ukrainian Carpathian Mts., Mt. Shpitsa TVERETINOVA 1977 2n=14 Ukraine, Ivano-Frankivsk region, Polonina Pozhyzhevskaya, 1 plant HADAÈ &HAŠKOVÁ 1956 2n=28 Slovakia, Vysoké Tatry Mts., 2 localities 94 P. Šmarda & K. Kočí

MÁJOVSKÝ &UHRÍKOVÁ 1985 2n=28 Slovakia, Vysoké Tatry Mts., Zlomisková dolina valley, ? published first in UHRÍKOVÁ et al. 1983 MIZIANTY &PAWLUS 1984 2n=28 Poland; Krosno province, Bieszczady Mts., Szeroki Wierch mountain, 1 plant UHRÍKOVÁ et al. 1983 2n=28 Slovakia, Vysoké Tatry Mts., Zlomisková dolina valley, 1 plant PIOTROWICZ 1954 2n=28, 35 Slovakia and Poland, Vysoké Tatry Mts., altogether 37 plants PIOTROWICZ 1950 2n=28, 35 Poland, Vysoké Tatry Mts., Czorny Staw lake, 6 clones MURÍN &PACLOVÁ 1979 2n=35 Slovakia, Vysoké Tatry Mts., Nefcerka and Ve¾ká Svišovka elevation points

Problematically interpretable data with relation to the F. ovina group

ALEXEEV et al. 1990 2n=14 Ukraine, 30 km SW of Kiev, determined as the newly described taxon Festuca ovina subsp. firmulacea (MARKGR.-DANN.) PROB. FREDERIKSEN 1981 2n=21 4 localities from Sweden, 8 from Norway and 1 from the Faroe Islands, mentioned to be hybrids of F. ovina and F. vivipara (L.) SM. HUON 1970 2n=28, 29, 31, France, between Mauves and le Cellier, determined 32, 34 originally as F. ovina var. vulgaris HUON 1970 2n=28 France, Gironde region, Caudos, presented as F. filiformis NAKAJIMA 1931 2n=28 origin unknown, determined originally as F. ovina ÖNDER &JONG 1977 2n=14, 28+0-2B Great Britain, Scotland, 60 plants from 11 localities, without distinguishing F. ovina and F. filiformis ROHWEDER 1937 n= 7, 2n=14, 21 Germany, Schleswig-Holstein region, 4 populations, used F. ovina s.l. concept TRACEY 1980 2n=28 Austria, Niederösterreich, Unterloiben village, determined as F. guestphalica RCHB.>F. pallens HOST TRACEY 1980 2n=14 Austria, Niederösterreich, W of Pulkau village, determined as F. guestphalica RCHB.>F. valesiaca GAUDIN WATSON 1954 2n=14, 28 Great Britain and from seeds originating from Scandinavian countries, Netherlands and France, according to the author diploids should represent F. filiformis, tetraploids F. ovina (diploid F. ovina was not taken into account), preliminary results, published fully in WATSON 1958 WATSON 1958 2n=14 Great Britain, 87 populations, mainly N and E part of the country, localities not indicated, without distinguishing F. ovina and F. filiformis WATSON 1958 2n=14, 28 Great Britain, 25 mixed ploidy populations, further localities not indicated, without distinguishing diploid F. ovina and F. filiformis

F. pallens group

Festuca pallens HOST

AUQUIER &KERGUÉLEN 1977 2n=14 1 plant from Belgium and 2 plants from France, Ardennes region AUQUIER &RAMELOO 1973 2n=14 Belgium, 4 plants from Liège and Namur regions BAKSAY 1956 2n=14 Hungary, Bükk Mts., 3 plants GALLI et al. 2001 2n=2x Hungary: Szarvasko HORÁNSZKY et al. 1972 2n=14 Hungary, Mts. Bükk and Torna regions HORÁNSZKY et al. 1972 2n=14 Hungary, plants used for artificial crossing with diploid F. vaginata KERGUÉLEN 1975 2n=14 Belgium, population from the Meuse river valley MÁJOVSKÝ &VÁCHOVÁ 1986 2n=14 Slovakia, Slovenský kras hills, Gemerské Teplice PILS 1981 2n=14 Austria, 7 plants of the Oberösterreich-Niederösterreich type, 1 plant of the Weizklamm type TRACEY 1974, TRACEY 1980 2n=14 Austria, 5 plants of the Oberösterreich-Niederösterreich type UHRÍKOVÁ &MÁJOVSKÝ 1978 2n=14 Slovakia, Slanské vrchy Mts., Podhradík UHRÍKOVÁ 1974 2n=14 Slovakia, Biele Karpaty Mts., Vršatecké Podhradie, Vršatec hill AUQUIER 1976 2n=28 Austria, Steiermark, Deutschfeistritz BAKSAY 1956 2n=28 Hungary, 4 plants BAKSAY 1961: 364 2n=28 Hungary, without further specification Festuca chromosome number variability 95

GALLI et al. 2001 2n=4x Hungary, Buda-Hills HOLUB 1970 2n=28 Slovakia, Stráz¡ovská hornatina highland, Trenèín PILS 1981 2n=28 Austria, 1 plant of Pannonisches-Hügelland type, 5 plants of Steiermark-Kärnten type TRACEY 1974, TRACEY 1980 2n=28 Austria, 3 plants of Pannonisches-Hügelland type, 3 plants of Steiermark-Kärnten type DAWE 1989 2n=14 Austria, Voralpen and Wurklamm DAWE 1989 2n=28 Austria, Graz-Schlossberg and Metnitz Tal

Festuca psammophila (HACK.exÈELAK)FRITSCH

SCHWARZOVÁ 1967 2n=14 Czech Republic, Sadská

F. vaginata subsp. vaginata WALDST.etKIT.exWILLD.

BAKSAY 1956 2n=14 Hungary, Szentendre river island HORÁNSZKY et al. 1972 2n=14 Hungary, plants used for artificial crossing with diploid F. pallens PÓLYA 1949 2n=14 Hungary, Debrecen region, Haláp SCHWARZOVÁ 1967 2n=14 Slovakia, Sv. Mária and Èenkov

F. vaginata subsp. dominii (KRAJINA)SOÓ

SCHWARZOVÁ 1967 2n=14 Slovakia, Stupava TRACEY 1980 2n=14 Austria, Niederösterreich, Marchfeld

Problematically interpretable data with relation to the F. pallens group

AUQUIER 1976 2n=21 artificial hybrid plant obtained from cross-fertilization of a diploid F. pallens plant from Belgium and a tetraploid one from Austria BRANDENBERG 1948 2n=14 ?Hungary, material from the Debrecen botanical garden, originally described as Festuca polesica ZAPA£. BRANDENBERG 1948 2n=28 material from the Lausanne botanical garden (Switzerland), originally described as F. glauca LAM. GAGNIEU &BRAUN 1961 2n=28 France, Alsace, Hoheneck hill, do not correspond with the distribution area of F. pallens presented in the recent France floras (cf. PORTAL 1999) LEWITSKY &KUZMINA 1927 2n=28 without further localization, originally described as Festuca glauca subvar. eu-glauca LAM. TRACEY 1980 2n=14 Austria, Niederösterreich, Loiben, determined as F. pallens > F. guestphalica RCHB. TRACEY 1980 2n=14 Austria, Niederösterreich, Marchfeld, determined as F. vaginata ´ F. valesiaca TRACEY 1980 2n=14 Austria, Niederösterreich, Mödling – Kalenderberg hill, determined as F. valesiaca subsp. valesiaca > F. pallens TRACEY 1980 2n=28 Austria, Niederösterreich, Unterloiben, determined as F. guestphalica > F. pallens)

The following data, often cited in common karyological reviews under the name F. pallens or under its synonymic names, probably refer to other taxa: BIDAULT 1963, 1964a, b, 1968, 2n=14, 28; FELFÖLDY ex SOÓ 1963, 2n=42; GHORAI &SHARMA 1981, 2n=30; LITARDIÈRE 1923, 2n=14; SOKOLOVSKAYA &STRELKOVA 1940, 1948, 2n=14. 96 (3)

Grulich V., Krahulec F., Šmarda P. et Kočí K. (2002):

Festuca. p. 828–834. In: Kubát K. [ed.], Klíč ke květeně České republiky.

Academia, Praha.

(4)

Šmarda P. (submitted):

DNA ploidy levels of Romanian fescues (Festuca L., Poaceae), measured in living plants and herbarium specimens.

Folia Geobot.

DNA ploidy levels and infraspecific DNA content variability in Romanian fescues (Festuca L., Poaceae) measured in living plants and herbarium specimens

Petr Šmarda

Department of Botany, Faculty of Science, Masaryk University in Brno, Kotlářská 2, CZ-611

37 Brno, Czech Republic; E-mail: [email protected]

Running head: DNA ploidy levels of Romanian fescues

Keywords: Festuca ovina group, Festuca valesiaca group, section Eskia, flow cytometry, polyploidy, infraspecific genome size variability, Balkan Peninsula.

Abstract

DNA ploidy level estimates for 113 samples of 11 species and 2 natural hybrids from 39 locations from a karyologically poorly known area of Romania are given. 48 living samples,

22 with original herbarium specimens and 65 one-year-old herbarium specimens were studied usingDAPI flow cytometry. The following estimates were observed: F. callieri (4x), F. ovina

(2x), F. pallens (2x), F. polesica (2x), F. pseudodalmatica (2x, 4x, 5x), F. pseudovaginata

(2x), F. pseudovina (2x), F. pseudovina × F. rupicola (4x), F. rupicola (6x), F. vaginata

(2x), F. vaginata × F. valesiaca (2x), F. valesiaca (2x) and F. xanthina (2x). Festuca pseudovaginata is reported for the flora of Romania for the first time.

When the results of measurements of fresh plant samples were compared to those of corresponding one-year-old herbarium specimens, the dry material showed a significant difference in the sample/standard ratio (4.1% lower median, P<0.001) and worse coefficients of variance (P<0.001).

1 Several species exhibit marked infraspecific DNA content variability, documented as the existence of non-overlapping double-peaks or bimodal peaks in simultaneous measurement. A maximum difference of about 9.2% in relative DNA content was proved in F. pallens, 5.5% in F. polesica, 4.2% in F. vaginata and 3.8% in F. rupicola. Diploid F. xanhina (sect. Eskia) has a 1.39–1.58 times higher monoploid relative DNA content in relation to the species of section Festuca. This difference is expected to be specific for the whole Eskia section.

Introduction

Many intricate taxonomic groups of Festuca are composed of polyploid series with only minute morphologic and anatomic differences. Ploidy level is one of the most important species characteristics and detailed karyological knowledge has become essential in modern

Festuca taxonomy. Works by authors in species-rich areas in France and Spain, resulting in the description of many new taxa, provides good examples of the effective combination of detailed karyological surveys and classical taxonomical methods (Auquier & Kerguélen 1978,

Fuente Garcia & Ortúñez Rubio 1998). Infraspecific variability in ploidy level is the first indicator for the taxonomic heterogenity of the material studied. Karyological data helps to clarify the distribution of many taxa and in a wider population context it may indicate hybrids or rare polyploidisation events (Šmarda et al. 2005). In contrast to well documented species- rich areas in the Iberian Peninsula and Central Europe (Auquier & Rameloo 1973, Kerguélen et al. 1989, Fuente et al. 2001, Šmarda & Kočí 2003, Šmarda et al. 2005), karyological data in

Festuca from Balcan are still poor with the only detailed survey being made by Kožuharov &

Petrova (1991) from Bulgaria. Of the 32 species occurring in Romania (Beldie 1972, in species concept of Flora Europaea, Markgraf-Dannenberg, 1980), ploidy levels are documented only in F. arundinacea SCHREB. (Raicu et al. 1974), F. airoides LAM.

2 (Ehrenbergerová 2001; sub F. supina SCHUR), F. xanthina (Starlinger et al. 1994) and F. rupicola (Šmarda et al. 2005).

The recent increase of karyological data in plants enables expansion of the flow cytometry method. Flow cytometry is a fast and cheap method of determining DNA ploidy levels or the exact DNA content of only a small piece of fresh plant material, and has recently became a popular method in many research and industry applications (Suda 2004, Doležel &

Bartoš 2005). Due to the accuracy of the measurements, flow cytometry is one of the most powerful means of detecting infraspecific genome size variability (Greilhuber 2005, Doležel

& Bartoš 2005). Many former works dealing with infraspecific genome size variability suffer from methodical errors (Greilhuber 1998, Greilhuber 2005) and only a few species have recently been accepted as variable in genome size (Greilhuber 2005). Evidence of a non- overlapping double peak when two samples are measured simultaneously is accepted as clear evidence of a difference in their DNA content and is used as a clear argument for the existence of infraspecific variability in some species (Greilhuber 2005). In this way, differences of around 4% or higher may be detected using the late high-resolution flow cytometry procedures (Doležel & Göthe 1995).

Flow cytometry was succesfully used by Fuff & Palazzo (1998), Arumuganathan et al.

(1999), Wallosek (1999) to detect the DNA ploidy level in Festuca. Since 2000, flow cytometry has also been used for determining the DNA ploidy level in Festuca herbarium specimens (Šmarda et al. 2005, Šmarda & Stančík 2005). With further improvements, flow cytometry has also succesfully been used in dehydrated tissues of Vaccinium and Empetrum

(Suda 2004) and other genera (Suda et Trávníček accepted). The measurement constraints of flow cytometry in herbarium specimens are still little known and are a topical question for further study.

The main aim of the work is to complete karyological data for critical taxa of some xerophilous Romanian fescues. Comparison of the results of flow cytometric measurements

3 in fresh plants and herbarium specimens, and investigation of infraspecific relative genome size variability are of particular interest.

Material and Methods

The plant samples originated from rocky steppes, loess steppes and sands, and were collected during 2003 in Romania. Both living plants and herbarium specimens were studied.

Plants were cultivated in an experimental garden of the Faculty of Education, Masaryk

University in Brno; vouchers of all samples studied are stored at the Herbarium of the

Department of Botany, Masaryk University in Brno (BRNU). The localities in the results and comments are organized as follows: administrative region (Judeţul), name of the nearest town/village: locality description – habitat, abundance of the species, geographical coordinates, altitude, date of collection and sample numbers in parentheses. Cultivated plants are marked by an F before the sample number, plants for which only a herbarium specimen was available by an H. In cultivated samples, # marks samples where DNA ploidy was determined from both living plants and dried herbarium specimens. Geographical coordinates and altitude were obtained in the WGS84 coordinate system using a GPS instrument (Garmin- etrex).

Determination of the DNA ploidy level was made by flow cytometry on a PA-I Partec ploidy level analyser at the Department of Botany, Masaryk University in Brno. Young, basal parts of green leaves were used from both fresh plants and herbarium vouchers. A modification of a two-step procedure (Otto 1990) for plant material (Doležel & Göthe 1995) was used to prepare the samples. A piece of plant material was chopped using a sharp razor blade together with a standard in a glass Petri dish containing 0.5 ml Otto I buffer (0.1M citric acid, 0.5% Tween 20). An additional 0.5 ml Otto I buffer was added. The crude nuclei suspension was filtered through a 50 µm nylon mesh. 1 ml of Otto II buffer (0.4M Na2HPO4

4 .12H2O) supplemented with 2 µg/ml 4’,6-diamidino-2-phenylindole (DAPI) was then added to the nuclei suspension. The youngest leaves of live Lycopersicon esculentum MILL.

“Stupické polní tyčkové rané” were used as an internal standard for both measurements of living plants and herbarium samples. Samples were measured once or twice on different days, with the final standard standard/sample ratio calculated as the mean in these cases. The standard/sample ratio was calculated from the mean values of the peaks. Peak position and coefficients of variance (CV) were calculated using Partec software incorporated in the flow cytometer used. The accuracy of the measurements, numbers of investigated samples and standard/sample ratios are found in Table 1. DNA ploidy levels were derived by comparing sample to standard ratios with representatives that were prepared in the same way and for which chromosome numbers are known (Šmarda & Kočí 2003). Representatives from the same species or related taxon were used (F. alpestris, F1122, 2n=14, for F. xanthina; F. pallens, F1229, 2n=14 for F. ovina, F. pallens, F. polesica, F. pseudovaginata, F. vaginata;

F. rupicola, F4, 2n=42 for F. callieri, F. pseudodalmatica, F. pseudovina, F. rupicola and F. valesiaca). Herbarium material was pressed in newspapers and filtering paper under field conditions. Morphological measurements follow the general principles for this genus

(Markgraf-Dannenberg 1980, Wilkinson & Stace 1991).

During the study the differences between the ratios obtained for living and herbarium specimens were observed. To clarify these differences, the experiment was repeated with the same method for the set of 19 samples (incl. diploids, tetraploids and hexaploids) for which both living plants and original, one-year-old herbarium specimens were available. For each sample, both fresh plant and its herbarium specimen were measured consecutively within several seconds, the fresh plant first. Both samples were prepared the same way with the same leaf of the fresh standard. The results from the fresh material and herbarium voucher in each sample were tested for all 19 available pairs using a nonparametric paired Wilcoxon Signed

Rank test and nonparametric Spearman correlation using SPSS 8.0 program (SPSS inc. 1998).

5

Results and comments

DNA ploidy of the species

Festuca callieri (HACK.) MARKGR. – 4x

Festuca callieri is a karyologically unclear species, with the distribution ranging from the

Balkan Peninsula up to Asia Minor. Reported localities in the Dobruga Mts. are related to those on the Crimean peninsula, from which the species was described and also documented as tetraploid (Tveretinova 1977). Later work from Crimea (Alexeev et al. 1988) also documented hexaploids. From related localities on the Black Sea coast in Bulgaria, it is also reported as diploid (Kožuharov & Petrova 1991).

- Jud. Tulcea, Măcin: 3 km ENE of the village centre – chalk scree isolated on otherwise siliceous rocky

ridge, small colony, 45°15'50.3"N + 28°10'04.6"E, elev. 73 m, 16.V.2003 (F398, #F399, #F400, H724,

H725, H726)

- Jud. Tulcea, Măcin: 4 km E of the village centre – siliceous rocks with species-poor vegetation with

Scleranthus perennis L., small colony, 45°15'23.6"N + 28°11'15.3"E, elev. 331 m, 16.V.2003 (#F382,

#F384, H729, H730, H731, H732)

Festuca ovina L. – 2x

Within the species, both diploids and tetraploids are frequently documented (cf. Šmarda &

Kočí 2003). In Europe, diploid plants correspond with F. ovina subsp. ovina. From the nearest karyologically investigated localities in the Ukraine (Tveretinova 1977), the species is reported as diploid.

6 - Jud. Alba, Vălişoara: 3.4 km SSE of the centre of the village, Cheile Aiudului glen – NW exp. limestone

rock cliff with Helictotrichon decorum, common, 46°22'29.1"N + 23°35'18.3"E, elev. 618 m, 13.V.2003

(H750)

Festuca pallens HOST – 2x

Documented populations of F. pallens in Romania occur in the relict vegetation of calcareous canyons and promontories, often composed of relict species such as Helictotrichon decorum

(JANKA) HERNARD, Sesleria rigida SCHUR. or Seseli devenyense SIMONKAI (Csűrös & Pop

1965). Previous studies in F. pallens have documented both diploid and tetraploid ploidy levels and the existence of several geographically distinct types (cf. Šmarda & Kočí 2003).

Plants from Romania are similar to the diploid plants documented from analogous localities in the W Carpathians and represent the diploid Oberösterreich-Niederösterreich type (Tracey

1980, Pils 1981), which is known from most of the natural range of F. pallens (Šmarda &

Kočí 2003).

- Jud. Alba, Ampoiţa: 1 km E of the village centre – S-SE exp. rocky slopes of limestone cliff above the

village, common, 46°07'04.0"N + 23°28'54.7"E, elev. 320 m, 12.V.2003 (#F388, H751, H752, H754)

- Jud. Alba, Ciuruleasa: 4.8 km WSW of the centre of the village – NW exp. limestone massif, abundant,

46°14'08.3"N + 22°57'59.5"E, elev. 959 m, 12.V.2003 (F422, F423)

- Jud. Alba, Ocoliş: 4.6 km S of the village centre – conglomerate rock near the road, common, 16°25'42.1"N

+ 23°27'46.5"E, elev. 410 m, 12.V.2003 (F420)

- Jud. Alba, Vălişoara: 3.4 km SSE of the centre of the village, Cheile Aiudului glen – NW exp. limestone

rock cliff with Helictotrichon decorum, abundant, 46°22'29.1"N + 23°35'18.3"E, elev. 618 m, 13.V.2003

(#F438, #F439, #F440, H747, H748, H749)

- Jud. Bihor, Vadu Crişului: 1 km S of the village centre on right river bank – limestone promontory above

the river, common, 46°58'18.1"N + 22°30'47.7"E, elev. 373 m, 11.V.2003 (#F385, F386, F387, H761,

H762)

7 - Jud. Cluj, Buru: 3.7 km ESE of the village centre – gneiss rocky slope and calcareous gravel of the railway

yard near the road, common, 46°30'25.2"N + 23°38'58.2"E, elev. 370 m, 11.V.2003 (#F402, #F403, H759,

H760)

- Jud. Cluj, Petreşti de Jos: Cheile Turzi glen and reservation, about 3 km SE of the town centre – steep

vertical limestone cliffs of the glen, relict vegetation dominated by Helictotrichon decorum and Sesleria

rigida, common, 46°33'34"N + 23°41'04"E, elev. 440 m, 11.V.2003 (F406)

- Jud. Cluj, Someşu Rece: S village periphery, above the road, 2.6 km SW of the Gilău village centre – Pine

forest on S. exp. serpentine rocky slope, scattered, 46°44'02.6"N + 23°21'14.8"E, elev. 458 m, 11.V.2003

(F442, F443)

- Jud. Alba, Feneş: 5 km ±N of the centre of the village, Cheile Feneşului glen – limestone rocky cliffs with

Helictotrichon decorum, Sesleria rigida and Saxifraga paniculata MILL., common, 46°09'04.9"N +

23°17'11.6"E, elev. 743 m, 12.V.2003 (F380, F381)

- Jud. Neamţ, Bicaz Chei: W village periphery, along the road – on limestone rocks in young pine forest

margin, common, 46°49'29.0"N + 25°52'02.8"E, elev. 642 m, 14.V.2003 (F417, F418, F419)

- Jud. Neamţ, Lacu Roşu: N settlement periphery – bottom of large SE exp. limestone cliff above the cottages,

with very relict vegetation, scattered, 46°47'56.0"N + 25°47'35.0"E, elev. 1170 m, 14.V.2003 (F425, F426)

Festuca polesica ZAPAŁ. – 2x

Plants from Hanu Conachi were previously recorded as F. vaginata subsp. buiae (PRODAN)

BELDIE (Beldie 1972) or F. pallens var. arenicola (PRODAN) E. NYÁRÁDY & A. NYÁRÁDY

(Nyárády & Nyárády 1964). Dihoru (1987) demonstrated that plants from this locality represent F. polesica, a species occurring on sands in the neighbouring Ukraine (Tveretinova,

1977). The diploid ploidy level of F. polesica from Romania is in concordance with the results of Mizianty & Pawlus (1984) from Poland and of Tveretinova (1977) from the

Ukraine.

8 - Jud. Galaţi, Hanu Conachi: reservation on the village periphery, about 6.5 km NW from Tudor Vladimirescu

town – sands with Anchusa gmelinii LEDEB. EX SPRENG. in larger clearing in Robinia forest, small

colony, 45°34'58.0"N + 27°34'26.5"E, elev. 16 m, 15.V.2003 (F389, F391)

Festuca pseudodalmatica DOMIN – 2x, 4x, 5x

Especially in the Balkan Peninsula, F. pseudodalmatica is still a taxonomically and karyologically problematic species. From Central Europe and the Ukraine, it is reported as tetraploid (Simon 1964, Činčura 1967, Tveretinova 1977, Tracey 1980, Šmarda et al. accepted), while the hexaploid chromosome number is reported from Bulgaria (Kožuharov &

Petrova 1991). In addition to these findings, on two localities in the Mureş region, 3 diploid plants were sampled in this work. Although there is a possibility of misidentification with the sympatrically occurring diploid F. valesiaca, the morphological characters (median leaf diameter: 0.4–0.7 mm, : 6.7–7.9 mm long, 2nd lemma: 4.8–5.9 mm long bearing a 1.2–

2.2 mm long awn) fully correspond with the parameters used to delimit this species in most floras and determination keys (Krajina 1930, Beldie 1972, Alexeev 1975, Tveretinova 1977,

Markgraf-Dannenberg 1980). In addition, plants grow abundantly on andesite, which is the preferred habitat of F. pseudodalmatica in Slovakia and Hungary (Soó 1973a, Dostál 1989).

A pentaploid plant was found together with other two tetraploids in the population near

Dubova. In comparison with the two tetraploids, this plant is more robust with larger spikelets

(median 8.25 mm versus 7.65 and 7.6 mm in tetraploids), lemmas (median 6.0 mm versus 5.5 and 5.1 mm ), longer awns (median 3.4 mm versus 2.35 and 3.0 mm), and stouter tiller leaves

(median 0.65 mm versus 0.5 mm in both tetraploids). The character of hairiness was the same, with fully glatt lemmas and paleas and densely hairy tiller sheaths. The pentaploid does not differ from the tetraploids as regards sclerenchyma pattern and number of veins on tiller leaf cross-sections.

9 2x

- Jud. Mureş, Răstoliţa: 4.3 km W of the village centre – andesite promontory above the road, dominant,

46°58'26.1"N + 24°56'14.4"E, elev. 550 m, 13.V.2003 (H744, H745)

- Jud. Mureş, Stânceni: W village periphery near the road – SW exp. andesite rock, abundant, 46°57'38.4"N +

25°13'04.8"E, elev. 615 m, 14.V.2003 (H746)

4x

- Jud. Bihor, Vadu Crişului: 1 km S of the village centre on right river bank – limestone promontory above

the river, common, 46°58'18.1"N + 22°30'47.7"E, elev. 373 m, 11.V.2003 (H763)

- Jud. Caraş-Severin, Lăpuşnicel: 2.5 km NNE of the village centre – burned grassland on siliceous rocks

above the river, abundant, 44°59'36.9"N + 22°14'43.7"E, elev. 355 m, 20.V.2003 (H775, H776)

- Jud. Caraş-Severin, Sviniţa: 14 km NNW of the village centre – limestone cliff above the road and Danube

river, abundant, 44°36'01.4"N + 22°01'22.4"E, elev. 159 m, 19.V.2003 (#F428, H736, H737, H738)

- Jud. Caraş-Severin, Dubova: 12.5 km SSW of the village centre – Pinus nigra ARN. forest on micaeous

slope near the road, scattered, 44°31'02.9"N + 22°11'39.4"E, elev. 136 m, 19.V.2003 (H739, H740)

- Jud. Cluj, Someşu Rece: S village periphery, above the road, 2.6 km SW of the Gilău village centre – pine

forest on S. exp. serpentine rocky slope, common, 46°44'02.6"N + 23°21'14.8"E, elev. 458 m, 11.V.2003

(#F444)

5x

- Jud. Caraş-Severin, Dubova: 12.5 km SSW of the village centre – Pinus nigra forest on micaeous slope near

the road, scattered, 44°31'02.9"N + 22°11'39.4"E, elev. 136 m, 19.V.2003 (#F424)

Festuca pseudovaginata PENKSZA – 2x

This species has been recently described from the sands in the Pannonian lowland in

Hungary (Penksza 2003) and its distribution is not yet completely known. In this work, it is reported for the flora of Romania for the first time. The diploid ploidy level is in concordance with the chromosome number given in the original work (Penksza 2003). Festuca pseudovaginata co-occurs frequently with F. vaginata and on the locality flowered much

10 earlier, in early May (Penksza 2003). This fully agrees with the observations on the reported

Romanian locality.

Jud. Satu Mare, Stănislau: 5 km ±N on the village centre – sandpit on sand dune, rare, 47°40'36.5"N +

22°19'05.2"E, elev. 140 m, 10.V.2003 (#F395)

Festuca pseudovina WIESB. – 2x

The diploid ploidy level is in accordance with the reports from Russia (Alexeev et al. 1988),

Austria (Tracey 1980), the Ukraine (Tveretinova 1977) and the Czech and Slovak Republics

(Šmarda et al., accepted). Tetraploid and hexaploid reports for F. pseudovina (Felföldy, 1947,

Tracey 1980, Rybnická 1987) probably refer to other taxa or potential hybrids (see below).

- Jud. Cluj, Moldonoveşti: 0.9 km SE of the village centre – siliceous rocks along the road, common,

46°29'33.8"N + 23°39'37.1"E, elev. 421 m, 11.V.2003 (H758)

- Jud. Satu Mare, Stănislau: 5 km ±N on the village centre – sandpit on sand dune, scattered, 47°40'51.4"N +

22°19'37.9"E, elev. 114 m, 10.V.2003 (H765)

Festuca pseudovina × rupicola – 4x

The tetraploid ploidy level is intermediate between the supposed parental species, diploid F. pseudovina and hexaploid F. rupicola. Both supposed parents occur sympatrically with the reported hybrid and are also documented in this work (samples H765, H766).

Misidentification with F. wagneri (DEGEN, THAISZ et FLATT) DEGEN, THAISZ et FLATT, a tetraploid taxa of similar sandy habitats in neighbouring Hungary (Baksay 1961; sub. F. conflicta BAKSAY, Šmarda et. al. accepted) is ruled out. In cross-section, the hybrid has 3 clearly separated sclerenchyma bands and tiller leaves without macrohairs, while F. wagneri

11 has a interrupted to closed sclerenchyma ring in cross-section and has tiller leaves with conspicuous macrohairs (Penksza & Engloner 2000).

Morphological characters are between those of both parent taxa. Small stems up to 13 cm long with short panicles 3–4 cm long, and 5.6–6.2 mm long spikelets with short lemmas

3.8–4.1 mm long resemble F. pseudovina, while lemmas densely covered with long hairs on the surface, 1.8–2.2 mm long awns, and stouter tiller leaves are typical of F. rupicola.

- Jud. Satu Mare, Stănislau: 5 km ±N on the village centre – sandpit on sand dune, scattered, 47°40'36.5"N +

22°19'05.2"E, elev. 140 m, 10.V.2003 (H764)

Festuca rupicola HEUFF. – 6x

Results from Romania confirmed the stability of the hexaploid ploidy level in this species, as was documented directly from Romania (Šmarda et al. accepted), neighbouring Moldova and the Ukraine (Tveretinova 1977, Alexeev et al. 1988) and in the studies from Central Europe

(Tracey 1980, Mizianty & Pawlus 1984, Pils 1984).

- Jud. Alba, Ampoiţa: 1 km E of the village centre – S-SE exp. rocky slopes of limestone cliff above the

village, common, 46°07'04.0"N + 23°28'54.7"E, elev. 320 m, 12.V.2003 (H753)

- Jud. Bacău, Răcăciuni: 4.5 km NNW of the village centre – E exp. degraded pasture on loamy substrate,

dominated by Teucrium chamaedrys L., Poa pratensis L. and Artemisia pontica L., sparse, 46°22'08.6"N +

26°58'13.0"E, elev. 155 m, 15.V.2003 (H734)

- Jud. Caraş-Severin, Moldova Veche: 1.5 km S of the town centre, near factory on Danube river bank – small

spoil heap on stabilized sands, rare, 44°42'46.2"N + 21°38'29.5"E, elev. 78 m, 19.V.2003 (H777)

- Jud. Caraş-Severin, Prigor: 12.5 km NNW of the village centre, overgrowing clearing with a house near the

forest road – oak-hornbeam forest fringe, the only large tuft, 45°01'51.1"N + 22°02'15.7"E, elev. 605 m,

20.V.2003 (#F429)

- Jud. Cluj, Petreşti de Jos: 3.2 km E of the village centre, ridge above the country road to Cheile Turzii glen –

pasture on limestone, common, 46°34'15.2"N + 23°41'43.3"E, elev. 616 m, 11.V.2003 (H757)

12 - Jud. Galaţi, Draganeşti: 3 km E of the village centre – forest track margin, Robinia forest on sand, several

plants, 45°47'06.0"N + 27°30'12.8"E, elev. 23 m, 15.V.2003 (#F379, H735)

- Jud. Galaţi, Hanu Conachi: reservation on the village periphery, about 6 km NW from Tudor Vladimirescu

town – stabilised sands on margin of Robinia forest, small colony, 45°34'54.6"N + 27°34'33.7"E, elev. 10

m, 15.V.2003 (#F430)

- Jud. Gorj, Bumbeşti-Jiu: 12 km N of the village centre – siliceous rock above the river near the road, larger

colony, 45°16'46.6"N + 23°23'21.4"E, elev. 468 m, 21.V.2003 (#F412, H770, H771, H772)

- Jud. Hunedoara, Călan: 3 km N of the centre of the village, on right bank of Strei river – burned pasture on

siliceous rocks, sparse, 45°45'44.1"N + 23°00'38.0"E, elev. 235 m, 22.V.2003 (H722)

- Jud. Ialomiţa, Ţăndărei: 6 km ENE of the village centre – fringe of forest and scrubs dominated by Acer

tataricum L. with Poa pratensis, isolated tufts, 44°39'48.5"N + 27°44'20.3"E, elev. 9 m, 17.V.2003 (H789)

- Jud. Mehedinţi, Vârciorova: about 200 m SE of the bridge and the turn-off to the monastery, above the road

– scree below the stabilized calcareous rock, scattered, 44°42'51.3"N + 22°28'52.6"E, elev. 95 m, 18.V.2003

(H788)

- Jud. Neamţ, Lacu Roşu: N settlement periphery – grassland near tourist way below the SE exp. large

limestone cliff, small colony, 46°47'53.0"N + 25°47'35.9"E, elev. 1142 m, 14.V.2003 (F427)

- Jud. Satu Mare, Stănislau: 5 km ±N on the village centre – sandpit on sand dune, scattered, 47°40'51.4"N +

22°19'37.9"E, elev. 114 m, 10.V.2003 (H766)

- Jud. Tulcea, Horia: 3.5 km S of the village centre, near the road – open acidophilous termophilous oak forest

with Quercus pubescens WILLD. and Q. frainetto TEN., common, 44°59'50.9"N + 28°26'55.8"E, elev. 220

m, 16.V.2003 (H728)

Festuca vaginata WILLD. – 2x

The localities of F. vaginata in the south-west part along the Danube river form the southern border of the natural range of this Pannonian species. The diploid ploidy level is in concordance with previous reports from nearby Hungary and from Slovakia (Pólya 1949,

Baksay 1956, Schwarzová 1967, Horánszky et al. 1972, Šmarda et al. accepted).

13 - Jud. Satu Mare, Stănislau: 5 km ±N on the village centre – sandpit on sand dune, large colony,

47°40'36.5"N + 22°19'05.2"E, elev. 140 m, 10.V.2003 (#F394)

- Jud. Dolj, Piscuteţ: about 3 km S of the village centre – disturbed place on sand dune with Alcana tinctoria

near the Danube, small colony, 43°49'59.5"N + 23°08'08.6"E, elev. 34 m, 18.V.2003 (F414, F415)

- Jud. Mehedinţi, Izvoarele: SW village margin, about 6.5 km NW from Gruia town – local sandpit on

stabilised sand dune near Danube river, larger colony, 44°18'07.4"N + 22°39'06.5"E, elev. 48 m, 18.V.2003

(F432, F433, F434, F435, F436, F437, H779, H780, H781, H782, H783, H784, H785, H786)

Festuca vaginata × valesiaca – 2x

The only tuft of this hybrid plant was found in a degraded sandy grassland dominated by F. valesiaca with rare occurrence of F. rupicola (both documented in this work). The second expected parent, F. vaginata, occurs on the nearby river island Moldova Veche (Beldie 1972).

Diploid ploidy level has also been reported in this hybrid combination from the sands in

Austria (Tracey 1980) and Hungary (Šmarda et al. accepted).

The plant is morphologically intermediate between both parents. The general appearance, character of tuft formation, and cross section of tiller leaves with 7 veins and long inner hairs resemble F. vaginata, while lemmas bearing 0.8–1 mm long awns and partly scabrid leaves are rather typical of F. valesiaca. The sclerenchyma pattern is also intermediate. Festuca valesiaca forms 3 separate sclerenchyma strands in tiller leaves, while

F. vaginata has a continuous sclerenchyma ring; the hybrid has an interrupted sclerenchyma ring. The sclerenchyma pattern may resemble that of F. wagneri, another species inhabiting sandy areas. However, this species is tetraploid (Baksay 1961; sub. F. conflicta BAKSAY,

Šmarda et. al. 2005) and has macrohairs (Penksza & Engloner 2000), in which it clearly differs from the reported hybrid.

14 - Jud. Caraş-Severin, Moldova Veche: 1.5 km S of the town centre, near the factory on Danube river bank –

small spoil heap on stabilized sands dominated by Festuca valesiaca, the only tuft, 44°42'46.2"N +

21°38'29.5"E, elev. 78 m, 19.V.2003 (#F409)

Festuca valesiaca GAUD. – 2x

The diploid ploidy level in Romania agrees with the results obtained from most of the natural range of this species (Tveretinova 1977, Tracey 1980, Pils 1984, Váchová 1987, Alexeev et al. 1988, Jarolímová 1992, Nazarova & Goukasian 1995, Šmarda et al. accepted). The hexaploid ploidy level reported in F. valesiaca from Kashmir (Koul & Gohil 1991) probably refers to other taxa. Based on the author’s field experience from the given locality, tetraploid reports by Felföldy (1947; sub F. pseudovina in the original work or F. valesiaca according to

Soó 1973b) from Hungary probably refer to F. pseudodalmatica. A wide distribution of the tetraploid cytotype of F. valesiaca in Hungary is mentioned by Horánszky et al. (1972), however, these results are speculative and are not supported by any definite locality or published chromosome counts.

- Jud. Alba, Ampoiţa: 1 km E of the village centre – S-SE exp. rocky slopes of limestone cliff above the

village, common, 46°07'04.0"N + 23°28'54.7"E, elev. 320 m, 12.V.2003 (H755)

- Jud. Alba, Vălişoara: 4 km SSE of the village centre, below the Cheile Aiudului glen – pasture on limestone,

scattered, 46°22'08.3"N + 23°35'24.6"E, elev. 420 m, 13.V.2003 (H742, H743)

- Jud. Arad, Vărădia de Mureş: 4.5 km WNW of the village centre – S exp. steppe slope above the road,

siliceous rocks dominated by Melica ciliata L., Teucrium chamaedrys and Sedum ssp., scattered,

46°02'12.9"N + 22°04'48.7"E, elev. 181 m, 22.5.2003 (H723)

- Jud. Caraş-Severin, Dubova: between Cazanele Mici and Cazanele Mari glens, opposite the Peştera

Ponicova caves – limestone rock near the road, common, 44°35'46.4"N + 22°15'15.3"E, elev. 189 m,

19.V.2003 (H741)

- Jud. Caraş-Severin, Moldova Veche: 1.5 km S of the town centre, near the factory on Danube river bank –

small spoil heap on stabilized sands, abundant, 44°42'46.2"N + 21°38'29.5"E, elev. 78 m, 19.V.2003 (H778)

15 - Jud. Cluj, Petreşti de Jos: 3.2 km E of the village centre, ridge above the country road to Cheile Turzii glen –

pasture on limestone, abundant, 46°34'15.2"N + 23°41'43.3"E, elev. 616 m, 11.V.2003 (H756)

- Jud. Hunedoara, Călan: 3 km N of the centre of the village, on right bank of Strei river – burned pasture on

siliceous rocks, abundant, 45°45'44.1"N + 23°00'38.0"E, elev. 235 m, 22.V.2003 (H721)

- Jud. Hunedoara, Ponor: E village periphery – intensive pasture on limestone rock above the village,

common, 45°30'50.6"N + 23°09'02.2"E, elev. 555 m, 21.V.2003 (H773)

- Jud. Mehedinţi, Vârciorova: 200 m SE of the bridge and the turn off to the monastery – scree below the

stabilized calcareous rock above the road, scattered, 44°42'51.3"N + 22°28'52.6"E, elev. 95 m, 18.V.2003

(H787)

- Jud. Tulcea, Horia: 3.5 km S of the village centre, near the road – open acidophilous termophilous oak forest

with Quercus pubescens and Q. frainetto, common, 44°59'50.9"N + 28°26'55.8"E, elev. 220 m, 6.V.2003

(H727)

Festuca xanthina ROEM. et SCHULT. – 2x

The samples investigated originated from the area of the locus classicus near Băile Herculane and were shown to be diploid in concordance with the work of Starlinger et al. (1994).

- Jud. Caraş-Severin, Băile Herculane: 5.5 km NNE of the town centre – steep limestone cliffs with Pinus

nigra, common, ±44°55'21"N + ±22°28'06"E, elev. ±550 m, 21.V.2003 (#F411, H774)

Relative DNA content of living versus herbarium samples

A comparison of the ratios obtained from living samples and from their one-year-old herbarium specimens, measured one week later, showed permanent and significant differences. Consequent simultaneous measurement of living samples and their herbarium specimens gave the same results reproducibly. Sample/standard ratios obtained from the measurement of herbarium samples were lower in 18 of 19 samples than those obtained from the measurement of living plants (in both sets of measurements, P<0.001, Fig. 1). The

16 difference ranged from +0.4% to -9.9% (median -4.1%). Measurement of herbarium samples in comparison with the analogous living samples also always resulted in higher coefficients of variance (P<0.001, Fig. 1)., which is in agreement with the parallel results of Suda (2004).

Peak shifts seem not to be critically ifluenced by the quality of peaks and ploidy level of samples. No significant correlations were observed (P>0.2) between the rate of peak shifts and either the CV of the dry sample, or the difference between CVs from dry and fresh material, and the ploidy level. The matter of peak shifts may be changed or lost post-mortal

DNA, or may be caused by the presence of secondary metabolites originated during cell degradation, or by a different concentration of metabolites in plants sampled in natural conditions and plants from cultivation. In this respect, measurement of dry material requires further critical study.

Although the observed difference is significant, it is not high enough to disallow parallel determination of the ploidy level in both dry and living samples. In the case of detailed measurements, results from dry and from fresh material should be treated separately.

Inter- and infraspecific DNA content variability

Almost all species with higher number of populations studied exhibit notable infraspecific relative DNA content variability (Tab. 1). This variability is beyond instrumental and methodical errors and in F. pallens and F. polesica, it was confirmed by the existence of clear non-overlapping double peaks in simultaneous measurements of the most distant samples (Fig. 2, 3). The differences observed in F. vaginata and F. rupicola were on the detection limits of instrument used and appear as only bimodal peaks in simultaneous measurements (Fig. 4, 5). The maximal differences obtained from separate (Tab. 1) and simultaneous measurements (Fig. 2, 3, 4, 5) were practically the same. The largest difference of about 9% (Tab. 1, Fig. 2) was observed in F. pallens. This species was sampled in a higher number of populations across a wide geographical range and the differences in the DNA content seems to be geographically limited there. While two plants from Cheile Feneşului

17 glen (samples F380 and F381) showed sample/standard ratios of 1.56 and 1.58, all three plants (F385, F386, F387) from Vadu Crişului (110 km NW from the first) have standard/sample ratios: 1.65, 1.66 and 1.70, i.e. up to 9% higher (Fig. 2). It is similar with F. vaginata, where samples from Stănislau (NW Romania) and Pisculeţ (both ratios 1.60–1.62) differ clearly from the other 6 samples from the population near Izvoarele (SW Romania, ratios 1.63–1.67). The most distant samples of F. rupicola (F412 and F427) also originated localities some 250 km distant. Although the relative stability of the interpopulation relative genome size was presented in the previous examples, this may be merely due to small number of populations studied. In the case of F. polesica, a 5.5% difference was observed in two samples from the same site.

Infraspecific DNA content variability in some grasses has been formerly documented in Zea mays (Rayburn et al. 1989), Dactylis glomerata (Reeves et al. 1998), and was recently proved in a similar range in Dasypyrum villosum (Greilhuber 2005). Although grasses are more frequently reported source of infraspecific genome size variability, this phenomenon seems to be only genera or species specific, since Lysák et al. (2000) and Le Thierry d´Ennequin et al. (1998) have documented the genome size of Sesleria albicans and some

Setaria species to be stable. Since DNA content variability is still being documented in single species, the discovery of multiple species variability in one genera may improve understanding of this phenomenon and favor Festuca to be a model genera for further study.

One of the reasons for infraspecific genome size variability in Festuca may be the presence of B chromosomes, commonly documented in this genus (Önder & Jong 1977, Pils

1980, Mizianty & Pawlus 1984, Kožuharov & Petrova 1991, Wilkinson & Stace 1991,

Šmarda & Kočí 2003). However, there need be no direct correlation between DNA content and the observed presence of B chromosomes (Poggio et al. 1998, Palestis et al. 2004). The other reason may be the variation in the number of retrotranspozons, which is assumed to be the main mechanism of recent genome size variation in plants (Bennetzen et al. 2005). The

18 number of retrotranspozons may be associated with different microclimatic gradients and ecologically conditioned in Hordeum spontaneum (Kalendar et al. 2000). Extreme habitats of rocky or sandy steppes with sharp microclimatic gradient may be one of the reasons for the recent DNA content variability in fescues. Since there appear small differences in DNA content among some of the species studied in this work, recent genome size variability in some taxa may also reflect actual microevolution and speciation processes (Murray 2005).

The main deviation in the DNA content in taxa studied was observed in F. xanthina.

Festuca xanthina (sect. Eskia) apparently differ in monoploid relative DNA content, which is about 1.39–1.58 times higher than in remaining species (sect. Festuca). The same pattern as in

F. xanthina was also observed in a caryologically proven sample of diploid F. alpestris

(2n=14, Šmarada & Kočí 2003) and some other species from the Eskia section (Šmarda et al. unpub.), to which the relative DNA content of F. xanthina was compared. Since Wallosek

(1999) observed nearly regular intervals (1-, 2-, 3-fold) in the relative genome size of different ploidy levels (2x, 4x, 6x) in other species of this section of the Alps, different monoploid DNA content may be distinct for the whole ot the Eskia section.

Acknowledgements

I am obliged to Karoly Penksza for confirmation of the determination of F. pseudovaginata. This project was supported by a grant from the Czech Science Foundation

GAČR 206/03/0228 and the research project of the Ministry of Education of the Czech

Republic MSM 0021622416.

References

19 Alexeev E.B. (1975): Uzkolistnye ovsyanitsy (Festuca L.) evropeĭskoĭ chasti SSSR (Narrow-

leaved fescues (Festuca L.) of European part of the USSR). Novosti Sist. Vyssh.

Rast. 12: 11-43.

Alexeev E.B., Sokolovskaya A.P. & Probatova N.S. (1988): Taksonomiya, rasprostranenie i

chisla khromosom ovsyanits (Festuca L., Poaceae) flory SSSR. 3. sektsiya Festuca:

F. tschujensis – F. beckeri ( Taxonomy, distribution and chromosome numbers of

fescues (Festuca L., Poaceae) ) in the USSR flora, 3. section Festuca: F. tschujensis

– F. beckeri). Byull. Moskovsk. Oshch. Iis. Prir., Otd. Biol. 93(2): 90-99.

Arumuganathan K., Tallury S. P., Fraser M. L., Bruneau A. H. & Qu R. (1999): Nuclear DNA

content of thirteen turfgrass species by flow cytometry. Crop. Sci. 39: 1518-1521.

Auquier P. et Kerguélen M. (1978): Un groupe embrouillé de Festuca (Poaceae): les taxons

désignés par ľ épithète “glauca” en Europe occidentale et dans les regions voisines.

Lejeunia, Ser. Nova 89 (1977): 1-82.

Auquier P. et Rameloo J. (1973): Nombers chromosomiques dans le genre Festuca en

Belgique et dans les régions limitrophes. Bull. Soc. Roy. Bot. Belgique 106: 317-

328.

Baksay L. (1956): Cytotaxonomical studies on the flora of Hungary. Ann. Hist.-Nat. Mus.

Natl. Hung., Ser. Nova 7: 321-334.

Baksay L. (1961): Report on chromosome number of Festuca pallens. In: Löve A. & Löve D.,

Chromosome numbers of Central and Northwest European plant species. Opera Bot.

5: 364.

Beldie A. (1972): Festuca L. In: Săvulescu T. (ed.), Flora Republicii Socialiste România 12

(Flora of the Romanian Socialist Republic 12). 459-559. Academiae Reipublicae

Socialisticae România, Bucureşti.

Bennetzen J. L., Ma J. & Devos K. M. (2005): Mechanisms of recent genome size variation in

flowering plants. Ann. Bot. (König & Sims) 95: 127-132.

20 Csűrös Ş. & Pop I. (1965). Consideraţii generale asupra florei şi vegetaţiei masivelor

calcaroase din Munţii Apuseni (General considerations about flora and vegetation of

calcareous massives of Apuseni Mts.). Contr. Bot. Univ. “Babes-Bolay” Cluj-

Napoca 1965: 113-131.

Činčura F. (1967): Príspevok k cytológii druhu Festuca pseudodalmatica KRAJ. z území

východného Slovenska. (Contribution to the cytology of Festuca pseudodalmatica

KRAJ. from the area of East Slovakia). Biologia (Bratislava) 22: 462-467.

Dihoru G. (1987): Festuca beckeri în flora României. (Festuca beckeri in the flora of

Romania). Stud. Cercet. Biol. (Bucharest), Ser. Biol. Veg. 39: 3-20.

Doležel J. & Bartoš J. (2005): Plant DNA Flow Cytomery and Estimation of Nuclear Genome

Size. Ann. Bot. (König & Sims) 95: 99-110.

Doležel J. & Göthe W. (1995): Sex determination in dioecious plants Melandrium album and

M. rubrum using high-resolution flow cytometry. Cytometry 19: 103-106.

Dostál J. (1989): Nová květena ČSSR (New flora of the Czech Socialist Republic). vol. 1, 2.

Academia, Praha.

Ehrenbergerová K. (2001): Přehled taxonomických názorů na členění Festuca ser. Festuca

v ČR a střední Evropě (A rewiev of taxonomic opinions on division of Festuca ser.

Festuca in the Czech Republic and Central Europe). Zprávy Čes. Bot. Společn.

35(2000): 129-144.

Felföldy L. (1947): Chromosome numbers of certain Hungarian plants. Arch. Biol. Hung. 17:

101-103.

Fuente Garcia V., Ferrero L. M. & Ortúñez Rubio E. (2001): Chromosome counts in the

genus Festuca L. section Festuca (Poaceae) in the Iberian Peninsula. Bot. J. Linn.

Soc. 137: 385-398.

21 Fuente Garcia V. & Ortúñez Rubio E. (1998): Biosistematica de la sección Festuca del genero

Festuca L. (Poaceae) en la Peninsula Iberica. Ediciones de la Universidad

Autónoma de Madrid, Madrid.

Greilhuber J. (2005): Intraspecific Variation in Genome Size in Angiosperms: Identifying its

Existence. Ann. Bot. (König & Sims) 95: 91-98.

Horánszky A. Jankó B. & Vida G. (1972): Problems in biosystematic studies of Hungarian

Festuca ovina (sensu lato) representatives. Symp. Biol. Hung. 12: 177-182.

Huff D. R. & Palazzo A. J. (1998): Fine fescue determination by laser flow cytometry. Crop.

Sci. 38: 445-450.

Jarolímová V. (1992): Chromosome count for Festuca valesiaca. In: Měsíček J. & Jarolímová

V., List of chromosome numbers of the Czech vascular plants. 132. Academia,

Praha.

Kalendar R., Tanskanen J., Immonen S., Nevo E. & Schulman A. H. (2000): Genome

evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotranspozon

dynamics in response to sharp microclimate divergence. Proc. Natl. Acad. Sci.

U.S.A. 97: 6603-6607.

Koul K.K. and Gohil R.N. (1991): Cytogenetic studies on some Kashmir grasses. VIII Tribe

Agrostideae, Festuceae and Paniceae. Cytologia 56: 437-452.

Kožuharov S.I. & Petrova A.V. (1991): Chromosome numbers of Bulgarian angiosperms.

Fitologiya 39: 72-77.

Krajina V. (1930): Festuca. Schedae ad floram cechoslovenicam exsicatam. Cent 2. Acta Bot.

Bohem. 9: 175-220.

Le Thierry d´Ennequin M., Panaud O., Brown S. & Siljak-Yakovlev A. & Sarr A. (1998):

First evaluation of DNA content in Setaria genus by flow cytometry. J. Heredity 89:

556-559.

22 Lysák M.A., Rostková A., Dixon J.M., Rossi G. & Doležel J. (2000): Limited genome size

variation in Sesleria albicans. Ann. Bot. (König & Sims) 86: 399-403.

Markgraf-Dannenberg I. (1980): Festuca L. In: Tutin T.G., Heywood V.H. et al. (eds.), Flora

europaea 5. 125-153. Cambridge University Press, Cambridge.

Mizianty M. & Pawlus M. (1984): Chromosome numbers of some Polish species from the

genus Festuca, group Ovina (part 1). Fragm. Florist. Geobot. 28(1982): 363-369.

Murray B. G. (2005): When does infraspecific C-value variation become taxonomically

significant? Ann. Bot. (König & Sims) 95: 119-125.

Nazarova E. & Goukasian A. (1995): Mediterranean chromosome number reports. Flora

Mediterranea 5: 340-345.

Nyárády E.I. & Nyárády A. (1964): Studie über die Arten der Sektion Ovinae FR. der Gattung

Festuca in der RVR. Rev. Roumaine Biol., Sér. Bot. 9: 99-136.

Önder A. & Jong K. (1977): The occurrence of B chromosomes in Festuca ovina L. sensu

lato from Scotland. Watsonia 11: 327-330.

Otto F. (1990): DAPI staining of fixed cells for high-resolution flow cytometry of nuclear

DNA. In: CRISSMAN H. A. & DARZYNKIEWICZ Z. (eds.), Flow cytometry. Meth. Cell

Biol. 33: 105-110.

Palestis B.G., Trivers R., Burt A. & Jones R.N. (2004): The distribution of B chromosomes

across species. Cytogenet. & Genome Res. 106: 151-158.

Penksza K. (2003): Festuca pseudovaginata, a new species from sandy areas of the

Carpathian basin. Acta Bot. Hung. 45: 365-372.

Penksza K. & Engloner A.I. (2000): Taxonomic study of Festuca wagneri (DEGEN, THAISZ et

FLATT) DEGEN, THAISZ et FLATT in Degen 1905. Acta Bot. Hung. 42: 257-264.

Pils G. (1980): Beiträge zur Karyologie,Verbreitung und Systematik der Gattung Festuca in

den Ostalpenländern. Dissertation thesis, University of Vienna, Wien.

23 Pils G. (1981): Karyologie und Verbreitung von Festuca pallens HOST in Österreich. Linzer

Biol. Beitr. 13: 231-241.

Pils G. (1984): Systematik, Karyologie und Verbreitung der Festuca valesiaca-Gruppe

(Poaceae) in Österreich und Südtirol. Phyton (Horn) 24: 35-77.

Poggio L., Rosato M., Chiavarino A.M. & Naranjo C.A. (2004): Genome size and

enviromental correlations in maize (Zea mays ssp. mays, Poaceae). Ann. Bot.

(König & Sims) 82 (Supplement A): 107-115.

Pólya L. (1949): Chromosome numbers of some Hungarian plants. Acta Gebot. Hung. 6: 124-

137.

Raicu P., Chirilă R. & Kellner E. (1974): Chromosomal complement of some Romanian

populations of Lolium and Festuca. Rev. Roumaine Biol., Sér. Bot. 19: 205-209.

Rayburn A. L., Auger J. A., Benzinger E. S. & Hepburn A. G. (1989): Detection of

infraspecific DNA content variation in Zea mays L. by flow cytometry. J. Exp. Bot.

40: 1179-1183.

Reeves G., Francis D., Davies M. S., Rogers H. J., & Hodkinson T. (1998): Genome size is

negatively correlated with altitude in natural populations of Dactylis glomerata. Ann.

Bot. (König & Sims) 82 (Supplement A): 99-105.

Rybnická M. (1987): Reports on chromosome number of Festuca pseudovina. In: Májovský

J. & Murín A., Karyotaxonomický prehľad flóry Slovenska (Caryotaxonomical

survey of the Slovakian flora). 378. Veda, Bratislava.

Schwarzová T. (1967): Beitrag zur Lösung taxonomischer Probleme der Festuca vaginata W.

K. und Festuca psammophila HACK. Acta Fac. Rerum Nat. Univ. Comen., Bot. 14:

381-414.

Simon T. (1964): Entdeckung und Zönologie der Festuca dalmatica (HACK.) RICHT. in

Ungarn und ihr statistischer Vergleich mit ssp. pseudodalmatica (KRAJ.) SOÓ. Ann.

Univ. Sci. Budapest. Rolando Eötvös, Sect. Biol. 7: 143-156.

24 Soó R. (1973a): A Magyár flóra és vegetáció rendszertani-növényföldrajzi (Systematic and

geobotanical manual of the Hungarian flora and vegetation) Vol. 5. Akadémiai

Kiadó, Budapest.

Soó R. (1973b): Zeitgemässe Taxonomie der Festuca ovina – Gruppe. Acta Bot. Acad. Sci.

Hung. 18: 363-377.

SPSS Inc. (1998): SPSSR Base 8.0. SPSS Inc., Chicago.

Starlinger F., Vitek E., Pascher K. & Kiehn M. (1994): Neue Chromosomenzählungen für die

Flora Rumäniens. In: Heltmann H. & Wendelberger G. (eds.),

Naturwissenschaftliche Forschungen über Siebenbürgen V: Beiträge zur Flora,

Vegetation und Fauna von Siebenbürgen. 181-194. Böhlau Verlag, Köln.

Suda J. (2004): An employment of flow cytometry into plant biosystematics. Ph.D. thesis,

Charles University in Prague, Praha.

Suda J. & Trávníček P. (accepted): Reliable DNA ploidy determination in dehydrated tissues

of vascular plants by DAPI flow cytometry – new prospects for plant research.

Cytometry PartA: accepted

Šmarda P. & Kočí K. (2003): Chromosome number variability in Central European members

of Festuca ovina and F. pallens groups (sect. Festuca). Folia Geobot. 38: 65-95.

Šmarda P., Müller J., Vrána J. & Kočí K. (2005): Ploidy level variability of some Central

European fescues (Festuca L. subg. Festuca, Poaceae). Biologia (Bratislava) 60: 25-

36.

Šmarda P. & Stančík D. (accepted): Ploidy level variability in South American fescues

(Festuca L., Poaceae): use of flow cytometry in up to 5 ½-year-old caryopses and

herbarium specimens. Pl. Biol. (Stuttgart)

Tracey R. (1980): Beiträge zur Karyologie, Verbreitung und Systematik des Festuca ovina –

Formenkreises im Osten Österreichs. Dissertation thesis, University of Vienna,

Wien.

25 Tveretinova V.V. (1977): Festuca. In: Prokudin Yu. N., Vovk A.G., Petrova O.A., Ermolenko

E.D. & Vernichenko Yu.V., Zlaki Ukrainy (Grasses of the Ukraine). 265-320.

Naukova Dumka, Kiev.

Váchová M. (1987): Karyological study of the Slovak flora 21. Acta Fac. Rerum Nat. Univ.

Comen., Bot. 34: 27-32.

Wallosek C. (1999): The acidophilous taxa of the Festuca varia group in the Alps: New

studies on Taxonomy and phytosociology. Folia Geobot. 34: 47-75.

Wilkinson M.J. & Stace C.A. (1991): A new taxonomic treatment of Festuca ovina L.

aggregate (Poaceae) in the British Isles. Bot. J. Linn. Soc. 106: 347-397.

26

species DNA living samples herbarium specimens ploidy N 2C ratio ± 1x max. diff. CV N 2C ratio ± CV S.D. ratio (%) S.D. F. callieri 4x 5 3.035 ± 0.019 0.759 1.4 1.76 11 2.962 ± 0.122 3.92 F. ovina 2x . . . . . 1 1.434 4.52 F. pallens 2x 22 1.604 ± 0.034 0.802 9.2 2.18 18 1.549 ± 0.043 3.94 F. polesica 2x 2 1.693 ± 0.065 0.847 5.5 1.86 . . - 2x . . . . . 3 1.405 ± 0.060 3.25 F. pseudodalmatica 4x 2 3.065 ± 0.030 0.766 1.4 2.10 10 2.925 ± 0.083 3.18 5x 1 3.739 0.748 . 1.79 1 3.476 3.81 F. pseudovaginata 2x 1 1.496 0.748 . 1.65 1 1.482 2.45 F. pseudovina 2x . . . . . 2 1.380 ± 0.011 3.92 F. pseudovina × 4x . . . . . 1 3.090 4.52 F. rupicola F. rupicola 6x 4 4.652 ± 0.076 0.775 3.8 1.73 17 4.415 ± 0.173 3.10 F. vaginata 2x 9 1.633 ± 0.024 0.817 4.2 1.62 9 1.543 ± 0.040 2.19 F. vaginata × 2x 1 1.563 0.782 . 1.87 1 1.433 3.12 F. valesiaca F. valesiaca 2x . . . . . 11 1.415 ± 0.039 3.63 F. xanthina 2x 1 2.368 1.184 . 2.75 2 2.285 ± 0.016 2.50 Total 46 . . . 1.91 88* . 3.22

Tab. 1: Observed DNA ploidy levels and measured characteristics of species:

N – number of investigated samples.

2C ratio ± S.D. – mean somatic relativa DNA content (sample/standard ratio) of samples ± standard deviation .

1x ratio – monoploid relative DNA content (sample/standard ratio divided by ploidy level).

CV – median values of coefficient of variance of sample peaks in measurements. max. diff. (%) – maximum difference in relative DNA content found between two samples expressed in percents as 100×(larger/smaller – 1).

* – 65 herbarium specimens and 23 herbarium vouchers of cultivated samples.

27 Figure captions:

Fig. 1: Comparison of flow histograms obtained from the consecutive measurements of fresh plants (A) and their one-year-old herbarium specimens (B) showing lower standard/sample ratio and higher CVs of dry material.

1 – standard, Lycopersicon esculentum; 2 – F395 diploid F. pseudovaginata; 3 – F412 hexaploid F. rupicola. Peak characteristics are given in the following order: mean, CV, sample/standard ratio. peak 1a: 46.75, 1.60, 1.000 peak 2a: 70.49, 1.24, 1.508 peak 3a: 220.90, 1.06, 4.725 peak 1b: 47.07, 1.59, 1.000 peak 2b: 70.43, 2.48, 1.496 peak 3b: 218.34, 2.18, 4.702

Fig. 2: Difference in the relative DNA content of two simultaneously measured diploid

Festuca pallens samples proved as a non-overlapping double peak.

1 – standard, Lycopersicon esculentum; 2 – sample F380 from Cheile Feneşului glen; 3 – sample F387 from Vadu Crişului.

Fig. 3: Difference in the relative DNA content of two simultaneously measured diploid

Festuca polesica samples proved as a non-overlapping double peak.

1 – standard, Lycopersicon esculentum; 2 – sample F389 and 3 – sample F391, both originated from the same site at sand in Hanu Conachi.

Fig. 4: Difference in the relative DNA content of two simultaneously measured diploid

Festuca vaginata samples indicated by an apparently bimodal peak.

28 1 – standard, Lycopersicon esculentum; 2 – F394 from Stănislau (NW Romania); 3 – sample

F434 from Izvoarele (SW Romania).

Fig. 4: Difference in The relative DNA content of two simultaneously measured diploid

Festuca rupicola samples indicated by an apparently bimodal peak.

1 – standard, Lycopersicon esculentum; 2 – sample F412 from Bumbeşti-Jiu; 3 – sample F427 from Lacu Roşu (SW Romania).

29 Fig. 1

30

Fig. 2

31 (5)

Šmarda P., Šmerda J., Knoll A. et Bureš P. (in prep.):

Revision of Central European taxa of Festuca ser. Psammophilae Pawlus – morphometrical, karyological and AFLP analysis.

Revision of Central European taxa of Festuca ser. Psammophilae Pawlus – morphometrical, karyological and AFLP analysis

Petr Šmarda1, Jakub Šmerda1, Aleš Knoll2 and Petr Bureš1

1 Department of Botany, Faculty of Science, Masaryk University in Brno, Kotlářská 2, 611-37 Brno, Czech Republic, [email protected], [email protected] 2 Department of Animal Morphology, Physiology and Genetics, Mendel University of Agriculture and Forestry Brno, Zemědělská 1, 613-00 Brno, Czech Republic, [email protected]

Abstract Taxonomic status of Central European taxa F. pallens s.l., F. psammophila, F. polesica and F. vaginata was revised using the multivariate morphological analysis of 436 well karyologically documented plants, and AFLP analysis. Six species were recognized: F. pallens Host (relict rocky habitats; diploid); F. csikhegyensis Simonk. (basiphilous rocky habitats; tetraploid); F. psammophila (Čelak.) Fritsch (acidophilous sands) with two subspecies, F. p. subsp. psammophila and F. p. subsp. dominii (Krajina) P. Šmarda (SW Moravia, C and E Poland); F. vaginata Willd. (basiphilous sands mainly in Pannonian region); F. polesica Zapał. (seaside and inland sand dunes); F. pseudovaginata Penksza (basiphilous sands in the Pannonian Lowland). Identification key and distribution maps, informations about type specimens, exsiccata collections, synonyms and hybrids are provided. Evolutionary relationships with the assumed putative taxon F. pallens and the rather isolated position of F. polesica are discussed.

Key words: Fescue, taxonomy, systematics, evolution, multivariate morphometrics, AFLP, flow cytometry, polyploidy.

Running title: Central European taxa of Festuca ser. Psammophilae

Festuca ser. Psammophilae Pawlus belongs to the critical groups of fine leaved fecues of subgenus Festuca. It consists of several closely related taxa of tussocky growing with intravaginal tillering, and thick, rigid, tiller leaves (0.6–1.3 mm in diameter) with sclerenchyma forming continuous or only partly interrupted ring on cross section. The whole plant is usually apparently pruinose, rarely in some taxa subpruinose or not pruinose. Pawlus (1985), revising Polish fescues, included into this series F. vaginata Willd., F. psammophila (Čelak.) Fritsch, F. polesica Zapał., and F. pallens Host. Of the species recognised in the Central Europe, F. dominii Krajina, F. glaucina Stohr, F. pannonica Host, and F. pseudovaginata Penksza should be further included into this group. All these taxa are morphologically very close, and they differ mostly in quantitative characters. In F. pallens differentiation in ploidy level is commonly reported (Tracey 1980, Pils 1981, Šmarda and Kočí 2003, Šmarda et al. 2005). The delimitation of particular taxa and their distribution remains unclear, especially due to the regional character of taxonomical studies and restricted knowledge of the type material. The types of most Festuca names proposed by Host and Hackel were designated only recently (Foggi and Signorini 2004, Foggi et al. 2004) and they may cause nomenclatorical changes. Based on the combination of multivariate morphometrics, detail karyological survey of critical taxa, study of AFLP polymorphism, and revision of the recently established types, we propose a new taxonomical treatment of Festuca ser. Psammophilae and try to outline main phylogenetic relations within this group.

1

Brief taxonomic history The early monograph Icones et descriptiones graminum austriacorum (Host 1802) represents the starting point for the study of fescues in the Central Europe represents Host’s. Host’s monograph includes the descriptions of the two main morphotypes of the group: awned plants from rocky habitats, F. pallens Host, and unawned ones from sandy areas, F. amethystina Host. Because of the homonymy with the Linnaean F. amethystina L., another name F. vaginata Willd. is used for the populations of unawned fescues from sands in Pannonian region (Kerner 1879). For a long time the name F. pallens Host had been treated as synonym to F. glauca Lam., F. cinerea Vill. or F. duriuscula L. in numerous Central European floras. Although Host (1827) explicitly states, that F. pallens differs from F. glauca of other authors, this name remain neglected for long and it was resurrected only as late as by Soó (1973). It was generally accepted for Central European species after the problem of “glaucous” fescues in W Europe had been resolved by Auquier and Kerguélen (1978). The Linnaean name F. duriuscula L., commonly applied to the taxa of this group, was shown to be ambiguous and its lectotype corresponds with F. rubra L. (Caferty et al. 2000). Although Markgraf-Dannenberg (1980) recognize three subspecies of F. pallens in Flora Europaea, their taxonomic scope still remains unclear. The name F. pallens “subsp. scabrifolia (Hack. ex Rohlena) Zielonk.” of Zielonkowski (1973) and Markgraf-Dannenberg (1980) refers to diploid populations, whereas in the type locality in Vltava River valley N of Prague (Rohlena 1899) tetraploids occur (Šmarda and Kočí 2003). Festuca pallens subsp. treskana Markgr.-Dann. (Markgraf-Dannenberg 1978, 1980), reported to grown over the whole of the former Yugoslavia was later shown to be local taxon confined to the valley of the Treska River in Macedonia (Kostadinovski 1993, 1999). Its relationship to F. pallens is not clear (Kostadinovski 1999), and it is not included within this study. Other isolated population of F. pallens in Central Appenines (Di Pietro and Catonica 1999) was recently revised as F. inops De Not. (Foggi et al. accepted). Chromosome counts during the last 60 years demonstrated karyological heterogenity of F. pallens s.l. (cf. Šmarda and Kočí 2003). At both ploidy levels, several morphotypes with confined regional distribution have been identified in Austria (Tracey 1980, Pils 1981) and in wider geographical context of Central Europe (Šmarda and Kočí 2003). These taxa still lack formal taxonomical treatment and are used independantly to the conception of Flora Europaea (Markgraf-Dannenberg 1980). Two diploid and three tetraploid taxa have been recognised (Tracey 1980, Pils 1981, Šmarda and Kočí 2003, Šmarda et al. 2005): − diploid “Oberösterreich-Niederösterreich” type (almost in the whole distribution area) − diploid “Weizklamm” type (population from Weizklamm glen in Austria) − tetraploid “Pannonisches-Hügelland” type (calcareous hills of Pannonian region) − tetraploid “Steiermark-Kärnten” type (E Alps) − tetraploid “Scabrifolia” type (NW Germany and Bohemia)

The Scabrifolia type corresponds to F. cinerea var. lapidosa Stohr (Šmarda et al. 2005), recently treated at species rank as F. glaucina Stohr (2001). The populations of glaucous fescues from sands near the Oleško village (Central Bohemia), reported as F. duvalii (St.-Yves) Stohr by Toman (1974), were also refered as Scabrifolia type (Šmarda and Kočí 2003). Festuca pannonica Wulfen ex Host is still unclear taxon of F. pallens s.l. described from Pannonian hills in Lower Austria (Host 1809). Separate species status of F. pannonica was accepted by Markgraf-Dannenberg (1980) and in the flora of the former Czechoslovakia (Dostál 1989). Some Hungarian authors considered it as

2 subsecies of F. pallens (Soó 1973, Farkas 1999), and Englmaier (1994, 2005) and (Simon 2000) included it even into F. pallens. Festuca psammophila (Hack. ex Čelak.) Fritsch is reported to grown on acidic sands in N and E Central Europe (Pawlus 1985, Grulich et al. 2002, Stohr 2002) and it forms vicariant of F. vaginata Willd. from the basic sands in the Pannonian Lowland. Intermediate types between those two species that occur on sands along Morava River were described by Krajina (1930) as F. dominii Krajina. Because of the week differential characters of this taxon in the original work, and because a taxonomic study within a wider geographical scale is still lacking, the taxonomic status of F. dominii is questioned by Conert (1998). Schwarzová (1967), studying plants from the Czech Republic and Slovakia, treated F. dominii as subspecies of F. vaginata. This treatment was accepted in numerous identification keys and checklists (Markgraf-Dannenberg 1980, Dostál 1989, Marhold and Hindák 1998, Grulich et al. 2002, Englmaier 2005). The isolated population of F. psammophila from sandstones in Bělá pod Bezdězem in Central Bohemia (Klika 1933) was described as F. psammophila subsp. muellerstollii Toman (1990). Due to its local character, this taxon has not been accepted by recent authors (e.g., Conert 1998, Grulich et al. 2002). Pawlus (1985) recorded several localities of F. vaginata in Poland and described there a new variety F. vaginata var. aristata. However, some statements of this paper, such as records of F. vaginata from rocky sites in Slovakia (Pawlus 1985: 276), are doubtful and the study also starwed from its restricted geographical scope. The newly described variety F. vaginata var. aristata, should differ in the length of awn, which is one of the most important character of F. vaginata, and its including within this species has to be reconsidered. Based on the records of F. vaginata from the Dnieper region (Kreczetovicz and Bobrov 1937), Schwarzová (1967) assumed an evolution centre of psammophilous fescues F. psammophila and F. vaginata in this region and the sands of the nearby Black Sea cost. She postulated that they diverged during their migration into Central Europe: F. vaginata reach the Central Europe via Pannonia inside Carpathians while F. psammophila migrate North, outside the Carpatians. In later paper, Alexeev (1975) indicates F. vaginata does not occur in the former Soviet Union and only F. polesica Zapał. or F. beckeri (Hack.) Trautv. are recently reported from Dnieper region in Ukraine (Tveretinova 1977). Similarly the fescue populations on sands in the Black Sea coast in Romania, formerly treated at various ranks within F. vaginata and F. pallens (Nyárády and Nyárády 1964 , Beldie 1972), were recently identified as F. polesica and F. beckeri (Dihoru 1987). Pawlus (1985) included into Festuca ser. Psammophilae also F. polesica Zapał., another sandy species distributed in N and E Europe (Hultén et Fries 1986). Tzvelev (1972) and Alexeev (1975) included it into F. beckeri s.l. and the later discussed also close evolution relations of F. beckeri s.l. and F. pallens. Alexeev et al. (1988) assumed F. polesica to be tetraploid as there exist an early chromosome count by Lewitsky and Kuzmina (1927, as F. ovina subsp. beckeri). Later counts from Denmark, Poland, Ukraine, and Romania gave only diploids (Böcher 1947, Tveretinova 1977, Mizianty and Pawlus 1984, Šmarda submitted). In the latest paper on fescues from sands in Hungary, Penksza (2003) described a new diploid taxon, F. pseudovaginata. This species was later found also in sands of NW Romania close to the Hungarian border (Šmarda submitted Folia). The identification of hybrids is still a hard task in Festuca taxonomy, very difficult due to the morphological plasticity and minor characters of most taxa. Hybrid of F. vaginata with F. pseudovina has been mentioned already by Hackel (1882) and a number of further hybrid combinations was consequently described from Central Europe by Vetter (1915, 1916, 1917, 1922). Malik (1967) successfully hybridised also phylogenetically distant Festuca species, and artificial hybrids of F. pallens and F. vaginata were prepared also in Hungary (Horánszky et al. 1972). Several hybrids and intermediary types related to Festuca ser. Psammophilae are listed also in the work of

3

Simonkai (F. csikhegyensis Simonk., 1906) and Májovský (1955, 1963), as well as in some recent publications (Toman 1974, Tracey 1980, Englmaier 1995, Fischer and Stohr 2000, Šmarda and Kočí 2003, Šmarda submitted).

Materials and methods Plant material. Samples studied were collected in the wild by the senior author and several collaborators and are cultivated in gardens of the Faculty of Education, Masaryk University in Brno, and the Research Institute for Fodder Crops in Trobusko (both Czech Republic). Some herbarium specimen of F. pallens s.l. were contributed by J. Müller (Friedrich-Schiller-Universität, Jena, Germany), and five samples of F. pseudovaginata, including two isotypes, by K. Penksza (Szent István University, Gödölő, Hungary). In morphological part of the study, we focused rather on the general pattern within the whole distribution range, and the geographically representative number of sampled localities was preferred to the detailed population sampling. Usually 1 to 4 (14 at maximum) samples were taken for the analysis from one locality. Herbarium vouchers of all samples studied are stored at the Herbarium of the Department of Botany, Masaryk University in Brno (BRNU). DNA isolation. Total DNA was isolated from young leaves of individual plants. DNA was extracted using DNeasy Plant Mini Kit (Qiagen) according to the manufacture’s instructions. The quality of the extracted DNA was checked on 1% TAE-agarose gels. DNA concentration was determined photometrically using SmartSpecTM 3000 Spectrophotometer (Bio-Rad). AFLP fingerprinting. The Procedure was performed according to the protocol of the AFLPTM plant mapping kit (PE Applied Biosystems). Genomic DNA (250 ng) was double-digested at 37 °C for 2 h with EcoRI and MseI, and ligated to EcoRI and MseI adapters in the same reaction. The preselective amplification was done with EcoRI+A and MseI+C primers in thermocycler MiniCyclerTM (MJ Research). In the preliminary primer testing 12 different combinations of MseI primers with four selective nucleotides (Mian et al. 2002) were tested. Following three final primer pairs combination were chosen: (FAM)-EcoRI+ACT / MseI+CAGC, (JOE)-EcoRI+AAG / MseI+CCTA, (NED)-EcoRI+AAC / MseI+CTCG. Selective amplification products were separated on a POP-4 polymer gels with an internal size standard GeneScan-500 [ROX] (Applied Biosystems) using a Genetic Analyser ABI PRISM 310 (Applied Biosystems). Raw data were analysed with GeneScan Analysis Software v3.7 and Genotyper DNA Fragment Analysis Software v3.7 (Applied Biosystems). For each primer combination, all polymorphic peaks ranging from 50 to 500bp were scored and transferred into a binary matrix. In total, 321 polymorphic peak positions in all 62 analysed samples were scored. Measured characters. Combination of 14 morphological characters, evaluated the most discriminate power in the previous study (Šmarda 2001), and characters frequently used in determination keys were chosen for statistical analysis (Tab. 1, 1–14). Characters were measured on herbarium specimens of plants collected in wild. In 73 plants collected as sterile, specimens collected after one year of cultivation were used. For 15 samples, both specimens from the wild and from cultivation were included. A total of 436 plants (451 herbarium specimens) from 249 sites were analysed (Tab. 2). Two other characters, the nodding of panicles before anthesis and relative flowering time, were observed on simultaneously cultivated plants in the cultivation field and in wild populations. They were not included in to the statistical analysis. In F. pallens s.l., known to differ karyologically, only samples with known ploidy level were measured. In this respect, we used the results of our previous karyological and cytometric studies (Šmarda and Kočí 2003, Šmarda et al. 2005, Šmarda submitted). Fifty seven additional cytometric ploidy level estimations of living plants and herbarium vouchers were obtained in F. pallens s.l., F. pseudovaginata and

4

F. polesica. The method is described by Šmarda et al. (2005) and measured samples are marked by an asterisk in Tab. 2. As shown by Toman (1990: Tab. 2) by the random sampling and measurements in F. pallens, the size of generative parts may depend on the stage of plant development and the date of collection. Stems developing earlier are usually most robust, with large panicles, and usually bear a high number of spikelets. Measurements from the middle of May and the end of June may differ 50% in stem length or in more than 10% in spikelet number and lower panicle branches length (Toman 1990). In other characters, differences are not so strong. To ensure the maximum comparability among the measured vouchers, all characters of generative parts were measured exclusively on the three highest and the best developed stems. In the most of measured characters, maximum values were preferred. At least two spikelets from each of the three selected panicles (i.e. at least six in total) were investigated. They were taken from the middle part of the panicle (i.e. from the branches of second and third node from below), where usually the longest spikelets are found (Csányi-Kovács and Horánszky 1973). The length was measured only in the well developed spikelets from the base of the lower palea to the top of the fourth lemma (without awn), as recommended by Hackel (1882) and present authors (Huon 1970, Markgraf-Dannenberg 1980, Wilkinson and Stace 1991). -rich and well- developed spikelets were preferred. Only spikelets with at least three fully developed were investigated1. Roughness of the abaxial part of tiller leaves is caused by small prickles directed towards the apex, which are namely present on the keels of younger tiller leaves. The minimal and the maximal degrees of roughness were used as two separate variables. Statistical treatment. A preliminary morphological grouping of 451 investigated samples was done with the standardized PCA based on Euclidian distance as well as with the UPGMA clustering based on the same distance measure. The analyses produced five morphological groups. The samples with unclear group memberships were later resolved with Classification Discriminant Analysis (CDA). Samples with clear membership to one of the five above mentioned groups served as the base for the fcalculations of CDA functions. When all samples were grouped, the final CDA was done (Fig. 1). The final CDA was calculated with all the characters together, both standard and cross validated methods were used. Because of lack of specimens, the samples of F. pseudovaginata and some rare natural hybrids were not calculated as separate groups and were projected only passively into the resulting CDA diagram (Fig. 1). The results of the PCA ordination of samples and the resulting CDA diagram (Fig. 1) were very similar in the respect of Procrustean randomisation test (P<0.0001). In this test, scores of the first four PCA axes, explaining 76% of total variability, and scores of all four canonical discriminant functions were compared by Procrustean randomisation test (Jackson 1995), based on 10000 permutations. The main gradients of AFLP fragments polymorphism were analysed using Principal Coordinate Analysis (PCoA, Fig. 2). For an alternative hypothesis, neighbour joining tree based on the similarity coefficient of Nei and Li (1979) was constructed (Fig. 3). The significance of clusters were tested using bootstrap approach (Felsenstein 1985) based on 2000 replications. Procrustean randomization test (Jackson 1995) with 10 000 replications was used for the evaluation of the results of AFLP polymorphism and morphological data. We tested 59 of 62 samples, for which both morphological and AFLP data were available. Using Procrustean analysis, we compared scores of the first

1 Well developed spikelets have lemmas of the four lowermost florets ±equally and arranged on the rhachilla in ±equal distances one from another. If the length of the forth lemma was conspicuously shorter than the third oe, or if a spikelet consisted of only three well developed florets, the spikelet length was calculated as the length from the base of the lower palea to the top of the third lemma plus the half distance between the tops of the first and the third lemma.

5 three axis of PCoA ordination of AFLP fragments data (Fig. 2) with the scores of the three canonical discriminant functions from the final CDA diagram for the morphological data (Fig. 1). Programs and reference books. PCA and PCoA ordinations were performed in SYN- TAX 2000 program package (Podáni 2000), the discriminant analysis in SPSS 8.0 statistical package (SPSS Inc. 1998). Neighbour joining tree was constructed and bootstrapped in TREECON for Windows 1.3b program (Van de Peer and De Wachter 1994). Procrustean randomisation test was calculated using Protest software written by Pedro Peres-Neto (Peres-Neto and Jackson 2000). Graphic presentation was prepared using Statistica for Windows 7.0 software (StatSoft Inc. 2004). Maps were produced with DMAP for Windows 7.1 software (Morton 2001). Conception and names of taxa follow Flora Europaea (Tutin et al. 1964–1980), with exception of taxa described later, taxa from Festuca ser. Psammophilae and F. ovina L. Names of phytosociological alliances follow Rodwell et al. (2002).

Results Morphological analysis and ploidy level estimates. The analysis of 451 samples resulted in delimitation of five main groups (Fig. 1), corresponding roughly with the current classification of the group at the species level: (1) F. pallens s.l. diploids, (2) F. pallens s.l. tetraploids, (3) F. psammophila, (4) F. vaginata s. str., and (5) F. polesica. The values of the analysed morphological characters for these groups are given in Tab. 3. The main morphological gap appears between F. polesica and the other taxa, along the second discriminant function (Fig. 1). Festuca polesica differs in numerous qualitative characters such as strongly scabrid leaves, tussock and tiller architecture, the dense stem indument below the panicle. Plants are also frequently unpruinose. All 17 cytometrically investigated samples from Germany and Poland were estimated as diploid (Tab. 2). Festuca pseudovaginata is similar and also has partly scabrid leaves and stems, however, in other characters rather reminds some hybrids. Other taxa are divided along the first discriminant function and differ in quantitative characters of the , namely in the length of awn and lemma (Fig. 1). Psammophilous taxa (F. vaginata and F. psammophila) occupy the right-bottom part of the diagram, while saxicolous taxa (F. pallens s.l., diploids and tetraploids) are situaed in the left-upper one. Psammophilous taxa have larger panicles with more spikelets, which are smaller and have shorter awns than in the saxicolous taxa. In the cultivation field psamophilous taxa begin to flower usually one or two weeks earlier. Mutual misclassifications within the psammophilous or within the saxicolous taxa have the major contribution to the total classification failure of the CDA (Tab. 4). Festuca psammophila differs from F. vaginata mainly in longer lemmas and awns, smaller panicles, shorter sheaths of stem leaves, and in having less spikelets per panicle. As there were almost no morphological differences between F. dominii and F. psammophila, the former was included in to the later. Samples from the Polish localities of F. vaginata reported by Pawlus (1985) were also classified clearly as F. psammophila. All three samples of F. dominii var. margittaii Krajina from E Slovakia were clearly associated with F. vaginata, which corresponds to the opinion of Schwarzová (1967). The morphological differences of F. psammophila subsp. muellerstollii were unimportant in the context of the whole distribution range of F. psammophila, and formed one group with all F. psammophila samples in the CDA analysis. During the CDA analysis, two samples of F. ×belensis Toman (F. psammophila × F. pallens) from the type locality in Bělá pod Bezdězem (Czech Republic, Toman 1974) were placed together with diploid F. pallens. Plants from the type locality of F. vaginata var. aristata, corresponding generally to the original description of Pawlus (1985), were unable to be clearly

6 associated with any morphological group. In the field, they were colleceted in contact zone of F. psammophila and F. ovina L. and were morphologically intermediate between both taxa. They had stout tiller leaves and large panicles resembling much those of F. psammophila in general appearance, in the same time they had tiller leaves also partly scabrid at apex, and lemmas with long awns reminding F. ovina. They are probably hybrids of F. ovina and F. psammophila. Three plants of transitional types between F. psammophila and F. polesica from Griebo and Steckby (Germany) described by Fischer and Stohr (2000: 171) were assigned to F. psammophila. They have some loose indument on stem below the panicle (cf. Fischer and Stohr 2000), which is found also in other of F. psammophila or F. pallens. There seems not to be direct analogy with densely and shortly hairy stems typical of F. polesica. Plants intermediate between F. polesica and F. ovina subsp. guestfalica (Boenn. ex Rchb.) K. Richt. from Stendal (Fischer and Stohr 2000) were tetraploid, while F. polesica is a diploid species (see above). They are probably true hybrids between those two taxa. In the morphological analysis, they were placed within F. polesica, as F. ovina was not included into the analysis. Two groups, corresponding to diploids and tetraploids, were distinguished in saxicolous populations. No further division was possible and previously mentioned types (Tracey 1980, Pils 1981, Šmarda and Kočí 2003) were merged within each ploidy level. Tetraploids differ from diploids mainly in having at least some leaves scabrid, and sclerenchyma ring frequently interrupted. Diploids have panicles usually nodding before the anthesis (can be easily observed in the field), while the panicles of tetraploids remain always ±erect. Tetraploid plants from sands near the Oleško village (Czech Republic) were placed together with other tetraploids of F. pallens s.l., as already assumed by Šmarda and Kočí (2003) and Šmarda et al. (2005). Although F. pseudovaginata and several hybrids separate morphologically from the other taxa, insufficient numbers of samples do not allow their detail analysis. Hybrids have intermediate positions between F. polesica and the remaining taxa, which is mainly due to scabrid leaves. Slightly scabrid leaves were found also in the all available type specimens (holotype, isotypes and one paratype) of F. pseudovaginata in which it resemble some hybrids. In spite of the diploid chromosome count in the protologue (Penksza 2003), the holotype (BP), four isotypes (BP, BRNU), paratype (BRNU) and two other specimens of F. pseudovaginata from K. Penksza were proved to be tetraploid by flow cytometry. AFLP analysis. The analysis of AFLP fragments corroborate generally the results of the morphological analysis, however, low bootstrap support do not allow clear interpretation of all the morphological groups. The general pattern of AFLP fragment variability is shown in PCoA ordination diagram (Fig. 2). As shown with Procrustean randomisation test, there is a high statistical comparability (P<0.0001) of patterns in morphological (PCoA ordination diagram Fig. 2.) and AFLP data (CDA diagram of morphological characters Fig. 1). Neighbour joining tree was used as alternative display of inter-samples relations (Fig. 3). The existence of several well statistically defined groups, the high similarity of samples from the same or related localities, and general concordance with the morphological analysis indicate sufficient sensitivity of the methods used. The strongly resolved group of F. polesica contrasts with the slightly resolved groups of F. pallens, F. vaginata, and F. psammophila, which all lack significant bootstrap support. Separate group form also hybrids with F. ovina: F. polesica × F. ovina from Stendal (po651, Germany) and F. ovina × F. psammophila from the locality of F. vaginata var. aristata (mx626, mx627, see comments in the morphological analysis). The samples of F. pseudovaginata, including together tetraploid plants from type locality and one diploid from Romania, form another well defined cluster. Tetraploid samples of F. pallens s.l. from geographically close localities

7 near Oleško are also placed separately, which however, may be due to the small number of tetraploid samples studied. The other taxa studied are slightly resolved, however, separate cluster have only small bootstrap support. Generally, the group of F. vaginata, F. dominii, and unresolved group of F. pallens and F. psammophila, can be distinguished. The pattern of AFLP polymorphism within these groups seems to have partly (phylo-)geographical interpretation. Within all samples of F. vaginata, E Pannonian samples from E Slovakia, NW Romania, and C Hungary), and samples from isolated localities in SW Romania are separated. Within the F. pallens and F. psammophila group, the relation of samples of F. pallens, F. psammophila subsp. muellerstollii, and their hybrid F. ×belensis from Bělá pod Bezdězem is of particular interest (Fig. 3). Types and typification. The recently established lectotype of F. pallens Host (Foggi et al. 2004) represents a diploid plant and F. pallens Host is the oldest and correct name for group of diploid F. pallens group at the species level. This choice of the lectotype is supported by the fact that diploids were sampled near the locality “in den Briel” (close to diploid populations in Mödling in Lower Austria, Tracey 1980, Šmarda et al. 2005), given in addition to the widely described locus classicus in a later Host’s work (Host 1827: 160). The earliest name for the tetraploid F. pallens s.l. is F. csikhegyensis Simonk. Because there is not designed holotype in the protologue (Simonkai 1906), and the number of original material is not known, we selected the only specimen found in the original author´s material in Budapest (BP!) as the lectotype. Simonkai (1906) published this name for greenish plants resembling F. pallens in general appearance, found in the populations of the glaucous F. pallens and the greenish F. rupicola on Csiky Hill close to Budapest. As indicated on the label of the type herbarium specimen, Simonkai considered these plants to be hybrids between both species, but the hybrid hybrid origin of F. csikhegyensis is not mentioned explicitly in the protologue. Plants on the herbarium sheet have the general appearance of tetraploid F. pallens (thick, pungent tiller leaves with sclerenchyma forming a complete thick ring, inside with long hairs, outside scabrid in the upper half; stem nodes, hidden in the sheaths, are slightly pruinose) and there are no other characters indicating their hybrid origin. The degree of pruinosity and rather glaucous or greenish appearance of plants seems to vary individually in populations of F. pallens s.l. and this variation is not necessary caused by hybridisation. The lectotype of F. pannonica Host was proposed in the complete concordance with the original description by Host (1809) from Host’s original material (Foggi et al. 2004, W!). Host’s description “folia compresso-setacea, dorso scabra” reminds taxa from F. valesiaca group and the lectotype also belongs clearly to a taxon of this group. The morphologic description of F. pannonica in Hackel’s monograph (Hackel 1882), widely accepted in the later floras, was wrong. It was based on the specimens from Hungary (“Budae ad Auwinkel” near Budapest) collected and misidentified by Kerner (WU!). Kerner’s specimens are morphologically similar to a robust F. pallens and already Hackel (1882: 98) discussed rather low differences between F. pallens and F. pannonica (treated as varieties of F. ovina L. s. ampliss.) The original material of F. vaginata is found in Willdenow herbarium at Berlin- Dahlem (B-W). The species folder is ascribed by the label with Kitaibel’s handwriting with the name Festuca vaginata and short description. It originally contained three sheets, but one of them got lost (Hiepko, pers. comm.). One of the two present sheets is labeled as "F. vaginata" with note "(ex hort. bot. Berol.)", however, the plant clearly differs in longer lanceolate lemmas, longer spikelets and long awns from F. vaginata as currently understood and protologue “flosculis obtusiusculis muticis“ (Willdenow 1809). The second sheet bearing two culms of F. vaginata with paniclesis is unlabeled, but there are two another labels attached to the species folder. One of these labels "F. 42 Festuca vaginata" was written by P. Kitaibel, the other "Humboldt (?)" probably by D.

8

F. L. von Schlechtendal. Even though we cannot decide which label was originally attached to the sheet, we have to propose this specimen as lectotype of the name F. vaginata Waldst. et Kit. ex Will, because it is the only suitable. It corresponds morphologically with the populations of F. vaginata in sands of Hungary and is very similar to Kitaibel’s specimens of F. vaginata in Bupapest (BP!). The type specimen of F. vaginata var. aristata Pawlus differs from the hybrids between F. ovina and F. psammophila found on the type locality. Although both are similar in general appearance, hybrids are always scabrid, while the type specimen of F. vaginata var. aristata (KRA, No. 469239/23880!) has completely smooth tiller leaves and corresponds to F. psammophila. Festuca dominii Krajina was described in the printed labels to the exsiccate collection Domin et Krajina Flora Čechoslovenica Exsiccata (Krajina 1930). Because no holotype has still been selected, a specimen of this exsiccate collection at BRNU was selected as lectotype.

Comments and discussion In both morphological and AFLP analysis F. polesica seems to have an isolated position within the Central European taxa of Festuca ser. Psammophilae. From the other taxa studied it differs in several important qualitative characters (plants frequently unpruinose, different tussock architecture and differences in leaf cross sections). Apart from F. beckeri group, there seems not to be related taxa with Festuca ser. Psammophilae in E and SE Europe and in Asia. If F. beckeri is consiedred to be evolutionary related with Festuca ser. Psammophilae (cf. Alexeev 1975), its isolated position demonstrated in this paper together with large distribution range reaching S Siberia can be explained as result of an early diversification. The diploid taxa F. vaginata, F. psammophila and F. pallens are probably very closely related. They differ only in quantitative characters of inflorescence and have completely smooth tiller leaves, a rare character within the other Central European taxa of Festuca sect. Festuca. Morphologically similar taxa can be found namely in S and SW Europe where the evolutionary centre of this group is assumed: F. inops, F. michaelis Cebolla et Rivas Ponce, F. degenii, F. occitanica, F. cinerea, F. indigesta, F. altopyrenaica Fuente et Ortúñez, F. summilusitana Franco et Rocha Afonso. Among the Central European taxa, the diploid F. pallens probably occupies an ancestral position. It is dominant of rocky steppes an occurs in a number of relict habitats such as rock cliffs and promontories in deep river valleys, karst landscapes, mountain valleys and gorges. These habitats were not covered by forest since the whole pleistocene and F. pallens could survive there for a long time. Many relict and endemic species and local flora elements growth together with F. pallens on these habitats: the Terciery relicts Daphne arbuscula and Festuca tatrae (Kliment 1999), the glacial relicts Saxifraga paniculata, Primula auricula, Biscutella laevigata, Arenaria grandiflora, Sesleria albicans or S. rigida, steppic relicts and endemics Ferula sadleriana, Helictotrichon decorum, Seseli leucospermum, and Viola jóoi. Several (sub)mediterranean species of wide ecologic niches prefer habitats with F. pallens on their northern distribution limits (Notholaena marantae, Stipa pennata subsp. eriocaulis). In contrast, sandy habitats of F. psammophila and F. vaginata are much younger. These species may be supposed as examples of adaptive radiation of rocky rocky F. pallens. Numerous petrophilous species growing together with F. pallens, also colonize sandy habitats (e.g. Minuartia glaucina Dvořáková, Alyssum montanum, Alyssum tortuosum, Verbascum phoeniceum, Fumana procumbens, and Carex supina), and even F. pallens are known to growth rarely on sands and sandstones. An example of close relationship of the saxicolous F. pallens with the psamophilous F. psammophila offer sandstone rocks in Bělá pod Bezdězem and its surrounding, where all samples of F. psammophila, F. pallens seemed to be closely related according to the AFLP analysis

9

(Fig. 3). The close relation of both species was assumed already by Stohr (1960) and Tzvelev (1972), who treated both taxa as subspecies of F. cinerea, and by Alexeev (1975), who treated them even as one taxon. The former evolutionary hypothesis of the evolution of psammophilous taxa (Schwarzová 1967) was based on the interpretation of incorrect distribution data (see introduction) and seems to be contradicted by the results presented here. The recently documented multiple occurrence of triploids, polyploid hybrids, and mixed ploidy populations in F. pallens (Šmarda and Kočí 2003, Šmarda et al. 2005, Šmarda and Bureš in prep.) suggests that polyploidisation is an important evolution mechanism in F. pallens, as it is a case in other groups of fescues in the whole of Eurasia. The multiple polytopic formation of tetraploid population, here treated as F. csikhegyensis, may explain their scattered distribution and minor morphological differences. Geographic relation of genome size in tetraploids and diploids of F. pallens s.l. has been analysed by Šmarda and Bureš (submitted). The lower DNA content in the Scabrifolia type in comparison with the other tetraploids (Šmarda and Bureš submitted) as well as the isolated position of tetraploid fescue population from sandy habitats near the Oleško village in AFLP analysis support independent status of some of these types. The allopolyploid origin of tetraploids may be assumed from the combination of several qualitative characters lacking in F. pallens (partly interrupted sclerenchyma in leaf cross section ring and the roughness of leaves); however, the direct experimental prove is needed. For practical purposes and due to the only minor morphological differences, all the tetraploid types are included into one polymorphic species. The diploids from Weizklamm glen are considered as only a local population and are included together with the other F. pallens diploids. The question whether some tetraploid populations merit a separate taxonomic status, for instance a subspecies or variety, requiers further studies. Festuca dominii still remains a doubtful taxon. In a wider geographic context, its diagnostic characters given by Krajina (1930) are unimportant. The plants of F. dominii are morphologically very much similar to F. psammophila, and only in very variable population (e.g., Siekierki and Brzeźno near Konin, both Poland) some plants resemble F. vaginata. Although weak morphological separation does not support specific status of F. dominii, regular grouping in AFLP analysis, and its distribution pattern and partly geographic isolation support its taxonomic value. Due to its similarity to F. psammophila, reclassification as a subspecies within this taxon is preferred. Intermediary geographic position, AFLP pattern and partly intermediate morphology between F. psammophila and F. vaginata may be interpreted both as result of hybridisation and as result of young allopatric speciation. Festuca pseudovaginata represents another problematic taxon. In contrast to the protologue (Penksza 2003), F. pseudovaginata is tetraploid and has slightly scabrid tiller leaves, as shown by our cytometric and morphological analysis of the type material. The diploid ploidy level (not chromosome count directly) given in the protologue (Penksza 2003) is doubtful; however, diploid plants of this species were found in Romania (Šmarda submitted). The co-ocurrence with F. vaginata (Penksza 2003: 367, Šmarda submitted) and numerous characters shared with this species (e.g. tuft architecture, continuous sclerenchyma ring) on one hand, and different ploidy level and scabrid leaves on the other hand, may indicate hybrid origin of F. pseudovaginata with F. vaginata as one of the parental species. Its putative hybrid origin and the involvement of different genome type may be one of the reasons of separate clustering of both diploid and tetraploids in the AFLP analysis, similarly to the F. ovina hybrids (Fig. 3). Early flowering mentioned as typical of F. pseudovaginata (Penksza 2003) is shared with the frequently co-occurring F. pseudovina. Similar hybrids with F. vaginata were repeatedly described from the sands of the Pannonian lowland, and some names may be nomeclatural priority over F. pseudovaginata. Among existing names, F. ×hackelii Beck and F. ×interjecta Vetter are likely to represent this taxon.

10

Conception of specific and subspecific taxa in Central Europe. Distribution maps based on the samples studied are presented in Fig. 4, 5. Variation of characters is shown in Tab. 3. Festuca pallens and F. csikhegyensis may be treated as the F. pallens aggregate.

1. Festuca pallens Host, Icon. Descr. Gram. Austriac. 2: 63. 1802.

≡ F. ovina subvar. pallens (Host) Hack., Monogr. Festuc. Eur.: 95. 1882. ≡ F. glauca subsp. pallens (Host) K. Richt., Pl. Eur. 1: 94. 1890. ≡ F. glauca F. pallens (Host) Hayek, Sched. Fl. Stiriac. (1–2): 19. 1904. ≡ F. glauca var. pallens (Host) Beck, in Wiss. Mitt. Bosnien & Herzegovina 9: 448. 1904. ≡ F. ovina var. pallens (Host) Hegi, Ill. Fl. Mitt.-Eur. 1: 332. 1908. ≡ F. duriuscula var. pallens (Host) Krajina, in Acta Bot. Bohem. 9: 195. 1930. ≡ F. cinerea subsp. pallens (Host) Stohr, in Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.- Naturwiss. Reihe 9: 403. 1960. = F. glauca var. major Hagenb., Fl. Basil.: 87. 1821. = F. glauca var. donacella Wallr., Sched. Crit. 1: 33. 1822. = F. arduenna Dumort., Observ. Gram. Belg.: 103. 1824. ≡ F. duriuscula var. arduenna (Dumort.) Mathieu, Fl. Gén. Belgique 1: 620. 1853. = F. rigurosa Schur, Enum. Pl. Transsilv.: 790. 1866. ≡ F. pallens var. rigurosa (Schur) Soó, in Acta Bot. Acad. Sci. Hung. 2: 195. 1955. = Oberösterreich-Niederösterreich and Weizklamm types, R. Tracey (1980), Pils (1981). – F. duriuscula auct. p. p. non L., Sp. Pl.: 74. 1753. – F. cinerea auct. non Vill. in Gilib., Fl. Delph. 1: 8. 1786. – F. glauca auct. non Vill., Hist. Pl. Dauphiné 2: 99. 1787 nec Lam., Encycl. 2: 459. 1788. – F. pannonica auct. non Wulfen ex Host, Icon. Descr. Gram. Austriac. 4: 62. 1809. – F. inops auct. non De Not., Repert. Fl. Ligust.: 466. 1844.

Lectotype: W Herb. Host no. 2228!; s. d., s. loc., s. coll., selected by Foggi et al. (2004). Karyology: 2n = 2x (3x) = 14+0-1B (21+0-1B). Exsiccates: Dörfler Herb. Norm. no. 4599. – Fl. Exs. Reipubl. Bohem. Slov. no. 185. – Fl. Exs. Reipubl. Social. Čechoslov. no. 1695. – Fl. Polon. Exs. no. 516. – Fl. Siles. Exs. no. 355. – Kneucker Gram. Exs. no. 144. – Petrak Fl. Bohem. Morav. Exs. no. 805. Habitat and distribution: relict open rocks, rocky steppes, open rocky outcrops, rocks, cliffs, promontories, quarries, without clear bedrock type preference, rarely on sandstones; from lowlands up to lower mountains, usually 100–1300 m a.s.l.; Diantho lumnitzerii-Seslerion albicantis, Alysso saxatilis-Festucion pallenstis, Helianthemo cani-Festucion pallentis, (Avenulo adsurgensis-Festucion pallentis, Asplenion serpentini, Alysso alyssoidis-Sedion albi); Belgium, NE France, Schwitzerland, S Germany, S Poland, Czech Republic, Slovakia, Austria, N Hungary, Slovenia, Romania, NW Ukraine (Fig. 4).

2. Festuca csikhegyensis Simonk., in Magyar Bot. Lapok 5: 377. 1906.

= F. cinerea var. lapidosa Stohr, in Wiss. Z. Univ. Halle, Math.-Nat. Reihe 9: 401. 1960 non F. lapidosa Markgr.-Dann., in Bot. Jahrb. 96: 174. 1975. ≡ F. glaucina Stohr, in Schlechtendalia 7: 29. 2001. = Scabrifolia type, Šmarda and Kočí (2003). = F. glauca var. scabrifolia Hack. ex Rohlena, in Věstn. Král. České Společn. Nauk, Tř. Mat.-Přír. 24: 3. 1899. ≡ F. ovina var. scabrifolia (Hack. ex Rohlena) Hegi, Ill. Fl. Mitt.-Eur. 1: 332. 1908. ≡ F. duriuscula (var. longifolia) subvar. scabrifolia (Hack. ex Rohlena) Krajina, in Acta Bot. Bohem. 9: 194. 1930. ≡ F. pallens var. scabrifolia (Hack. ex Rohlena) Markgr.-Dann. in Janchen, Cat. Fl. Austriae., Ergänzungsheft 1: 109. 1963. = Scabrifolia type, Šmarda and Kočí (2003). – F. pallens subsp. scabrifolia (Hack. ex Rohlena) Zielonk., in Hoppea 31: 177. 1973 (nom. inval. Art. 33.3).

11

= F. pallens var. styriaca Markgr.-Dann. in Janchen, Cat. Fl. Austriae., Ergänzungsheft 1: 109. 1963. = Steiermark-Kärnten type, R. Tracey (1980). = F. duriuscula subvar. longifolia Krajina, in Acta Bot. Bohem. 9: 194. 1930. – F. longifolia (Krajina) Májovský, in Biologia (Bratislava) 10: 670. 1955 (nom. inval. Art. 11.2, 53.1) non. Thuill., Fl. Env. Paris, ed. 2: 50. 1799. = Pannoniches-Hügelland type, R. Tracey (1980). – F. duriuscula auct. p. p. non L., Sp. Pl. 1: 74. 1753. – F. cinerea auct. non Vill. in Gilib., Fl. Delph. 1: 8. 1786. – F. glauca auct. non Vill., Hist. Pl. Dauphiné 2: 99. 1787, nec Lam., Encycl. 2: 459. 1788. – F. stricta auct. non Host, Icon. Descr. Gram. Austriac. 2: 62. 1802. – F. duvalii auct. non (St.-Yves) Stohr, in Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.- Naturwiss. Reihe 4: 732. 1955.

Lectotype: BP no. 12054!; In asperis saxosis rupium calc. in monte Csikyhegy ad Budaörs, leg. Dr. Simonkai Lajos 19. May 1902, crescit inter stirpes indicates, lectotype here designated. Karyology: 2n = 4x = 28+0-1B. Exsiccates: Hayek Fl. Stir. Exs. no. 58. – Domin et Krajina Fl. Čechoslov. Exs. no. 118. – Gram. Hung. no. 171. – Fl. Exs. Reipubl. Social. Čechoslov. no. 1693 (as F. stricta Host). – Fl. Exs. Austro-Hung. no. 1076/I. Habitat and distribution: relict open rocks, rocky steppes, rocky pastures, cliffs, promontories, quarries, rather on calcareous bedrock, rarely on sands, lowlands and highlands up to 600 m a.s.l., in SE Alps also about 1000 m a.s.l.; Bromo panonici- Festucion pallenstis, Alysso saxatilis-Festucion pallentis, Helianthemo cani-Festucion pallentis, Diantho lumnitzerii-Seslerion albicantis, (Koelerio-Phleion phleoidis, Alysso alyssoidis-Sedion albi, Avenulo adsurgensis-Festucion pallentis); C and NW Germany, Czech Republic, Slovakia, Austria, Hungary (Fig. 4).

3. Festuca psammophila (Hack. ex Čelak.) Fritsch, Exkursionsfl. Österr.: 64. 1897. a. subsp. psammophila

Bas.: F. glauca subsp. psammophila Hack. ex Čelak., Prodr. Fl. Böhmen 4: 721. 1881. ≡ F. ovina subvar. psammophila (Hack. ex Čelak.) Hack., Monogr. Festuc Eur.: 96. 1882. ≡ F. ovina var. psammophila (Hack. ex Čelak.) Hack. ex Hegi, Ill. Fl. Mitt.-Eur. 1: 332. 1908; Kozlowska, in Bull. Int. Acad. Polon. Sci., Cl. Sci. Math., Ser. B, Sci. Nat. 1925: 335. 1925. ≡ F. cinerea subsp. psammophila (Hack. ex Čelak.) Stohr, in Wiss. Z. Martin-Luther-Univ. Halle- Wittenberg, Math.-Naturwiss. Reihe 9: 403. 1960. ≡ F. caesia subsp. psammophila (Hack. ex Čelak.) Patzke, in Oesterr. Bot. Z. 108: 506. 1961. ≡ F. pallens subsp. psammophila (Hack. ex Čelak.) Tzvelev, Fl. Evropeiskoi Chasti SSSR 1: 266. 1974. = F. psammophila subsp. muellerstollii Toman, in Feddes Repert. 101: 31. 1990. = F. vaginata var. aristata Pawlus, in Fragm. Florist. Geobot. 29: 275. 1985.

Lectotype: W Herbarium Hackel no. 10171!; In arenosis prope Kolin ad Albim, leg. Čelakowsky 1880, designed by Foggi et Signorini (2004). Karyology: 2n = 2x = 14. Exsiccates: Domin et Krajina Fl. Čechoslov Exs. no. 119. – Fl. Exs. Austro-Hung. no. 3950. – Fl. Siles. Exs. no. 1000. Habitat and distribution: acidophilous and slightly basiphilous aeolian sands, sandy pine forests and heaths, 0–350 m a.s.l.; Koelerion glaucae, Corynephorion canescentis (Plantagini-Festucion ovinae, Genistion pilosae); Czech Republic (Bohemia), E and C Germany, Poland, Lithuania (Fig. 5).

b. subsp. dominii (Krajina) P. Šmarda, comb. et stat. novus, hoc loco designatus

Bas.: F. dominii Krajina, in Acta Bot. Bohem. 9: 198. 1930. ≡ F. vaginata subsp. dominii (Krajina) Soó in Soó et Jávorka, Magyar Növényvilág Kézikönyve: 921. 1951. ≡ F. vaginata var. dominii (Krajina) Soó, in Acta Bot. Acad. Sci. Hung. 2: 187. 1955. = F. ovina var. vaginata f. mucronata Hack., Monogr. Festuc. Eur.: 97. 1882.

12

– F. vaginata subsp. mucronata (Hack.) Schwarzová, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 14: 383. 1967 (nom. inval. Art. 11.3.). – F. amethystina Host, Icon. Descr. Gram. Austriac. 2: 89. 1802 (nom. inval. Art. 53.1) non L., Sp. Pl.: 74. 1753. ≡ F. ovina var. amethystina Koch, Syn. Fl. Germ. Helv.: 812. 1837. ≡ F. ovina subsp. amethystina (Koch) Čelak., Prodr. Květ České 3: add. ad Vol. 1 et 2, pag. prima sine num. 1877.

Lectotype: BRNU no. 221474!; K. Domin et V. Krajina, Flora Čechoslovenica Exsiccata no. 120, Slovakia austro-occidentalis, in arenosis in planitie fluminis Morava Moravské Pole dicta, inter vicos Kuchyňa et Plavecký Štvrtok, altitude circa 160–170 m s. m., leg. K. Domin, V. Krajina et socii 19. June 1929, lectotype here designated. Karyology: 2n = 2x = 14. Exsiccates: Domin et Krajina Fl. Čechoslov. Exs. no. 120, 121. – Fl. Exs. Austro- Hung. no. 279. Habitat and distribution: slightly basiphilous or acidophilous sands and sandy pine forests, 100–200 m a.s.l.; Festucion vaginatae (Plantagini-Festucion ovinae, Koelerion glaucae); SE Poland, SE Moravia, SW Slovakia, NE Austria (Fig. 5).

4. Festuca vaginata Waldst. et Kit. ex Willd., Enum. Pl.: 116. 1809.

≡ F. glauca var. vaginata (Waldst. et Kit. ex Willd.) Wimm. et Grab., Fl. Siles. 1: 87. 1827. ≡ F. ovina subsp. vaginata (Waldst. et Kit. ex Willd.) Čelak., Prodr. Květ. České 3: add. ad Vol. 1 et 2, pag. prima sine num. 1877. ≡ F. ovina var. vaginata (Waldst. et Kit. ex Willd.) Fiek, Fl. Schlesien: 522. 1881; Hack., in Bot. Centralbl. 8: 405. 1881. ≡ F. glauca subsp. vaginata (Waldst. et Kit. ex Willd.) Nyman, Consp. Fl. Eur. 4: 829. 1882. ≡ F. ovina subsp. vaginata (Waldst. et Kit. ex Willd.) Hack. ex Hegi, Ill. Fl. Mitt.-Eur. 1: 333. 1908. ≡ F. caesia subsp. vaginata (Waldst. et Kit. ex Willd.) Patzke, in Oesterr. Bot. Z. 108: 506. 1961. = F. dominii var. margittaii Krajina, in Acta Bot. Bohem. 9: 200. 1930. ≡ F. vaginata var. margittaii (Krajina) Schwarzová, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 14: 383. 1967.

Lectotype: B Herb. Willdenow no. B-W 2054/3; ex hort. bot. Berol., s. d., s. coll., will be probably selected here as lectotype. Karyology: 2n = 2x (3x) = 14 (21). Exsiccates: Bartha Pl. Hung. Exs. sine no. “F. vaginata W. et K.“. – Dörfler Herb. Norm. no. 5574. – Fl. Hung. Exs. no. 290. – Fl. Rom. Exs. no. 3295. – Gram. Hung. no. 34. – Kneucker Gram. Exs. no. 145. – Fl. Exs. Reipubl. Bohem. Slov. no. 989. Habitat and distribution: basiphilous or rarely acidophilous aeolian sands, sandy pine forests, sandpits, rarely on sandstone, 0–300 m a.s.l.; Festucion vaginatae (Plantagini- Festucion ovinae); S and E Slovakia, NE Austria, Hungary, NE Croatia, NW and SW Romania, E Bulgaria (Fig. 5).

5. Festuca polesica Zapał., in Bull. Int. Acad. Sci. Cracoviae, Cl. Sci. Math., Sér. B, Sci. Nat. 1904: 303. 1904.

≡ F. ovina subvar. polesica (Zapał.) Litard., in Candollea 10: 107. 1945. ≡ F. beckerii subsp. polesica (Zapał.) Tzvelev, in Spisok Rast. Gerb. Fl. S.S.S.R. Bot. Inst. Vsesoyuzn. Akad. Nauk. 18: 15. 1970. = F. ovina subsp. glauca var. sabulosa Andersson, Pl. Scand. 2: 23. 1852. ≡ F. sabulosa (Andersson) H. Lindb., Sched. Pl. Finland. Exsicc. 1: 23. 1906. ≡ F. ovina subsp. sabulosa (Andersson) Tzvelev, in Spisok Rast. Gerb. Fl. S.S.S.R. Bot. Inst. Vsesoyuzn. Akad. Nauk. 18: 14. 1970. = F. vaginata var. dubia Beldie, Fl. Republ. Socialist. Romania 12: 790. 1972. – F. vaginata auct., non Waldst. et Kit. ex Willd., Enum. Pl.: 116. 1809. – F. caesia auct. non Sm., Engl. Bot. 27: tab. 1917. 1808.

13

Type: KRA no. 393322/65117; Polesie Wolynskie, Rokitno, leg. Dr. A. Rehman 1882. Karyology: 2n = 2x = 14+0-4B. Exsiccates: Estonian Plants No. 33. – Gerb. Fl. SSSR no. 4920, 5859. Habitat and distribution: coastal, seaside and inland sand dunes, 0–150 m a.s.l.; Koelerion glaucae, Festucion beckerii; Denmark, E Germany, Poland, Sweden, Finland, Estonia, Latvia, Belarus, Ukraine, Moldova, Romania, Bulgaria and in Russia eastwards to the Ural Mts. (Fig. 5).

6. Festuca pseudovaginata Penksza, in Acta Bot. Hung. 45: 367. 2003.

?= F. hackelii Beck, Fl. Nieder-Österreich 1: 97. 1890. “pro hybr.” ?= F. interjecta Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 175. 1917. „pro hybr.“

Holotype: BP no. 647351!; Kis-tece pasture near Vácrátót, Hungary, GPS coordinate Unified Projection System: x=262650, y=663180, altidude ca 128 m, coll. K. Penksza 6. May 2003. Karyology: 2n = 2x, 4x = 14, 28. Habitat and distribution: basiphilous aeolian sands, 100–200 m a.s.l.; Festucion vaginatae; C Hungary, NW Romania (Fig. 5).

investigated hybrids (1) F. ovina × F. psammophila (2) F. ovina × F. polesica (3) F. pallens × F. psammophila = F. ×belensis Toman, in Feddes Repert. 87: 566. 1974. (4) F. pallens × F. valesiaca = F. ×saxicola Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 178. 1917. (5) F. vaginata × F. csikhegyensis (6) F. vaginata × F. valesiaca other reported hybrids (7) F. ovina × F. pallens = F. ×duernsteinensis Vetter, in Verh. Zool.-Bot. Ges. Wien 72: 116. 1922. = F. ×vihorlatica Májovský, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 9: 330. 1963 (nom. inval. Art. 37.2) (8) F. pallens × F. pseudodalmatica = F. ×krizoviensis Májovský, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 9: 330. 1963. (9) F. pallens × F. rubra = F. ×wettsteinii Vetter, in Verh. Zool.-Bot. Ges. Wien 72: 114. 1922. (10) F. pseudovina × F. vaginata = F. ×hackelii Beck, Fl. Nieder-Österreich 1: 97. 1890. (11) F. rubra × F. vaginata = F. ×teyberi Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 65: 148. 1915. = F. × neilreicheana Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 66: 125. 1916. (12) F. rubra × F. vaginata × F. rupicola = F. ×trigenea Vetter, in Verh. K. K. Zool.- Bot. Ges. Wien 67: 183. 1917. (13) F. rupicola × F. vaginata = F. × interjecta Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 175. 1917. = F. ×diluta Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 173. 1917. = F. ×firma Vetter, in Verh. K. K. Zool.-Bot. Ges. Wien 67: 172. 1917. – F. javorkae Májovský, in Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 9: 323. 1963 (nom. inval. Art. 37.2, 52.1).

14

Determination key. Spikelet length is measured from the base of the lower glume to the top of the fourth lemma (without awn). Lemma and awn lengths are measured on the second lemma in the spikelet. The roughness of leaves (i.e. presence of prickles on the keel of abaxial! tiller leaf side) should be examined by passing of the leaf keel between the lips or observed under at least 40 × magnitude.

1a Stems below the panicle densely shortly hairy (10 × magnitude); plants pruinose or not; tiller leaves long tapered, positioned in direct continuing of sheath axis, all scabrid on most of their length; tufts usually dense, most frequently with straw- coloured tiller sheaths; confined to sandy habitats ………………………. F. polesica 1b Stems below the panicle smooth to densely hairy; plant always pruinose; tiller leaves shortly acute, outstanding usually in various angles from the sheath axis, entirely smooth or scabrid; tufts rather looser, sheaths straw-coloured or commonly violet tinged; rocky or sandy habitats …………………..……………...………………..… 2 2a Spikelets (5.7)6.5–8.3(9.1) mm long; 2nd lemma (3.7)4.1–5.8(6.1) mm long, its awn (0.5)0.9–2.5(3.5) mm long; plants growing mainly in rocky habitats, very rarely on sands ..…………………………………………………………………………...…... 3 2b Spikelets (4.8)5.3–7.6(7.9) mm long; 2nd lemma (2.7)3.2–4.9(5.2) mm, its awn absent or 0.05–1.1(1.8) mm long; plants growing exclusively on sands or very rarely on sandstone rocks …………………………...………………………………..…… 4 3a At least some young tiller leaves also in its lower half at least slightly scabrid; at least some tiller leaves at median sides on cross section partly interrupted; veins 7– 9(11); panicle erect before flowering; stem below the panicle at least with some prickles to markedly scabrid (25 × magnitude); 2n = 4x = 28 ...…… F. csikhegyensis 3b Tiller leaves usually entirely smooth or rarely only at the apex slightly scabrid; I cross section with continuous sclerenchyma ring; veins 7–11(15); panicles usually nodding before flowering; stem below the panicle without any prickles and smooth (25 × magnitude) or rarely slightly scabrid; 2n = 2x = 14 …...………….… F. pallens 4a Tiller leaves entirely smooth; awn absent or up to 1.1(1.4) mm long …..………….. 5 4b At least younger tiller leaves at least slightly scabrid; lemmas with long awns ….... 6 5a Second lemma (2.7)3.2–4.0(4.3) mm long, awn absent or 0.05–0.4(0.6) mm long; longest panicles 9–20(24) cm long consisting of 30–170(210) spikelets, with the longest lower panicle branches (3.0)3.6–8.0(10.5) cm long, basic sands in Pannonian region …………………………………………………….…………….… F. vaginata 5b Second lemma (3.4)3.7–4.9(5.2) mm long, with (0.1)0.2–1.1(1.4) mm long awn; longest panicles 7–15(18) cm long consisting of 20–80(120) spikelets, with the longest lower panicle branches (1.3)2.1–5.7(6.6) cm long, acidic sands in the Czech Republic, Austria, SW Slovakia, Poland, Germany and Lithuania … F. psammophila 01a population is formed predominantly by plants with large, wide, 10–20 cm long panicles with long lower panicle branches; spikelets usually 3.8–4.3 mm long; awn usually 0.2–0.6 mm long; on sands in SE Moravia, SW Slovakia, NE Austria and E Poland ………………………..…….………………..… F. p. subsp. dominii 01b population formed predominantly by plants with smaller, narrow, 7–15 cm long panicles with short lower panicle branches; spikelets usually 4.0–4.5 mm long; awn usually 0.4–1.1 mm long; on sands in Germany, Bohemia, Poland and Lithuania ……………………………...……………..… F. p. subsp. psammophila 6a Plants 20–35 cm tall; panicle 5.0–8.5 cm long; early flowering plants on sands in Pannonian region ………..…………………….…………..……… F. pseudovaginata 6b Plants usually taller; panicles usually longer; plants scattered in populations of either F. psammophila or F. vaginata, on contact zones with other scabrid leaved taxa of the F. ovina or F. valesiaca groups or F. csikhegyensis …………..…………….……. …………………………………………… hybrids of F. psammophila or F. vaginata

15

Acknowledgement We are much obliged to Marie Dvořáková, Petr Bureš and Jiří Danihelka for their useful comments on the manuscript and the last named for the improving our English. We are thankful to Bruno Foggi, Zoltán Barina and Paul Hiepko for their help during the study of type specimens, and numerous our colleagues for the help with sample collections. This project was performed within the long-term research plan of Masaryk University MSM 0021622416 and was supported by the grants of the Czech Science Foundation GAČR 206/03/0228 and GAČR 524/05/H536.

References Alexeev E. B. (1975) Narrow leaved fescues (Festuca L.) of the European part of the USSR. (In Russian). Novosti. Sist. Vyssh. Rast. 12: 11–43. Alexeev E. B., Sokolovskaja A. P., Probatova N. S. (1988) Taxonomy, distribution and chromosome numbers of fescues (Festuca L., Poaceae) in the flora of the USSR. 3. The Section Festuca: F. tschujensis – F. beckeri. (In Russian). Byull. Moskovsk. Obshch. Isp. Prir., Otd. Biol. 93: 90–99. Auquier P., Kerguélen M. (1978) Un groupe embrouillé de Festuca (Poaceae): les taxons désignés par ľ épithète ”glauca” en Europe occidentale et dans les regions voisines. Lejeunia 89(1977): 1–82. Beldie A. (1972) Festuca L. In: Săvulescu T. (ed.), Flora Republicii Socialiste România. Vol. 12. Academiae Reipublicae Socialisticae România, Bucureşti, pp. 459–559. Böcher T. W. (1947) Festuca polesica Zapał., its chromosome number and occurence in Denmark. Bot. Not. 1947: 353–358. Cafferty S., Jarvis C. E., Turland N. J. (2000) Typification of Linnean plant names in the Poaceae. Taxon 49: 239–260. Conert H. J. (1998) Festuca L. In: Hegi G. Spermatophyta: Angiospermae: Monocotyledones 1 (2). Poaceae (Echte Grässer oder Süssgrässer). Vol. 1, part 3. Parey, Berlin. pp. 530–633. Csányi-Kovács Cs., Horánszky A. (1973) Charakterisierung der Festuca-Populationen auf Grund der Merkmale der Rispe. Ann. Univ. Sci. Budapest. Rolando Eötvös, Sect. Biol. 15: 67–74. Di Pietro R., Catonica C. (1999) Festuca pallens Host, a new species of the Italian flora in the central Apennines. Ecological and phytosociological considerations. Pl. Biosystems 133: 173–183. Dihoru G. (1987) Festuca beckeri în flora României. Stud. Cercet. Biol. (Bucharest), Ser. Biol. Veg. 39: 3–20. Dostál J. (1989) Nová květena ČSSR. Vol. 2. Academia, Praha. Englmaier P. (1994) Festuca in: Fischer M. (ed.) Exkursionsflora von Österreich. Verlag Eugen Ulmer, Stuttgart and Wien, pp. 993–1005. Englmaier P. (2005) Festuca in: Fischer M., Adler W., Oswald K. (eds.) Exkursionsflora von Österreich, Liechtenstein and Südtiror. Biologiezentrum der Oberösterreichischen Landesmuseen, Linz, pp. 1134 –1147. Farkas S. (1999) Magyarország védett növényei. Mezőgazda, Budapest. Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. Fischer P., Stohr G. (2000) Neufunde von Arten und Unterarten des Festuca-ovina- Aggregates in Trockenrasen an der Mittleren Elbe und im angrenzenden Gebiet. Mitt. Florist. Kart. Sachsen-Anhalt 5: 167–174. Foggi B., Gherardi M. E., Signorini M. A., Rossi G., Bruschi P. (accepted) Festuca inops De Not. and Festuca gracilior (Hack.) Markgr.-Dann. (Poaeceae): are they two different species? Bot. J. Linn. Soc.

16

Foggi B., Signorini M. A. (2004) Types of Festuca (Gramineae) names in the herbarium W: types from Hackel’s herbarium. Ann. Naturhist. Mus. Wien, B 105: 613–644. Foggi B., Signorini M. A., Vitek E. (2004) Types of names of Festuca (Gramineae) in the herbarium W: types from Host’s herbarium. Ann. Naturhist. Mus. Wien, B 105: 597–612. Grulich V., Krahulec F., Šmarda P., Kočí K. (2002) Festuca. In: Kubát K. (ed.) Klíč ke květeně České republiky. Academia, Praha, pp. 828–834. Hackel E. (1882) Monographia Festucarum europaearum. Theodor Fischer, Kasel and Berlin. Horánszky A., Jankó B., Vida G. (1972) Problems in biosystematic studies of Hungarian Festuca ovina (sensu lato) representatives. Symp. Biol. Hung. 12: 177–182. Host N. T. (1802) Icones et descriptiones graminum austriacorum. Vol. 2. M. A. Schmidt, Vindobonae. Host N. T. (1809) Icones et descriptiones graminum austriacorum. Vol. 4. M. A. Schmidt, Vindobonae. Host N. T. (1927) Flora austriaca. Vol. 1. Car. Ferd. Beck., Viennae. Hultén E., Fries M. (1986) Atlas of North European Vascular Plants. North of the tropic Cancer. Vol. 1. Koeltz Scientific books, Königstein. Huon A. (1970) Les fétuques de ľOuest de la France – Recherches de biosystématique et de biogéographie. Bot. Rhedon., A. 9: 7–298. Jackson D. A. (1995) PROTEST: A PROcrustean randomization TEST of community environment concordance. Ecoscience 2: 297–303. Kerner A. (1879) Festuca amethystina. Oesterr. Bot. Z. 29: 73–79. Klika J. (1933) Nové naleziště Festuca psammophila Hack. Věda Přír. 14: 183. Kliment J. (1999) Komentovaný prehľad vyšších rastlín flóry Slovenska, uvádzaných v literatúre jako endemické taxóny. Bull. Slov. Bot. Společ. 21, Suppl. 4: 1–434. Kostadinovski M. (1993) Taksonomija i chorologija na rodot Festuca L. vo Skopskata kotlina. Master thesis, Cyril and Methodius University, Skopje. Kostadinovski M. (1999) Taxonomy and chorology of Macedonian fescues Festuca L. (Poaceae). Ph.D. thesis, Cyril and Methodius University, Skopje. Krajina V. (1930) Festuca. Schedae ad floram Čechoslovenicam exsicatam. Centuria 2. Acta Bot. Bohem. 9: 175–220. Kreczetovicz V. I. , Bobrov E. G. (1937) Ovsyanitsa – Festuca L. In: Komarov V. L. (ed.) Flora SSSR. Vol. 2. Izdavatestvo Akademii nauk SSSR, Leningrad, pp. 497–535. Lewitsky G. A., Kuzmina N. E. (1927) Kariologicheskiy metod v sistematike i fylogenetike roda Festuca. Trudy Prikl. Bot. Selekts. 13(3): 3–36. Májovský J. (1955) Asociácia Festuca pseudodalmatica – Potentilla arenaria na východnom Slovensku. Biologia (Bratislava) 10: 659–677. Májovský J. (1963) Adnotationes ad species gen – Festuca florae Slovakiae additamentum 1. Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 7(1962): 317– 335. Malik C. P. (1967) Hybridization of Festuca species. Canad. J. Bot. 45: 1025–1029. Marhold K., Hindák F. (eds.) (1998) Zoznam nižších a vyšších rastlín Slovenska - Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava. Markgraf-Dannenberg I. (1978) New taxa and names in European Festuca (Gramineae). Bot. J. Linn. Soc. 76: 322–328. Markgraf-Dannenberg I. (1980) Festuca. In: Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. M., Webb D. A. (eds.) Flora Europaea Vol. 5. Cambridge University Press, Cambridge, pp. 125–153. Mian M. A. R., Hopkins A. A., Zwonitzer J. C. (2002) Determination of genetic diversity in tall fescue with AFLP markers. Crop Sci. 42: 944–950.

17

Mizianty M., Pawlus M. (1984) Chromosome numbers of some Polish species from the genus Festuca, group Ovina (part 1). Fragm. Florist. Geobot. 28(1982): 363– 369. Morton A. (2001). DMAP. Distribution mapping software. http://www.dmap.co.uk. Nei M., Li W.-H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76: 5269–5273. Nyárády E. I., Nyárády A. (1964) Studie über die Arten der Sektion Ovinae Fr. der Gattung Festuca in der RVR. Rev. Roumaine Biol., Sér. Bot. 9: 99–136, 151– 172. Pawlus M. (1985) Systematyka i rozmieszczenie gatunków grupy Festuca ovina L. w Polsce. Fragm. Florist. Geobot. 29(1983): 219–295. Penksza K. (2003) Festuca pseudovaginata, a new species from sandy areas of the Carpathian basin. Acta Bot. Hung. 45: 365–372. Peres-Neto P. R., Jackson D. A. (2000) How well do multivariate data sets match? The advantages of a Procrustean superimposition over the Mantel test. Oecologia 129: 169–178. Pils G. (1981) Karyologie und Verbreitung von Festuca pallens Host in Österreich. Linzer Biol. Beitr. 13: 231–241. Podani J. (2000) Introduction to the Exploration of Multivariate Biological Data. Backhuys Publishers, Leiden. Rodwell J. S., Schaminée J. H. J., Mucina L., Pignatti S., Dring J., Moss D. (2002) The Diversity of European Vegetation. An overwiew of phytosociological alliances and their relationships to EUNIS habitats. EC-LNV, Report nr. 2002/054, Wageningen. Rohlena J. (1899) Příspěvky ku poznání variací trav českých. Věstn. Král. České. Společn. Nauk, Tř. Mat.-Přír. 1899(24): 1–8. Schwarzová T. (1967) Beitrag zur Lösung taxonomischer Probleme der Festuca vaginata W. K. und Festuca psammophila Hack. Acta Fac. Rerum. Nat. Univ. Comenianae, Bot. 14: 381–414. Simon T. (2000) A magyaroszági edényes flóra határozója. Nemzeti Tankönyvkiadó, Budapest. Simonkai L. (1906) Stirpes nonnullae novae, Florae regni Hungarici. Magyar Bot. Lapok 5: 376–379. Soó R. (1973) Zeitgemässe Taxonomie der Festuca ovina-Gruppe. Acta Bot. Acad. Sci. Hung. 18: 363–377. SPSS Inc. (1998) SPSS® Base 8.0. SPSS Inc., Chicago. StatSoft Inc. (2004). STATISTICA Cz. Softwarový systém na analýzu dat, verze 7. http://www.statsoft.cz/ Stohr G. (1960) Gliederung der Festuca ovina-Gruppe in Mitteldeutschland unter Einschluss einiger benachtbarter Formen. Wiss. Z. Martin-Luther-Univ. Halle- Wittenberg 9: 393–414. Stohr G. (2001) Kommentare zur Neubearbeitung der Exkursionsflora von Deutschland, Band 4 (Kritischer Band): 2. Taxonomisch-nomenklatorische Anderungen in der Artengruppe Festuca ovina agg. Schlechtendalia 7: 29–33. Stohr G. (2002) Festuca L. Schwingel. in: Rothmaler W., Jäger E. J., Werner K. (eds.) Exkursionsflora von Deutschland. Vol. 4. Gefässpflanzen: Kritischer Band. Spektrum Akademischer Verlag, Heidelberg and Berlin, pp. 844–852. Šmarda P. (2001) Středoevropské taxony Festuca ser. Psammophilae M. Pawlus. Master thesis, Masaryk University in Brno, Brno. Šmarda P. (submitted) DNA ploidy levels of Romanian fescues (Festuca L., Poaceae), measured in living plants and herbarium specimens. Folia Geobot. (submitted) Šmarda P., Bureš P. (submitted): Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann. Bot. (Oxford).

18

Šmarda P., Kočí K. (2003) Chromosome number variability in Central European members of the Festuca ovina and F. pallens groups (sect. Festuca). Folia Geobot. 38: 65–95. Šmarda P., Müller J., Vrána J., Kočí K. (2005) Ploidy level variability of some Central European fescues (Festuca L. subg. Festuca, Poaceae). Biologia (Bratislava) 60: 25–36. Toman M. (1974) Populationsanalyse der Sammelart Festuca cinerea in Böhmen. Feddes Repert. 85: 533–574. Toman M. (1990) Ein weiterer Beitrag zur Kenntnis der Populationsstruktur und zur Taxonomie von Festuca sect. Festuca in Böhmen. Feddes Repert. 101: 1–40. Tracey R. (1980) Beiträge zur Karyologie, Verbreitung und Systematik des Festuca ovina Formenkreises im Osten Österreichs. Dissertation work, University of Wien, Wien. Tutin et al. (eds.) (1964–1980): Flora Europaea Vol. 1–5. – Cambridge University Press, Cambridge. Tveretinova V. V. (1977) Festuca L. in: Prokudin Yu. N., Vovk A. G., Petrova O. A., Ermolenko E. D., Vernichenko Yu. V. (eds.) Zlaki Ukrainy. Naukova Dumka, Kiev, pp. 265–320. Tzvelev N. N. (1972) The genus fescue (Festuca L.) in the USSR. (In Russian). Novosti. Sist. Vyssh. Rast. 9: 15–46. Van de Peer Y., De Wachter R. (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10: 569–570. Vetter J. (1915) Neue Pflanzenhybriden, neue Formen und Standorte. Ver. K. K. Zool. Bot. Ges. Wien 65: 146–169. Vetter J. (1917a) Neue Festuca Hybriden. Ver. K. K. Zool. Bot. Ges. Wien 66(1917): 123–134. Vetter J. (1917b) Neue Festuca Hybriden, neue Standorte. Ver. K. K. Zool. Bot. Ges. Wien 67: 171–187. Vetter J. (1922) Neue Pflanzenfunde aus Niederösterreich und Tirol. Ver. Zool.-Bot. Ges. Wien 72: 110–121. Wilkinson M. J., Stace C. A. (1991) A new taxonomic treatment of the Festuca ovina L. aggregate (Poaceae) in the British Isles. Bot. J. Linn. Soc. 106: 347–397. Willdenow C. L. (1809): Enumeratio plantarum horti regii botanici berolinensis, continens descriptiones omnium vegetabilium in horto dicto cultorum. – Taberna Libreraria Scholae Realis, Berlin. Zielonkowski W. (1973) Wildgrasfluren der Umgebung Regensburgs Vegetationskundliche Untersuchungen an einem Beitrag zur Landespflege. Hoppea 31: 1–181.

19

Fig. 1: Results of Discriminant Analysis: Diagram of discriminant scores of samples at the first three discriminant functions (symbols) and standardized canonical discriminant functions coefficients of variables (vectors), showing the main morphological pattern within the taxa studied. Symbols: dark triangles – F. vaginata, white circles – F. psammophila, dark squares – diploid F. pallens, white 5-angle stars – tetraploid F. csikhegyensis, black trefoils – F. polesica, white leaves – F. pseudovaginata, black 8-angle stars – hybrids. Alltogether 451 samples are plotted, those from from the last two grops are only passively projected. Discriminant functions used explained 98.1% of interspecies variability, original variable scores are multiplied by 12 to fit the diagram.

20

Fig. 2: PCoA ordination diagram of AFLP fragment polymorphism. Symbols: dark triangles – F. vaginata, white clear circles – F. psammophila, white dotted circles – F. dominii, dark squares – diploid F. pallens, black 5-angled star – tetraploids from Oleško, white 5-angled atar – tetraploid F. csikhegyensis, black trefoils – F. polesica, black 8-angled stars – F. ovina × F. psammophila), black cross – F. ovina subsp. guestfalica × F. polesica.

21

52 vvF2 8 8 18 vvF287 11 vv6 9 1 41 vvF2 9 7 5 vvF2 7 6 95 vv434 vv415 SW Romania 53 vvF696 14 vvF394 E Pannonia 77 magF704 magF703 F. vaginata 16 vmF592 vvF2 8 6 vvF2 7 2 22 vmF6 0 2 vdF493 28 vmF6 1 9 9 vdF1186 vdF1 6

vdF3 1 1 F. dominii 23 32 vdF1179 vdF1 1 7 8 20 mmF645 11 mm618 mmF598 vv1162 9 mmF615

mmF603 (circles) 61 sc35 54 pa1015 pa1229 28 mmF635 mm78 vmF641 8 68 mmF622 mmF624 37 mmF358 F. psammophila mmF1141 7 18 mmF639 paK1 0 91 beF9 7 17 beF9 6 7 msF1004 Bělá pod Bezdězem paF5 0 78 8 27 paF1005 msF1002 52 mmF665 mmF659

99 olF72 + F. pallens (squares) 99 Oleško 12 olF1146 psgF395 80 72 psgF713 F. pseudovaginata psgF714 mx627 71 47 po651 hybrids with F. ovina mx626 poF389 Romania 99 polF564 99 po6 1 3 40 poF649 46 46 polF662 polF6 0 8 F. polesica

Fig. 3. Neighbour joining tree of AFLP fragments analysis. Symbols correspond to those used in the PCoA diagram, Fig. 2.

22

54N

52N

50N

48N

46N

44N

? 6E 9E 12E 15E 18E 21E 24E 27E

Fig. 4: Distribution of saxicolous taxa of the F. pallens agg. based on the samples analysed. Symbols: grey squares – F. pallens, dark diamonds – F. csikhegyensis, small white circle – F. psammophila × F. pallens (F. ×belensis), white square – F. pallens × F. valesiaca, white triangle – F. csikhegyensis × F. vaginata; interrupted line represents the distribution area of the F. pallens agg.

23

54N

52N

50N

48N

46N

44N

6E 9E 12E 15E 18E 21E 24E 27E

Fig. 5: Distribution of psammophilous taxa based on the samples analysed. Symbols: white circles – F. psammophila subsp. psammophila, divided dark/white circles – F. psammophila subsp. dominii, dark squares – F. polesica, white circles – F. pseudovaginata, dark triangles – F. vaginata, white triangles – F. vaginata × F. valesiaca, small black dots – F. psammophila × F. ovina; interrupted line represents the nature range of F. psammophila, solid line F. vaginata and dotted one W margin of distribution area of F. polesica.

24

Table 1. Characters used in the measurements and morphometric analysis. 1 Stem length, measured from its base to the base of panicle; maximum. 2 Stem-leaf sheath length, measured on uppermost sheath, from node to the ligula; maximum. 3 Panicle length, measured from base (lowermost node) to the base of apical spikelet; maximum. 4 Lower panicle branches length, measured on the longest branch of the basal panicle node from its base to the base of its apical spikelet; maximum. 5 Lowermost panicle internode length, measured from basal panicle node to the next higher one; maximum. 6 Number of spikelets per panicle, incl. all rudimental and malformed spikelets; maximum. 7 Spikelet length, measured in spikelets from the middle part of the panicle, from base of the lower palea to top of the fourth lemma (without awn); median. 8 Lemma length, measured in the second lemma in spikelet, from its base to the apex (without awn); median. 9 Awn length, measured on the same second lemma (character 8); median. 10 Stem indument intensity, observed in all well-developed stems, immediately below the panicle: 0 – completely glabrous (without any hairs, 25 × magnitude), 1 – most of stems slightly hairy or slightly scabrid, 2 – all stems densely hairy or very scabrid; modus. 11 Roughness of leaves, tested by lips on keels of several tiller leaves (not on leaf margins): 0 – leaves entirely smooth; 1 – leaves scabrid only near the apex; 2 – leaves scabrid only in the upper quarter; 3 – leaves scabrid in the upper half , 4 – leaves scabrid also in the lower half; minimum and maximum. 12 Pruinose (i.e. presence of wax layer that can be wipped out, not only glaucous color of plant), observed namely on tiller-leaf sheaths, youngest tiller leaves, stem nodes and lemmas at 40 × magnification; presence/absence. 13 Tussock and tiller architecture, observed according to Pawlus (1985: Fig. 19): 0 – free to dense tufts composed of acute leaves outstanding in various angle from the sheath axis, and intermediary cases with the following, 1 – dense tufts composed of tillers with long tapering leaves, positioned as ±direct continuiation of their sheaths. 14 Sclerenchyma ring interruption, observed on cross-sections made between the ½ and the upper ¼ of the leaf length, in 2–3 tiller leaves (microscope slides, 240 × magnification); percentage ratio of observed leaves with any interruption. 15 Ploidy level, used only for F. pallens s.l., based on the previous works, and on new flow cytometric measurements. 16 Panicle nodding before flowering, observed in the cultivation field in 2001 and 2002, as later in the wild. 17 Relative flowering time, observed in the cultivation field in 2001 and 2002, as later in the wild. * Characters 1–9 were measured only at the three longests and best developed stems. * Characters 16 and 17 were not calculated diectly in the morphometric analysis.

25

Table 2. List of plants used for the study and chromosome count or ploidy level according to Šmarda and Kočí (2003), Šmarda et al. (2005), Šmarda (submitted). The new ploidy level estimates are marked by an asterisk. Letter “F” indicates cultivated plants, “H” samples where only herbarium specimens were available.

2n Coordinates Sample numbers Festuca vaginata Hu; Csévharaszt, S periphery 2x 47°16'55.4"N; 19°24'56.3"E F285, F286 Hu; Darány, 2 km W 2x 45°58'48.4"N; 17°34'36.9"E F272, F273 Hu; Debrecen-Haláp, 1.5 km SSE 2x 47°30'39.9"N; 21°50'48.7"E F699, F700 Hu; Fót, Fót Somlyó Nature Reserve 2x 47°37'36.2"N; 19°12'20.1"E F304-F307 Hu; Fülöpháza, W periphery 2x 46°53'00.6"N; 19°25'23.9"E F265-F271 Hu; Kunadacs, 10 km E 2x 46°57'22.3"N; 19°25'11.5"E F288 Hu; Kunadacs, 4 km SE 3x 46°56'54.6"N; 19°20'28.5"E F277 2x F278-F284 Hu; Nagykőrös, 7 km NW of centre 2x 47°03'38.2"N; 19°41'51.1"E F696 Hu; Pirtó, 5.6 km SSE 2x 46°28'11.1"N; 19°27'39.1"E F287 Hu; Rém, sandpit in village periphery 2x 46°15'28.1"N; 19°08'17.0"E F274-F276 Hu; Soltvadkert, 6 km S 2x 46°31'20.1"N; 19°25'40.1"E F289 Hu; Szigethalom, S periphery 2x 47°19'11.2"N; 19°02'00.8"E F297, F298 Hu; Sziget-monostor, 1 km N 2x 47°42'51"N; 19°06'07"E F1161, F1162 Hu; Sziget-monostor, 1 km S 2x 47°41'45"N; 19°05'28"E F1158, H121-H124 Hu; Szőt-Csörög, sands in the village 2x 47°44'00.0"N; 19°11'01.3"E F328 Hu; Táhitotfalu, 2 km S 2x 47°45'12"N; 19°06'06"E F1163 Rm; Gruia, 6.5 km NW 2x 44°18'07.4"N; 22°39'06.5"E F432, F435, F437 Rm; Piscuteţ, 3 km S of centre 2x 43°49'59.5"N; 23°08'08.6"E F414, F415 Rm; Stănislau, 5 km N - 47°40'36.5"N; 22°19'05.2"E F393 2x F394 Sk; Čenkov, 1.5 km N 2x ±47°46'55"N; 18°31'42"E H117, H118 Sk; Čenkov, Čenkovská step Nature Reserve 2x 47°46'05.3"N; 18°31'23.1"E F690, F691, F1152, F1153, H116 Sk; Streda nad Bodrogom, Tarbucka Nature Reserve 2x 48°22'20.2"N; 21°46'58.4"E F702-F704

Festuca psammophila subsp. psammophila Cz: Konárovice, 0.6 km E of the church 2x 50°02'20"N; 15°17'38"E F1144, H76 Cz: Konárovice, 0.7 km SSE of the church 2x 50°01'59"N; 15°17'21"E F1141, F1142 Cz: Kostelní Lhota, 1.5 km WNW of the church 2x 50°07'54"N; 15°00'42"E F1140, H77 Cz: Tři Dvory, 0.5 km NE of the centre 2x 50°02'03"N; 15°15'36"E F1148 Cz; Bělá pod Bezdězem, 0.1 km S of Šbeniční Hill 14 50°30'44"N; 14°47'50"E F1002 Cz; Bělá pod Bezdězem, 0.65 km SW of Panská 14 50°29'11"N; 14°48'24"E F1001 horka Hill Cz; Bělá pod Bezdězem, 1.1 km SE of Šbeniční vrch 14 50°30'16"N; 14°48'23"E F1004 Hill Cz; Hradišťko, S periphery 14 50°09'46"N; 14°56'19"E F78, F79 Cz; Kozly, 2.1 km ESE of the church 2x 50°14'45.0"N; 14°35'06.6"E F358 Cz; Lysá nad Labem, 1 km ENE of "226.2 m" - 50°13'10"N; 14°49'45"E F66 elevation point Cz; Písty u Nymburka, 0.7 km NE 2x 50°10'00"N; 15°00'41"E F77 Cz; Písty u Nymburka, Písečný přesyp Nature 14 50°09'44"N; 14°59'54"E F75, F76 Reserve Ge; Finowurth, 4 km W - 52°51'28.0"N; 13°37'35.3"E F646, F647 Ge; Gerwish, 1.7 km N - 52°11'28.2"N; 11°44'26.8"E F653-F655 Ge; Griebo, 2 km W of railway station - 51°52'53.7"N; 12°29'36.3"E F660, F661 Ge; Linde, 3 km W - 52°54'00.7"N; 13°05'03.4"E F648 Ge; Niewitz, 0.5 km S - 51°55'34.8"N; 13°47'35.4"E F664, F665 Ge; Steckby, 1.5 km NE - 51°53'47.6"N; 12°02'21.5"E F659 Pl; Annopol, NW periphery - 50°53'16.6"N; 21°50'19.5"E F603, F612 Pl; Biecz, S periphery - 51°48'03.2"N; 14°50'18.0"E F638, F639 Pl; Blizocin, W periphery - 51°22'04.3"N; 17°09'22.3"E F637 Pl; Borowiec, 0.5 km S - 52°08'26.7"N; 17°43'03.2"E F622, F624 Pl; Brzózka, 1 km W - 51°59'49.7"N; 15°01'30.1"E F629, F630 Pl; Cedynia, Wrzosowiska Cedyńskie Nature Reserve - 52°51'25.6"N; 14°09'56.3"E F644, F645 Pl; Chełmno, 2 km W - 52°09'46.8"N; 18°43'15.8"E F617, F618

26

Pl; Chotel Czervony, 1 km W - 50°22'50.2"N; 20°41'14.8"E F588, F589 Pl; Gorsk, 2.6 km NW - 53°04'16.7"N; 18°23'31.4"E F616 Pl; Konin, W periphery - 52°12'11.8"N; 18°12'17.8"E F631, F632 Pl; Osiecznica, 2 km NW - 52°05'19.9"N; 15°01'52.8"E F640 Pl; Puławy, 1.5 km N of Kurówka River influx - 51°27'37.2"N; 21°56'41.0"E F605, F607 Pl; Siekierki, 0.5 km E - 52°48'35.7"N; 14°14'55.5"E F641, F642 Pl; Siekierki, N periphery - 52°49'31.0"N; 14°13'36.1"E F643 Pl; Skrzypiów, 2 km SW - 50°29'55.9"N; 20°28'47.1"E F597 Pl; Toruń, W periphery - 53°01'09.8"N; 18°31'16.5"E F614, F615 Pl; Wólka Kolczyńska, 2 km NE - 51°05'14.7"N; 21°54'32.5"E F604 Pl; Zagórze, road Wołów – Malczyce - 51°16'22.3"N; 16°33'12.9"E F636

Festuca psammophila subsp. dominii A; Drösing, 2.2 km SSE 2x 48°31'19.3"N; 16°54'45.8"E F311 Cz; Bzenec, Cvičiště u Bzence Nature Reserve 14 48°57'25"N; 17°17'24"E F9-F12 Cz; Bzenec, Váté písky Nature reserve 14 ±48°55'50"N; 17°16'40"E F13-F19 Pl, Kosin, 1.5 km N - 50°50'27.1"N; 21°54'28.4"E F599-F602 Pl; Brzeźno, NW periphery - 52°11'46.4"N; 18°17'36.2"E F619, F620 Pl; Zakrzów, 2 km W - 50°28'26.8"N; 20°30'24.6"E F590-F592 Sk; Horné Valy, 0.5 km NE 2x 48°34'48"N; 17°07'42"E F1185 Sk; Horné Valy, 0.6 km NE 2x 48°34'35"N; 17°07'28"E F1186-F1188, H98, H99 Sk; Malacky, 10 km NE 2x 48°30'30"N; 17°06'94"E F1179 Sk; Mikulášov, 2.2 km SE 2x 48°33'15"N; 17°13'50"E F1082, F1083 Sk; Mikulášov, 4 km SSE of centre 2x 48°32'00.5"N; 17°14'36.5"E F494 Sk; Plavecký Štvrtok, 0.9 km NE of railway station 2x 48°22'22"N; 17°00'49"E F1178, H97 Sk; Šišulákovci, 0.5 km NE 2x 48°34'27"N; 17°09'11"E H87 Sk; Šišulákovci, 1 km NE 2x 48°34'39"N; 17°08'56"E F1182, F1183, H81- H84, H127

Festuca polesica Ge; Neuendorf (near Lübben), 0.5 km NW 2x 51°55'01.6"N; 13°50'45.0"E F662* - F663 Ge; Wittenberge, W periphery 2x 53°00'21.7"N; 11°43'19.1"E F649* - F650 Pl; Godzięba, E periphery 2x 52°54'31.2"N; 18°51'49.3"E F613* Pl; Gołąb, E periphery 2x 51°30'59.3"N; 21°53'46.2"E F608*, F610* Pl; Górki, 2.5 km N 2x 52°21'05"N; 20°31'53"E F194*, F196*, F197*, F198*, H141*, H142*, H143*, H144*, H146*, H147*, H148*, H150* - H145, H149 Pl; Ruda Tarnowska, N periphery 2x 51°47'12.6"N; 21°27'04.0"E F611 Rm; Hanu Conachi, Nature Reserve on village 2x 45°34'58.0"N; 27°34'26.5"E F389, F391 periphery

Festuca pallens A; Aggsbach-Dorf, 0.7 km S of main crossroads 2x 48°17'13"N; 15°24'28"E F1088 A; Forchtenstein bei Mattesburg, 0.3 km NW of the 2x 47°42'43"N; 16°19'43"E F1085 castle A; Mödling, 0.5 km E of Ruine Burg Mödling ruin 2x 48°04'50"N; 16°16'32"E F1112 A; Retz, Gotllisch Hill SW of the town 14 48°45'64"N; 15°56'33"E F1031 A; Retz, Parapluieberg Hill NW of the town 14 48°45'36"N; 15°56'02"E F1032 A; Schottwien (near Gloggnitz), NW periphery 2x 47°39'33"N; 15°52'14"E F1097 A; Weiz, Weizklamm glen 2x 47°16'23"N; 15°34'50"E F1086, F1087 Cz: Mnichov, 2.6 km ENE of the church 2x 50°02'32"N; 12°49'19"E F1210, F1211 Cz: Praha-Trója, Jabloňka Nature Reserve 2x 50°07'01"N; 14°26'21"E F1064 Cz: Raškov u Hanušovic, Modřínový vrch Nature 2x 50°02'28"N; 16°53'15"E F1150 Reserve Cz; Adamov, NE periphery 14+1B 49°18'20"N; 16°39'26"E F1 Cz; Bělá pod Bezdězem, 1.7 km NW of the railway 14 50°29'54"N; 14°49'09"E F1003 station Cz; Bezděz, Bezděz Hill 14 50°32'18"N; 14°43'17"E F1005

27

Cz; Bítov, Cornštejn ruin 14 48°56'02"N; 15°42'54"E F1034 Cz; Boč, 1.6 km SSW of the church 2x 50°21'01"N; 13°04'16"E F1057 Cz; Choceň, Peliny Nature Reserve 2x 50°00'13"N; 16°14'04"E F140, F141 14 F1053 Cz; Chvatěruby, 0.45 km SE of the church 14 50°14'14"N; 14°20'33"E F1008 Cz; Davle, 0.4 km of the railway station 14 49°53'26"N; 14°24'15"E F1014 Cz; Děkovka, Plešivec Hill 14 50°29'26"N; 13°56'24"E F1046 Cz; Doudleby, 1 km ENE 2x 48°53'43"N; 14°30'30"E F188* Cz; Dyje u Znojma, Dyjské svahy Nature Reserve 14 48°50'17"N; 16°07'21"E F51 Cz; Havraníky, Havranické vřesoviště Nature reserve 14 48°48'49"N; 15°59'33"E F61, F63 Cz; Havraníky, rocks Nad Papírnou 2x 48°49'31"N; 15°58'53"E H2 Cz; Hnanice, 2 km NNW of the church 14 48°48'58"N; 15°58'58"E F64 Cz; Hradišťko-Brunšov, 0.4 km of the bridge 14 49°51'15"N; 14°24'25"E F1015 Cz; Ivančice, 0.45 km SSE of Réna Hill 14 49°05'12"N; 16°23'35"E F50 Cz; Josefov, Býčí skála Hill 14 49°18'30"N; 16°41'45"E F2, F3 Cz; Josefov, Krkavčí skála Hill 14 49°18'33"N; 16°41'32"E F5, F6 Cz; Kamenný Újezd, 2.0 km WNW 2x 48°54'06"N; 14°25'10"E F1063 Cz; Libčice nad Vltavou, NW margin of Větrušická 14 50°11'48"N; 14°22'36"E F1010 rokle Nature Reserve Cz; Malhostovice u Brna, Malhostovická pecka 14 49°19'31"N; 16°29'42"E F41-F43 Nature Reserve Cz; Mladá Boleslav-Debř, Radouč Nature Reserve 14 50°25'57"N; 14°53'53"E F95 Cz; Mohelno, Mohelenská hadcová step Nature 2x 49°06'29"N; 16°11'14"E F179*, F181*, F183* Reserve Cz; Moravské Bránice, 1.5 km NNW of Šibeniční 14 49°04'45"N; 16°26'27"E F48 vrch Hill Cz; Moravský Krumlov, Pod Floriánkem Nature 14 49°02'50"N; 16°19'16"E F25, F26 Reserve Cz; Neveklov-Nebřich, 0.65 km ESE of the bridge 14 49°45'60"N; 14°25'20"E F1016 Cz; Nové Bránice, 0.3 km NW of Šibeniční vrch Hill 14 49°04'10"N; 16°27'04"E F49 Cz; Nové Ouholice, 1.2 km SSW of the railway 14 50°17'38"N; 14°18'32"E F1007 station, sandstone Cz; Rokytná u Moravského Krumlova, Tábor Nature 14 49°03'43"N; 16°19'57"E F27 Reserve Cz; Roztoky u Křivoklátu, Na Babě Nature Reserve 14 50°01'50"N; 13°52'15"E F1041 Cz; Sloup, 4 km SSW of the church, Koňský spád 2x 49°22'44"N; 16°43'41"E F1070 cliff Cz; Štramberk, Bílá hora Hill 2x 49°35'42"N; 18°07'23"E F1055 Cz; Třebíč, 0.4 km from the central bridge 14 49°12'57"N; 15°52'16"E F1020 Cz; Třebíč-Hrádek 2x 49°13'01"N; 15°53'02"E H187-H189 Cz; Třísov, 0.9 km NE 2x 48°53'21"N; 14°21'27"E F1235, F1236 Cz; Újezd pod Troskami, Trosky ruin 2x 50°30'58"N; 15°13'58"E F1217 Cz; Vladislav u Třebíče, 0.6 km ESE 14 49°12'31"N; 15°59'40"E F1024 Cz; Vranné nad Vltavou, Zvolská homole Nature 14 49°56'24"N; 14°23'47"E F1013 Reserve Cz; Záluží, 1.1 km W, U Rohana rocks 2x 48°52'32"N; 14°21'54"E F1062 Cz; Zruč nad Sázavou, 1.1 km NW of the castle 14 49°44'58"N; 15°05'22"E F84 Ge, Hemleben, Rote Berge Hill S of the village 2x 51°14'25"N; 11°13'01"E F164* Ge; Blankenberg, along Saale River W of the village 2x 50°24'02"N; 11°42'34"E H322 Ge; Eich, Eichenberg Hill SW of the village 2x 49°10'25"N; 11°58'12"E H329, H330 Ge; Eisborn, Uhufelsen WSW of the village 2x 51°22'43"N; 07°51'30"E F166* Ge; Etterzhausen, 1.4 km NE of the railway station 2x 49°02'14"N; 11°59'47"E F1200, F1201 Ge; Gössweinstein, near railway station 2x 49°46'28"N; 11°20'08"E H334 Ge; Kallmünz, 0.35 km NW of the church 2x 49°09'54"N; 11°56'54"E F1202, F1203 Ge; Kleinziegenfeld, above road in the village 2x 50°01'23"N; 11°12'01"E F1205 Ge; Lohstadt, slope NNE of the village 2x 48°57'20"N; 11°59'10"E H331 Ge; Obernitz, N of the village 2x 50°38'13"N; 11°23'07"E H324 Ge; Passau-Ilstadt, Klosterberg Hill 2x 48°34'37"N; 13°29'09"E F1193, F1194 14 F1195 Ge; Pottenstein, 2.5 km SE 2x 49°45'10"N; 11°25'40"E F1216 Ge; Pottenstein, between Schüttersmühle mill and 2x 49°45'18"N; 11°25'33"E H320 Teufelshöhle cave Ge; Rupprechtstegen, E of Mühlberg Hill 2x 49°36'12"N; 11°29'17"E H332, H333 Ge; Schernfeld, slope S of the village 2x 48°53'55"N; 11°06'41"E H328 Ge; Schwabelweis, Fellingerberg Nature Reserve 14 49°01'50"N; 12°09'28"E F1198

28

2x F1199 Ge; Streitberg, 0.5 km NNW of the church 2x 49°49'01"N; 11°13'07"E F1204 Ge; Sulzbach an der Donau, above the Danube at the 2x 49°01'39"N; 12°14'44"E F1196, F1197 village periphery Ge; Wurlitz, Wojaleite Nature Reserve W of the 2x 50°15'17"N; 11°58'28"E F169, F1207-F1209, village H318, H319 Hu; Siroki, Siroki-vár ruin 2x 47°56'20.1"N; 20°11'48.9"E F299*, F300* Pl; Jerzmanowice, Lysa skala Hill 2x 50°12'48"N; 19°45'00"E F1137, F1138 Rm; Bicaz Chei, W periphery 2x 46°49'29.0"N; 25°52'02.8"E F419 Rm; Feneş, 5 km N, Cheile Feneşului glen 2x 46°09'04.9"N; 23°17'11.6"E F380 Rm; Vălişoara, 3.4 km SSE, Cheile Aiudului glen 2x 46°22'29.1"N; 23°35'18.3"E F439 Sk; Blatnica, 1.1 km SW of Ostrá Mt. 2x 48°54'41"N; 18°57'24"E F146 Sk; Blatnica, top of Ostrá Mt. 2x 48°55'08"N; 18°58'04"E F144, F145 Sk; Buková, 2 km ENE of the church 2x 48°32'75"N; 17°26'00"E F1084 Sk; Diviacka Nová Ves, Rokoš Nature Reserve 2x 48°45'42"N; 18°25'54"E F218* Sk; Dolná Súča, below Krasín Hill 2x 48°57'40"N; 18°01'12"E F1072 Sk; Hrabušice, 3.4 km N of Bykarka Hill 2x 48°56'51"N; 20°24'17"E F1074 Sk; Hrabušice, Prielom Hornádu Nature Reserve near 2x 48°57'30"N; 20°24'50"E F1075 Mnichova Díra Sk; Malá Lodina, Bokšov Nature Reserve 2x 48°51'95"N; 21°08'05"E F1192 Sk; Muráň, 0.9 km of Velká Stožka Hill 2x 48°46'29"N; 19°57'50"E F1080 Sk; Muráň, Muráň ruin 2x 48°45'44"N; 20°03'31"E F1078 Sk; Ráztočno, large limestone quarry 2x 48°45'54"N; 18°46'36"E F1076 Sk; Snižany, near hiking trail 2x 48°58'16"N; 20°30'17"E F187* Sk; Spišské Podhradie, Spišský hradný vrch Nature 2x 48°59'51"N; 20°45'43"E F1218, F1219 Reserve Sk; Stratená, 1.3 km W of Remlaška Hill 2x 48°53'18"N; 20°18'53"E F1081 Sk; Vršatské Podhradie, Vršatec Hill 2x 49°04'01"N; 18°09'04"E F217, F1071 Sk; Zádiel, 0.9 km NE of the church 14 48°37'38"N; 20°50'19"E 1229 Sk; Zádiel: 2 km N of the church 2x 48°38'05"N; 20°50'07"E F1230

Festuca csikhegyensis A; Chromwerk, 2.1 km SE 4x 47°17'15"N; 14°58'18"E F1107 A; Dürnstein, 1.5 km NNE 4x 48°24'31"N; 15°31'41"E F1089-F1091 A; Hundsheim-Neusiedlung, Nature Reserve above 4x 48°07'20"N; 16°56'04"E F310*, F1073, the village F1189/1, F1189/2 A; Kraubath an der Mur, 2.8 km SSW of the church 4x 47°17'00"N; 14°55'38"E F1100-F1103 A; Pernegg, 1.05 km NE of the church 4x 47°21'54"N; 15°21'35"E F1104-F1106 A; Zlatten, opposite the power station 4x 47°22'10"N; 15°19'06"E F1110 Cz: Derflice, Kamenná hora Nature Reserve 4x 48°48'51"N; 16°09'04"E F1068 Cz: Hostěradice, NE periphery 4x 48°57'12"N; 16°15'47"E F1069 Cz: Hrdly, 0.6 km of railway station 4x 50°29'21"N; 14°10'53"E F1149 Cz: Libotenice, 0.8 km W of cemetery 4x 50°28'45"N; 14°12'58"E F1147 Cz: Načeratice, 0.2 km S of Načeratický kopec Hill 4x 48°49'30"N; 16°05'52"E F1067 Cz: Oleško, 0.3 km E of the church 4x 50°28'50"N; 14°12'07"E F1151 Cz: Oleško, 0.5 km NW of the church 4x 50°29'03"N; 14°11'34"E F1145, F1146 Cz; Brno-Bedřichovice: Horky Nature Reserve 28 49°10'52"N; 16°43'45"E F45-F47 Cz; Budčice, 0.6 km of railway station 28 49°43'41"N; 15°10'58"E F83 Cz; Hodonice u Znojma, 2.5 km SE of railway 28 48°49'28"N; 16°11'17"E F55 station Cz; Kleneč, Klenečská stráň Nature Reserve, sand 28 50°23'20"N; 14°15'24"E F73 Cz; Mikulov: Svatý kopeček Nature Reserve 28 48°48'24"N; 16°38'52"E F39, F40 Cz; Miroslav, Miroslavské kopečky Nature Reserve 28 48°56'10"N; 16°18'41"E F57 Cz; Moravský Krumlov, Pod Floriánkem Nature 28 49°02'48"N; 16°19'08"E F24, F62 Reserve Cz; Oleksovice, Oleksovické vřesoviště Nature 28 48°53'51"N; 16°15'05"E F56, F1066 Reserve, sand Cz; Oleško, 1.1 km E of the Chapel 28 50°28'50"N; 14°12'48"E F72 Cz; Oleško, NE periphery 28 50°28'55"N; 14°11'53"E F70, F71 Cz; Pavlov, Děvín Nature Reserve 28 48°52'10"N; 16°39'00"E F21-F23 Cz; Pavlov, near Děvičky castle ruin 28 48°52'34"N; 16°39'47"E F20, F37 28+1B F38 Cz; Podmoráň, 0.25 km NW of Úholičky railway 28 50°10'18"N; 14°20'55"E F1011 station Cz; Praha-Hlubočepy, Dalejský mlýn mill 28 50°02'35"N; 14°22'30"E F35

29

28+1B F36 Cz; Praha-Hlubočepy, Děvín Nature Reserve 28 50°02'30"N; 14°22'55"E F29-F31 Cz; Praha-Hlubočepy, Prokopské údolí Nature 28 50°02'29"N; 14°22'05"E F28, F32-F34 Reserve Cz; Roztoky-Žalov, below cemetery 28 50°10'11"N; 14°22'27"E F1012 Cz; Tasovice, Nad Splavem Nature Reserve 4x 48°50'06"N; 16°07'55"E F53 28 F54 Cz; Velké Žernoseky, 0.85 km NNW of the church 28 50°32'44"N; 14°03'13"E F1047 Cz; Velké Žernoseky, 1.25 km NNW of the church 4x 50°32'50"N; 14°02'53"E F1048 Cz; Vémyslice, Na Kocourkách Nature Reserve 4x 49°00'14"N; 16°15'27"E F189* Cz; Zruč nad Sázavou, 1.25 km NW of castle 28 49°45'03"N; 15°05'14"E F85, F86 Ge, Bohlen, schistaceous slope 4x 50°38'35"N; 11°23'07"E F160* Ge; Bad Frankenhausen, Schlachtberg Hill N of the 4x 51°22'12"N; 11°06'09"E H325, H326 village Ge; Bad Frankenhausen, 2.3 km NW of the church 28 51°22'30"N; 11°04'45"E F89, F90 Ge; Bad Frankenhausen, 3 km NW of the church 28 51°22'34"N; 11°03'41"E F91 Ge; Bottendorf, NE periphery 28 51°18'32"N; 11°24'35"E F87, F88 Ge; Eisenach, below Wartburg Hill 4x 50°58'11"N; 10°19'08"E F167*, H340 Ge; Friedrichsschwerz, 1.0 km NW 28 51°33'25"N; 11°50'03"E F92 Ge; Friedrichsschwerz, 1.2 km NW 28 51°33'30"N; 11°49'56"E F93 Ge; Gräfenwarth, Bleiberge Hill W of village 4x ±52°32'02"N; ±11°44'15"E F165* Ge; Heimbach, Bildchesberg Hill N of the village 4x 50°37'52"N; 06°28'55"E F172* Ge; Kirchhasel, Weisser Berg Hill W of the village 4x 50°44'09"N; 11°24'40"E F157* Ge; Maden, Maderstein Hill NE of the village 4x 51°10'21"N; 09°22'12"E F170* Ge; Olef, Kuckucksley Hill N of the village 4x 50°33'15"N; 06°29'27"E F171*, F175* Ge; Padberg, Lüchtenberg Hill S of the village 4x 51°23'53"N; 08°45'51"E F162*, H339 Ge; Reitzenhagen, cliff W of the village 4x ±51°07'N; ±09°09'E F161* Ge; Remschütz, Kellerberg Hill NW of the village 4x 50°40'32"N; 11°20'17"E H323 Ge; Rothenstein, Helenen-Berge Hill 1.5 km NE of 4x 50°51'30"N; 11°34'29"E F168* the village Ge; Rudelsburg, slope W of the village 4x 51°06'55"N; 11°42'39"E H336 Ge; Saaleck, 0.5 km SSE 4x 51°06'47"N; 11°41'38"E H337, H338* Hu: Fót, N periphery, calcareous outcrops 4x ±40°37'30"N; ±19°12'26"E F302, F303, F237* Hu: Király-Szentistván, N periphery 4x 47°06'30"N; 18°02'58"E F1172, F1173 Hu; Budaörs, NW periphery 4x 47°27'49.1"N; 18°54'26.0"E F324*, F325* Hu; Csákberény, 3 km W 4x 47°20'55.2"N; 18°17'57.6"E F312* Hu; Csobánka, E periphery 4x 47°37'56"N; 18°58'19"E F1157 Hu; Dobogókő, 1.7 km SW 4x 47°42'28"N; 18°53'06"E F1156 Hu; Nagykovácsi, N periphery 4x 47°35'27"N; 18°52'50"E F1167 Hu; Sóly, ca 2.3 km W 4x 47°07'44.6"N; 18°00'11.8"E F317* Hu; Szár, 2,1 km ESE 4x 47°28'32.3"N; 18°32'12.7"E F315*, F316* Sk; Devín, Devínská Kobyla Nature Reserve 4x 48°10'94"N; 16°59'46"E F1176, F1177 Sk; Devín, Devínský hrad castle ruin 4x 48°10'41"N; 16°58'88"E F1175 Sk; Látkovce, quarry 1.1 km N of the village 4x 48°43'13"N; 18°21'32"E F219*

Festuca pseudovaginata Hu; Örkény 4x ±47°07'30"N; 19°26'28"E H1415* Hu; Vácrátót, Kistece (isotypes + paratype at BRNU) 4x ±47°43'10"N; 19°13'45"E H1416*, H1417* (living plants from type locality) 4x F713*, F714* Holotypus (BP 647351) 4x BP647351* isotypes at BP (BP 652006, BP 652007) 4x BP652006*, BP652007* Rm; Stănislau, 5 km N 2x 47°40'36.5"N; 22°19'05.2"E F395

Festuca csikhegyensis × F. vaginata Hu; Fót, Fót Somlyó Nature Reserve, sand 3x 47°37'36.2"N; 19°12'20.1"E F301

Festuca ovina × F. polesica Ge, Stendal, E of road Stendal – Borstel 4x 52°37'53.4"N; 11°50'42.8"E F651*, F652*

Festuca ovina × F. psammophila Cz: Tři Dvory, 0.5 km NE of the centre 2x 50°02'03"N; 15°15'36"E H75 Pl; Blizocin, W periphery (type locality of - 51°22'04.3"N; 17°09'22.3"E F626-F628 F. vaginata var. aristata)

30

Pl; Borowiec, 0.5 km S - 52°08'26.7"N; 17°43'03.2"E F621, F634 Pl; Skrzypiów, 2 km SW - 50°29'55.9"N; 20°28'47.1"E F595, F596

Festuca pallens × F. valesiaca Cz; Chvatěruby, 50 m NW of the church 14 50°13'59"N; 14°20'29"E F1009

Festuca pallens × F. psammophila Cz; Bělá pod Bezdězem-Páterov, between houses Nr. 14 50°29'31"N; 14°50'36"E F96, F97 817 and 1008 (type locality of F. ×belensis)

Festuca vaginata × F. valesiaca Rm; Moldova Veche, 1.5 km S of the centre 2x 44°42'46.2"N; 21°38'29.5"E F409 Hu; Sziget-monostor, 1 km S 2x 47°41'45"N; 19°05'32"E F1159

31

Table 3. Values of analysed characters in particular species. Upper row represent sequence 5% percentile–median (bold)–95% percentile; lower row sequence minimum– maximum. The last two characters are based on field observations and were not included into the statistical analysis.

F. polesica F. vaginata F. psammophila F. pallens F. csikhegyensis Character 2x 2x 2x 2x 4x N=29 N=60 N=100 N=132 N=110 34–40–51 33–46–65 27–43–60 26–41–55 22–39–58 Maximal stem length (cm) 33–53 29–76 15–69 21–67 13–73 Maximal length of upper 10.4–14.8–20.3 12.1–17.5–25.1 9.5–13.9–18.8 6.8–10.4–15.1 6.2–9.5–14.3 leaf stem sheath (cm) 8.7–21.2 10.1–34.2 8.0–20.3 5.7–18.4 5.1–17.1 Maximal panicle length 7.5–10.8–13.7 8.94–14.3–20.2 7.3–10.1–15.1 5.1–7.3–10.8 4.6–6.8–9.8 (cm) 6.8–14.2 6.4–24.3 5.5–17.9 4.3–13.4 3.0–12.2 Maximal length of lower 2.2–3.7–4.9 3.6–5.4–8.0 2.1–3.3–5.7 1.3–2.2–4.0 1.0–2.0–3.5 panicle branches (cm) 2.0–5.1 3.0–10.5 1.3–6.6 1.0–5.1 0.1–4.6 Max. length of lowest 2.1–2.7–3.7 2.8–4.0–6.1 2.2–3.1–4.9 1.4–2.1–3.6 1.3–2.0–3.2 panicle internode (cm) 1.9–3.7 1.9–7.0 1.6–5.4 0.8–4.9 1.0–3.8 Maximal number of 28–51–74 36–80–166 27–43–76 18–31–60 14–24–39 spikelets per panicle 24–82 29–210 23–117 14–94 11–62 Median spikelets length 5.6–6.2–6.7 5.3–5.9–6.7 5.9–6.6–7.6 6.5–7.5–8.3 6.5–7.4–8.3 (mm) 5.5–6.9 4.8–7.1 5.8–7.9 5.7–9.1 6.0–8.9 Median length of the 2nd 3.7–4.0–4.4 3.2–3.7–4.0 3.7–4.2–4.9 4.1–5.0–5.5 4.1–4.9–5.8 lemma (mm) 3.6–4.5 2.7–4.3 3.4–5.2 3.7–6.1 3.8–6.1 Median length of awn 0.6–1.3–1.6 0.0–0.1–0.4 0.2–0.5–1.1 0.8–1.4–2.1 1.0–1.5–2.5 (mm) 0.6–1.8 0.0–0.6 0.1–1.4 0.5–2.4 0.9–3.5 Intensity of stem hairiness 2–2–2 0–0–0 0–0–2 0–0–1 0–1–1 (0, 1, 2) 2–2 0–1 0–2 0–1 0–1 Minimal roughness of 2–4–4 0–0–0 0–0–0 0–0–1 0–2–4 leaves (0, 1, 2, 3, 4) 1–4 0–0 0–1 0–4 0–4 Maximal roughness of 4–4–4 0–0–1 0–0–0 0–0–3 0–3–4 leaves (0, 1, 2, 3, 4) 3–4 0–3 0–3 0–4 0–4 0–1–1 1–1–1 1–1–1 1–1–1 1–1–1 Presence of pruinose (0,1) 0–1 1–1 1–1 0–1 1–1 Tuft and tiller architecture 0–0–1 0–0–0 0–0–0 0–0–0 0–0–0 (0,1) 0–1 0–0 0–0 0–0 0–0 % of leaves with 0–0–0 0–0–0 0–0–0 0–0–50 0–50–100 interrupted scler. ring 0–0 0–0 0–100 0–70 0–100 Panicle nodding before - - - + - anthesis Relative beginning of ? t-1–2 weeks t-1 week t t flowering

Table 4. Classification success of CDA for the 5 main morphological groups recognized. Percentage classification success of both the standard/cross-validated methods is given. (88 % of the originally grouped and 87.1 % of those of cross- validated samples were classified correctly). Original grouping N Predicted group membership polesica vaginata psammo- pallens pallens phila s.l. 2x s.l. 4x F. polesica 29 100/100 0/0 0/0 0/0 0/0 F. vaginata 59 0/0 92/90 8/10 0/0 0/0 F. psammophila 100 0/0 6/7 90/88 4/5 0/0 F. pallens 2x 132 0/0 0/0 5/5 85/85 10/10 F. csikhegyensis 4x 111 0/0 0/0 0/0 15/16 85/84

32

33

(6)

Šmarda P. et Bureš P. (submitted):

Intraspecific genome size variability in Festuca pallens on different geographical scales and ploidy levels.

Ann. Bot. (Oxford).

Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels

PETR ŠMARDA* and PETR BUREŠ

Masaryk University, Faculty of Science, Department of Botany, Kotlářská 2, CZ-611 37 Brno,

Czech Republic, e-mail: [email protected]*, [email protected]

Running head: Intraspecific DNA content variability in Festuca pallens

Electronic mail of the corresponding author: [email protected]

1 • Background and aims Intraspecific genome size variability of Festuca pallens Host (Poaceae, Poaeae) occurring on relict rocky steppes in Central Europe was studied on two ploidy levels and three geographical scales: (i) local scale of 24 populations; 3–6 plants per population; (ii) landscape scale of three 9–13 km long transects in river canyons or hill systems; 16–34 samples per transect; (iii) global scale of 160 samples covering the whole distribution area; • Methods DAPI flow cytometry; homogenously cultivated samples (≥ 1 year); measured randomly during one week with two internal standards Lycopersicon esculentum, Pisum sativum. • Key results On the global scale, DNA content ranged 1.170 fold in diploids, and 1.164 fold in tetraploids. In 16 of 24 populations significant variability was proved (P<0.001). On landscape scale, maximum difference 1.088 fold between mean relative DNA content of nearby populations was found. On the local scale, maximum range 1.121 fold of intrapopulation variability was detected. • Conclusions In both ploidy levels, relative genome size had the same range and geographical pattern; it was correlated with the geographical coordinates (P<0.01), and in diploids with relict character of habitats (P<0.01), and with the character of palaeo-vegetation (20 000 bp): larger genomes in periglacial steppes (P<0.02), a potential refuges. In tetraploids, relative DNA amount was correlated with three geographical types (P<0.001), then particular correlations in tetraploids (with altitude, longitude, phytogeographic regions and type of bedrock) may be influenced by prevailing ecological conditions in distribution areas of these types. Influence of microhabitat on DNA content variation was not confirmed within the populations. Tetraploids have relative DNA amount smaller than twice the size of diploids (P<0.001).

Key words: Festuca subg. Festuca, fescue, Gramineae, polyploidy, Poaceae, genome size, flow cytometry, phytogeography, Central Europe, infraspecific C-value variation, DAPI

2 INTRODUCTION

Festuca pallens Host belongs to the narrow-leaved fescues of the type section (Festuca sect. Festuca, Poaeae, Poaceae). Close relatives are found namely in Mediterranean area and mountains of S and SW Europe, an expected evolution center of this group. Festuca pallens is an allogamic, wind-pollinated species (Auquier, 1977), well morphologically separated from other Central European fescues. Setaceous tiller leaves are 0.6–1.3 mm stout, without remarkable ligulas and are usually apparently pruinose. Subepidermal sclerenchyma on tiller leaf cross section forms complete to partly interrupted sclerenchyma ring. Two other Central European relatives (F. psammophila and F. vaginata) differ in awns usually shorter than 1.1 mm. Geographical distribution of Festuca pallens is restricted to the Central Europe, from France and Belgium through the Alps and Hercynian Mountains to the Carpathians and Transylvanian Highlands in Romania (Fig. 4). It grows on rocky steppes, open rocky outcrops, rocks, cliffs, promontories, without obvious bedrock type preference, typically on slopes of river canyons, valleys and gorges in rocky highlands, karst areas and lower mountains from 100 to 1500 m a. s. l. (related F. psammophila and F. vaginata are psamophilous). The most of petrophilous species frequently occurring together with F. pallens have mainly South European distribution range overlap in Central Europe (Seseli osseum, Sedum album, Alyssum saxatile, A. montanum, Minuartia setacea, Galium glaucum, Sedum reflexum, Lactuca perennis, Fumana procumbens, Helianthemum canum, Dianthus gratianopolitanus). These rocky habitats were naturally tree less areas during the glacial or interglacial periods. Their relict character is also evidenced by frequent co-occurrence with many glacial relicts (Saxifraga paniculata, Primula auricula, Biscutella laevigata, Sesleria albicans or S. rigida). There is also large group of endemic or relict species which entirely prefer habitats occupying by Festuca pallens: Daphne arbuscula (tertiary relict and endemic of the Muráňská planina Mts., Slovakia), Festuca tatrae (tertiary relict, W Carpathian endemic) Ferrula sadleriana (periglacial relict and Pannonian endemic), Dianthus moravicus (endemic of rocky slopes of river canyons in SE of the Czech Republic), Helictotrichon decorum (endemic to the Romanian Carpathians), Seseli leucospermum (Pannonian endemic), Viola jooi (endemic to the S Carpathians in Romania, Ucraine and Moldavia). On the nothernmost, isolated localities in the Central Europe, several petrophilous species of wider ecological niches obviously prefer F. pallens habitats, e.g., Stipa eriocaulis (Pálava Hills, Czech Republic), Arenaria grandiflora (Pálava Hills, Czech Republic), Notholaena marantae

3 (Mohelno, Czech Republic). Besides of the natural habitats, Festuca pallens occasionally invades into quarries and secondary rocky sites along the railways and roads. Festuca pallens includes two ploidy levels (Pils, 1981; Šmarda and Kočí, 2003, Šmarda et al., 2005), which can be distinguished on the basis of several minute morphologic and anatomic characters (leaf roughness, sclerenchyma structure; Šmarda, 2001). Diploids (2n=14) are dispersed within the whole distribution area. Tetraploids (2n=28) are restricted to the several geographic regions and used to be divided into the three geographical and morphological types (Tracey, 1980; Pils 1981; Šmarda and Kočí, 2003): (i) Alpine type occurring in E Alps in the surrounding of Graz in Austria. (ii) Pannonian type growing in calcareous hills of Pannonian Lowland. (iii) Scabrifolia type scattered in hills of Hercynian region and Rheinland (Czech Republic, Germany). Rarely, mixed ploidy populations, hybrids, and triploid plants can be found (Šmarda and Kočí, 2003; Šmarda et al., 2005). Three subspecies of Festuca pallens distinguished in Flora Europaea (Markgraf-Dannenberg, 1980) have ambiguous taxonomic value or interpretation (Šmarda and Kočí, 2003) and will be submitted to further critical revision (Šmarda, in prep.). History of the study of intraspecific genome size variability covers last forty years from the first report of Evans et al. (1966). Despite it, the crucial question: “Does really exist such variability independently on chromosomal mutations?” remains still controversial. Whilst, genome size differences among related species with the same chromosome number is widely accepted as a one of species evolutionary attributes, analogical variability within the species is often queried. This skepticism follows from: (i) instrumental or methodical errors of some authors reviewed in critical reassessment of Greilhuber (1988; 1997; 1998; 2005); Greilhuber and Ebert, (1994); Greilhuber and Obermayer (1997; 1998), Obermayer and Greilhuber (1999, 2005), and Temsch and Greilhuber (2000); (ii) interspecific differences in content of cytosolic compounds influenced intensity of nuclear fluorescence or seasonal intrespecific changes in content of such secondary metabolits (Price et al., 2000; Noirot et al., 2005); (iii) measurements from different laboratories are incompletely comparable (Doležel et al., 1998). Comprehensive critical overview of opinions of intraspecific genome size variability was done by Greilhuber (2005); see also Bennett (1985), Price (1988) and Greilhuber (1998). Ecological and geographical differentiation of genome size was documented either on interspecific and intraspecific level (cf. overview in Knight et al., 2005). Intraspecific genome size variability may also indicate microevolutionary differentiation (Murray, 2005). For the understanding of causes of intraspecific genome size variability, comparison of patterns in various geographical scales (incl. the whole species distribution area) is needed.

4 The estimations of DNA content by Feulgen microdensitometry suffer from higher statistical error and for the detection of small differences flow cytometry need to be used. Flow cytometry with DAPI staining enable to detect even 1.04 fold difference between samples as clear double-peak in simultaneous measurement (Doležel and Gödhe, 1995).

In our study, the following key questions will be addressed: (i) What range and pattern of relative DNA content variability occurs in Festuca pallens on three geographical scales: local (within the population), landscape (in transects through isolated canyons or hill systems), and global (within the whole distribution area)? (ii) Is there any microhabitat, eco-geographical, or historical interpretation of relative DNA content variation on these scales? (iii) Is there geographic concomitant relation between relative genome sizes of diploids and tetraploids? (iv) Is relative DNA amount of tetraploids twice the size of their diploid progenitors? (v) Does relative DNA content correlates with delimitation of tetraploid geographical morpho- types.

MATERIAL AND METHODS

Experimental material 1. On the global scale, 160 samples covered the whole distribution area were used. All three tetraploid geographic (morpho)types (26 samples of Pannonian type, 25 of Scabrifolia type and 11 of Alpine type) and ploidy levels (94 diploids, 3 triploids, 62 tetraploids and one pentaploid) were included in this set. Before the measurements, all samples were cultivated under standardized homogenous conditions of experimental garden in the Faculty of Education, Masaryk University in Brno for one year or more. Chromosome number of 41of these samples (29 diploids, 2 triploids, 10 tetraploids) had been documented by Šmarda and Kočí (2003). Voucher specimens are deposited in the herbarium of the Department of Botany, Masaryk University in Brno (BRNU). 2. On the landscape scale, three transects (73 plants collected 6–9th October 2004) were analyzed: (i) Rokytná River Canyon (basic agglomerate and gneiss), 13 km long transect included five diploid populations, one mixed and one population of tetraploid Pannonian type previously karyologically analyzed (Šmarda and Kočí 2003). (ii) Pálava Hills (Jurassic limestone), 9 km long transect included five populations of tetraploid Pannonian type. (iii) Vltava River Canyon (spilite and gneiss rocks) 13 km long transect included five populations

5 of tetraploid Scabrifolia type and four populations of diploids. In each transect, at least 5 populations homogenous for ploidy level; 3(–6) plants per each population were sampled. Within the population, samples were collected from the most contrasting microhabitats (see below) or with respect to cover major morphological variability. 3. On the local (intrapopulation) scale, 24 populations (88 samples) were analyzed. For the analysis, the second set of 73 samples from 21 populations of three landscape transects was completed by 15 samples collected at the same time from additional three isolated populations: (i) Skalní mlýn in Moravian Karst (Devonian limestone, diploids). (ii) Horky Nature Reserve East of Brno (agglomerate rocky slope, tetraploid Panonian type). (iii) Prokopské údolí Valley Southwestern of Prague (Devonian limestone rocks, tetraploid Scabrifolia type). Five plants per each population were sampled by the strategy used for the analysis on the landscape scale. For the details about the sample localities see Tab. 1 and Supplementary data at http:// www.aob.oupjournals.org).

Flow cytometry Relative DNA content was determined using DAPI-stained flow cytometry. Measurements proceeded at the Department of Botany, Masaryk University in Brno with PA-I Partec ploidy analyzer. A two-step procedure (Otto, 1990) was used. A piece of young, basal part of just developing, tiller leaf was chopped using a sharp razor blade together with two standards in a glass Petri dish containing 0.5 ml Otto I buffer (0.1M citric acid, 0.5% Tween 20). An additional 0.5 ml Otto I buffer was added. The crude nuclei suspension was filtered through a

50 µm nylon mesh. 1 ml of Otto II buffer (0.4M Na2HPO4 .12H2O) supplemented with 2 µg/ml 4’,6-diamidino-2-phenylindole (DAPI) was then pipetted to the nuclei suspension. The youngest leaves of Lycopersicon esculentum ‘Stupické polní tyčkové rané’ and Pisum sativum ‘Ctirad’ were used simultaneously as internal standards. A total of 5000 cells were analyzed in each measurement. Sample ratios to both internal standards were calculated. Consequently, sample/Pisum ratio was converted to sample/Lycopersicon ratio using the average of Pisum/Lycopersicon ratio = 3.9807 (see results). Relative DNA content was then calculated for each sample as average of two values (one measurement series with two standards) on global scale and six values (three measurement series with two standards) on landscape and local scale, respectively. We try to gather maximal comparability of the results measured in different days, and differences originated from the use of different individuals of standards. Both sample sets (global and local + landscape) were measured separately, in each with the only individuals of

6 standards. In both sample sets, samples were measured in randomly generated order (random number generator in the Microsoft Excel spreadsheet). Each set was measured during two weeks.

Statistical treatment and variables Relative range of DNA content was calculated as largest/smallest DNA content ratio. Common descriptive statistics was calculated in the Microsoft Excel and SPSS 8.0 programs. In the statistical analyzes, two independent data sets were used (one for global scale samples; the other for landscape + local scale samples). On the global scale (within the whole distribution area), the data set was divided into the diploid and the tetraploid subsets. In both, DNA content was tested with three groups of factors scored for each locality (Tab. 4 and supplementary data at http:// www.aob.oupjournals.org). Each variable was tested non-parametrically using (i) Spearman´s rho, (ii) Man-Whitney test, and (iii) One-Ways ANOVA (Tab. 4). Samples with unclear variable status were omitted from partial analysis. Eventual correlations were tested on the smaller subsets representing phytogeographical regions or tetraploid types. On the local scale, the relations of DNA content and some microhabitat characters were tested within the populations. Only spectacularly contrasting characters in particular populations, were studied (e.g., plants from top plateau versus steep rocky face). For the six characters: (i) slope, (ii) invasion of Robinia pseudoacacia, (iii) deviation of exposition from the SW, (iv) deviation of exposition from the N, (v) altitudinal position on the slope, and (vi) vegetation cover, samples in each population were categorized as minimum, intermediate, or maximum. Only samples from minimum and maximum category (binary scored) were analyzed. For the following two characters: (vii) bare rock without vegetation cover and (viii) ruderal habitat, samples were binary scored in each population. Mean DNA content was calculated for samples in both extreme categories within each population. For all eight characters, differences in DNA content between the two binary scored categories were tested by paired Wilcoxon nonparametric test. Diploid and tetraploid populations were analyzed together.

Diploids vers. tetraploids Differences between relative genome size (monoploid DNA content) of different ploidy levels were tested by Man-Whitney nonparametric test. Spatial relation of relative genome size of tetraploids and diploids was tested by Procrustes analysis using PROTEST software (Procrustean randomization test; Peres-Neto and Jackson, 2000) with significance test from

7 Jackson (1995) based on 9999 replications. Two matrices were compared. The first represented matrix of geographic distance of all diploids (93 samples = rows) from all possible combinations of tetraploids (62 samples = columns). The second one represented difference in relative genome size of diploids and tetraploids (halved values) arranged in the same order as the previous one. Significant matching of matrices means, that there is geographic relation of genome size of diploids and tetraploids.

RESULTS

Accuracy of measurements Relative DNA content of the standard Lycopersicon esculentum ‘Stupické polní tyčkové rané’ was approximately 0.64 fold of the average diploid. Relative DNA content of the second standard Pisum sativum ‘Ctirad’ was about 1.32 fold of the average tetraploid. Peak of any of samples and the standards do not overlay at any combinations either of G0/G1 or G2 phase cells. Average ratio between standards was 3.9807 (264 measurements; CV 0.622%); average of all peak CVs of standards was 1.703%. Measurements on local and landscape scale (88 samples) were three times repeated with both standards. For each of 88 samples CV was calculated from six sample/standard ratios. Average of these CVs was 0.545%. Average CV of all 792 ([Lycopersicon + sample + Pisum] × 88 samples × 3 series) peaks in all measurements was 1.677%. For the estimation of measurement error of single measurement, 264 (3 series of 88 samples) measurements from the previous set were used. In each sample, difference from the average of all the three measurements was calculated. All these 264 differences were size-ordered. Exactly 95% of these differences were lower than 1.010 fold. Therefore, at the same measurement accuracy, we assumed that the following measurement of the same sample should not differ from ideal mean value more than ±1.010 fold at P<0.05. Regarding measurement error ±1.010 fold and 1.115 fold range of relative DNA content variability observed within the local and landscape scales, the second set of 160 samples on global scale was measured only once, as in the previous set, with two internal standards. Measurement accuracy was similar as in the local and landscape scales (average of all 480 peak CVs was 1.679%).

8 Intrapopulation and interpopulation variability of DNA content (local and landscape scales) Intrapopulation variability in DNA content was proved in 16 of 24 tested populations (P<0.001, Tab. 1, 2, Fig. 1). Intrapopulation variability is similar both in diploid and tetraploid populations (median difference, Tab. 2). The two most variable populations were tetraploid (Tab. 1, 2). Maximum intrapopulation difference 1.121 fold was observed in tetraploid population from Mikulov – Sv. Kopeček. All three plants there clearly differ in relative DNA content (standard sample ratios: 2.937, 3.066, 3.291). This difference was independently confirmed in the simultaneous measurement of both extreme samples (1.119 fold difference, Fig. 2). Considerable variability was observed also in tetraploid population from Praha – Prokopské údolí, where DNA contents of samples differ 1.077 fold in maximum (Tab. Z1).

TABLE 1. Population characteristics

Sam. Ploidy Sample/standard Max. diff. One-Way ANOVA Locality Code No. level ratio (mean) (fold) F p level

M. Krumlov – plate Mx 5 4x 3.017 1.026 41.88 0.000 M. Krumlov – slopes* M1 3 2x+4x 3.041 1.015 49.51 0.000 M. Krumlov – Floriánek M2 3 2x 1.565 1.018 18.26 0.000 Rokytná – Tábor M3 3 2x 1.543 1.022 49.79 0.000 Rokytná – Slepen. skály M4 4 2x 1.551 1.024 59.88 0.000

Rokytná River Budkovice M5 3 2x 1.670 1.011 1.95 0.177

______Ivančice M6 3 2x 1.535 1.032 26.62 0.000

Mikulov – Sv. Kopeček P1 3 4x 3.098 1.121 266.77 0.000 Mikulov – Kočičí skála P2 3 4x 2.984 1.005 1.07 0.368 Klentnice – Stolová hora P3 3 4x 3.044 1.008 2.31 0.134 Pavlov – Děvín P4 3 4x 3.022 1.011 3.11 0.074

Pálava Hills

______Pavlov – Dívčí hrady P5 3 4x 3.024 1.010 6.07 0.012 Transects

Praha-Suchdol C1 3 4x 2.950 1.021 37.92 0.000 Roztoky-Žalov C2 3 4x 3.012 1.051 30.53 0.000 Podmoráň C3 3 4x 2.942 1.010 6.24 0.011 Větrušice – North-1 C4A 6 2x 1.542 1.022 9.12 0.000 Větrušice – North-2 C4B 5 2x 1.538 1.056 69.60 0.000 Větrušice – Central-1 C4C 2 2x 1.554 1.006 6.48 0.029 Vltava River River Vltava Větrušice – Central-2 C4D 6 2x 1.544 1.027 19.62 0.000 Máslovice – East C5 3 4x 3.027 1.014 3.88 0.044

______Máslovice – West C6 3 4x 2.963 1.042 144.92 0.000

Bedřichovice – Horky H 5 4x 2.914 1.021 15.90 0.000 Isolated popul. Adamov – Skalní mlýn K 5 2x 1.554 1.018 15.52 0.000 Praha – Prokopské údolí S 5 4x 2.953 1.077 206.48 0.000

* the only diploid sample from mixed population was excluded from the analysis.

9

TABLE 2. Difference among plants in the populations

Populations No of variable Median Maximum (samples) No. populations difference (fold) difference (fold) (p<0.01)* all populations (2x + 4x) 24 (87) 16 1.022 1.121 all without Mikulov population 23 (84) 15 1.021 1.077 diploid (2x) populations 10 (40) 8 1.022 1.056 tetraploid (4x) populations 14 (47) 8 1.021 1.121 2x without Mikulov population 13 (44) 7 1.021 1.077 the only diploid sample from mixed population was excluded from analysis. * One-Way ANOVA.

10 Pálava Hills Vltava River valley Rokytná River valley 11

smalest 25% 50% 75% largest

2x 4x

FIG. 1. Observed intrapopulation and regional pattern in relative DNA content on three investigated transects: Circles represent diploids, squares tetraploids. Dark segment of symbols shows relative DNA amount, expressed as ratio of the sample to the total observed range in the particular ploidy level.

11 12

FIG. 2. Difference in relative DNA content of two simultaneously measured diploid Festuca pallens samples: A – maximal difference of diploid samples originated from the two, 2 km distant localities in regional transect along Rokytná river; B – maximal difference of tetraploid samples originated from the same population from Mikulov (Pálava hills transect); 10 000 cells were counted.

12 On the landscape scale within the transects, mean relative DNA content was similar almost in all populations and no spatial relations were observed (Fig. 1, Tab. 3). However, the two populations (Tab 1, 2, Fig. 1) differ conspicuously from the other ones in mean or in variability range of relative DNA content. All three plants from the population near Budkovice (Rokytná transect) were apparently higher (P<0.001), and mean relative DNA content of this population was 1.088-fold higher, compared to the population with smallest mean DNA content from the same transect (Fig. 1, Tab. 3). Population of tetraploids from Mikulov – Sv. Kopeček was the most variable and its variability range is similar to the variability range within all the other tetraploids (Fig. 1, Tab. 2).

TABLE 3. Landscape variability among populations within the transects

Transect Populations Max. diff. population Max. diff. all samples (samples) No. means (fold) (fold)

Rokytná river (2x)* 5 (16) 1.088 1.106 Pálava hills (4x) 5 (15) 1.038 1.121 Vltava river (4x) 5 (15) 1.029 1.065 Rokytná r. without Budkovice (2x)* 4 (14) 1.020 1.042 Pálava Hills without 4 (12) 1.020 1.027 Mikulov – Sv. Kopeček (4x)

* the mixed population excluded

There was found no significant relation of microhabitat factors and DNA content on local and landscape scales. However, all 4 samples from sites invaded by Robinia pseudacacia were slightly smaller than those from non-invaded ones. Similarly, all 3 samples from ruderalised sites were larger than those from the non-ruderalised ones from the same populations. Low significance in these cases may be due to the small number of samples available.

DNA content variation on the global scale Within the whole distribution area, variability in all investigated ploidy levels was similar (Fig. 3). At maximum, about 1.166 fold difference between samples was observed in diploids from Vadu Crişului (Romania) vers. Děkovka (Czech Republic). On the global scale, the maximum 1.148 fold difference was found in tetraploids from Csór (Hungary) vers. Fridrichschwerz (Germany). Including the samples from local scale, the difference increase up to the same level as in the diploids (1.166 fold), due to the largest sample from Mikulov – Sv. Kopeček population. Similar variability range (1.105 fold) was observed also in 29 karyologically homogenous diploid samples (without B chromosomes); analogically 1.065 fold in 10 tetraploid samples.

13 .9

.8

.7 Relative genome size

1.166-fold 1.066-fold 1.148-fold – 1.166-fold*

.6 N = 93 4 62 1 2x 3x 4x 5x

Ploidy level

FIG. 3. Relative genome size of separate ploidy levels Festuca pallens. Relative genome size of higher polyploids (4x and 5x) is significantly smaller (Man-Whitney U test, P<0.001). Relative genome size within all samples of all ploidy levels ranged 1.201 fold. *together with additional data from uncultivated population samples.

Relative DNA content in diploids was significantly correlated with latitude and longitude (Tab. 4). Relative DNA content tends to increase from the North-West to the South-East part of the distribution area (Fig. 4). This geographical gradient in DNA content also reflects the significant differences in DNA content among different phytogeographic regions (Fig. 5, Tab. 4). The observed pattern match well with the character of palaeo-vegetation cover at the end of last Ice Age (20 000 BP, Lang 1994), with larger genomes preferring areas of former steppes rather than steppe-tundra (P<0.05, Fig. 4, Tab. 4). There was found also strong relation between high DNA content and relict character of locality (P<0.01, Tab. 4). All these relations are caused especially by plants from Transsylvania which always occur on relict habitats and have larger DNA content in comparison to the other phytogeographical regions (P<0.001, Fig. 5). Only slight correlation of DNA content with longitude remains significant (P<0.05) in the remaining diploid samples, when diploid from Transsylvania are ommited from analysis.

14

articular interest. articular interest. given to the extremely large diploid from from diploid large extremely the to given th . Empty symbols represent diploids, dark tetraploids. tetraploids. dark diploids, represent symbols . Empty Festuca pallens Festuca 16 the relativethe DNA contentin whole the distribution area of 4. Observed difference in difference 4. Observed

. IG Magnitude of symbols reflect relative DNA content divided in to the 5 categories in particular ploidy level with the 6 the with level ploidy particular in 5 categories the to in divided content DNA relative reflect symbols of Magnitude F Vadu Crisului. Natural range is marked by interrupted line. Generally higher DNA amount in S and E part o natural range is of p of is range natural o part E S and in amount DNA higher Generally line. interrupted by marked is range Natural Crisului. Vadu

16 TABLE 4. Characters investigated on the global scale and their relation with relative DNA content

Location Palaeo- Bedrock2) Habitat Phytogeographical regions3) vegetation1) ______4)

Alps Steppe Quarry Robinia Altitude Latitude Polonian Siliceous Longitude Hercynian Pannonian Serpentine Serpentine Character Carpathian Carpathian Calcareous Invaded by River valley River valley Castle or ruin or ruin Castle Steppe-tundra Steppe-tundra Transsilvanian Transsilvanian Relict habitat Relict Burgund-Rhine

Coding5) Lat Lon Alt Tun Ste Si Ca Se Rv Rh Cr Qu Ro Car Tra Pan Pol Her B-R Alp

Scoring °NL °EL M a. 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 s. l ______

17 Statistics Spearman’s rho Man-Whitney One-Way ANOVA

Yes No No 2x Relation -0.345 0.324 -0.001 Yes No No No No Yes No F = 4.469; p = 0.001 0.39 0.318 0.568 0.001 0.002 0.992 0.018 0.931 0.672 0.939 0.006 0.225 p-level

0.504 Yes No No 4x Relation -0.564 0.401 Yes Yes Yes No No No No F = 6.241; p = 0.001 0.136 0.077 0.000 0.000 0.001 0.000 0.000 0.001 0.739 0.605 0.727 0.319 p-level

1) In the end of the last Ice Age (20 000 BP) according to Lang (1994); samples from glaciated areas are excluded. 2) Vulcanites and agglomerates excluded. 3) Meusel and Jäger (1992); samples from the border of two phytogeographical regions were included in both. 4) Deep canyon, mountain rock or ravine, Karstic gorge; locality with relict species (see introduction); unclear cases scored as non-relict. 5) Coding used in appendix

17

1.8

A B AB – A AB AB

1.7

1.6

Sample/standard ratio 1.5

1.4 N = 26 10 3 1 46 2 5 Carpathian Pannonian Hercynian Alps Transsylvanian Polonian Burgund-Rhine

Phytogeographical region

FIG. 5. Differences in relative DNA content of diploid plants from different phytogeographical regions. Phytogeographical regions indicated with the same letter above the box-plots do not significantly differ (Bonferoni Post-Hoc comparison, P=0.05).

As well as in diploids, relative DNA content of tetraploids correlates significantly with latitude and longitude (Tab. 4), with the same tendency of plants with larger genomes to concentrate in SE part of the distribution area (Fig. 4). Contrary to diploids, DNA content of tetraploids is correlated with altitude (Tab. 4), with larger genomes in higher elevations. There was proved clear difference of DNA content among tetraploid types (One-Way ANOVA, P<0.001, Fig. 5) which may to an extent explain observed correlations. When dataset was divided into the subsets representing these types, correlations with longitude disappear. There remain only significant correlations (P<0.05) of DNA content and altitude in Scabrifolia (R=0.431) and Pannonian (R=0.507) types, and DNA content with latitude in Pannonian type (R=-0.447). Differences in DNA content of the tetraploid types can also explain differences among phytogeographical regions and type of bedrock. Actually, plants with smaller DNA content of Scabrifolia type occur in Hercynian region namely on siliceous substrates, while those of Pannonian and Alpine types on calcareous bedrock in Pannonia and the Alps. In separate subsets, the only significant difference remains between the DNA content of plants

18 from different type of bedrock in plants of Pannonian type. Similarly as in the case of correlation with latitude, the relation with type of bedrock in Pannonian type is caused by smaller DNA content of plants from siliceous hills of SW Moravia. As well as in diploids, DNA content of tetraploids is correlated with the type of palaeo- vegetation (P<0.001, Tab. 4). Other investigated parameters (Tab. 4) have no significant relation with relative DNA content (α=0.05).

3.3

3.2

3.1

3.0

2.9 Standard/sample ratio

2.8

2.7 N = 25 26 11 Scabrifolia Pannonian Alpen

Tetraploid type

FIG. 6. Relative DNA content of separate tetraploid types. One-Way Anova proved significant differences among these types (P<0.001). Relative DNA content of Scabrifolia type is significantly smaller than in the other two (Man-Whitney U test, P<0.001).

In general, relative genome size of tetraploids is smaller than those of twofold diploids ((P<0.001, Fig. 3). There was proved strong spatial coincidence of relative DNA content of tetraploids and diploids in Procrustean analysis (P<0.001). Both tetraploids and diploids with higher genome size tend to occur in the same regions. Within the tetraploids, Scabrifolia type has genome size smaller than the other two, Pannonian and Alpine types (P<0.001, Fig. 5).

19 DISCUSSION

Several mechanisms may cause variability in DNA content, which experimental prove needs deep molecular study. The major of recent genome size variability in Angiosperms are related with the different mechanisms of retrotransposon proliferation and deletion (Bennetzen et al., 2005). Activity of retrotransposons may differ in contrast microhabitat conditions (Kalendar et al., 2000) which may be actual in species with high diversification of extreme habitat such as in Festuca pallens. Changes in genome structure and selfish elements in Grasses are summarized and discussed by Jones and Pasakinskiené (2005).

Intraspecific genome size variation on global scale Extreme large 2.5 fold variation in genome size (caused by differences in repetitive DNA content) was documented on global scale in mosquito Aedes albopictus (Rai and Black, 1999). Among plants (survey of species with the largest reported intraspecic DNA content variation see in Ohri, 1998). The large range in intraspecific DNA content variability was reported namely for grasses: e.g., 1.176 fold between mean genome sizes of populations and 1.662 fold between individual genome sizes for Dasypyrum villosum (Caceres et al., 1998), 1.37 fold among maize cultivars (Rayburn et al. 1985),1.36 fold between accessions from botanical gardens and plants from the field for Milium effusum (Bennett and Bennett 1992), 1.28 fold among mean population DNA content in Dactylis glomerata in the altitudinal transects in Mediterranean (Reeves et al., 1998), 1.125 fold among African and Indian populations of Eleusine coracana (Hiremath and Salimath, 1991). The large variation in Dasypyrum villosum, Greilhuber (2005) and Obermayer and Greilhuber (2005) consider as a consequence of technical noise, however, these authors were also found difference in DNA content in this species: 1.07 fold between populations and 1.12 fold between individuals and confirm this result by double-peaks in flow cytometry (Obermayer and Greilhuber, 2005). Such range of intrapopulation and interpopulation genome size variability is very similar to our presented results for Festuca pallens. On the contrary, small level of intraspecific DNA content variation was detected in Dactylis glomerata (1.021 fold among mean DNA content of populations in Slovenian Alps, Vilhar et al., 2002) in Lolium perenne (1.041 fold among mean size of populations of various cultivars, Sugyiama et al., 2002), and Hordeum spontaneum (1.049 fold among wild populations in Israel, Turpeinen et al., 1999). Very small but statistically confirmed interpopulation difference 1.6% (=1.016 fold interpopulation range of variation) was reported for another grass Sesleria albicans by Lysák et al. (2000);

20 maximum difference among individuals of S. albicans reported by these authors is 6.1% (cf. Lysák et al. 2002: Tab.3). They argued for intrapopulation genome stability by unimodal distribution of flow-cytometry histogram of simultaneously measured plants with the largest difference of genome size from the same population, we have used the same test for the most variable tetraploid and diploid populations (Fig. 2); our results confirms the real intrapopulation variability in Festuca pallens.

Genome size and macro-ecological or historical factors Correlation between relative DNA content on the global scale and type of the vegetation in the end of the last Ice Age is interesting from the viewpoint of ecological stability of the most of natural rocky habitats of Festuca pallens which have never been covered by wood during either glacial periods or interglacial ones as well as by soil and due to they did not changed ecologically for a very long time and occurrence of Festuca pallens can be an ancient origin regarding also co-occurrence with various types of relicts in these localities (see Introduction). Correlations of genome size with latitude was hitherto documented particularly on interspecific level, e.g., among crop plant species (Bennett, 1976), see review in Knight et al. (2005). Among grasses, negative latitudinal correlation with intraspecific genome size variation was confirmed, e.g., in Zea mays in North America (Laurie and Bennett, 1985; Rayburn et al., 1985) or in natural populations of Festuca arundinacea in Europe (Ceccarelli et al., 1992). Intraspecific genome size correlation with latitude tested in Hordeum marinum in Western Europe and H. pubiflorum in South America was not confirmed (Jakob et al., 2004). On the other hand, these authors found the correlation with some climate features (mean July temperature); similar correlation (with mean January temperature) was found by Turpeinen et al. (1999) in wild populations of Hordeum spontaneum in Israel. In the framework of relatively small Central European distribution of Festuca pallens, SE–NW climatic gradient can play an important role in relation to DNA content. Negative correlation with continental climate expressed by negative correlation with longitude was found in related European Cirsium species by Bureš et al. (2004b). Relation between altitude and genome size, repeatedly documented also in grasses, e.g., Dasypyrum villosum, Zea mays, Secale, Teosinte, Dactylis glomerata (Knight et al., 2005 and the literature therein) we did not confirm in Festuca pallens. However, the potential role of macro-climate can be eliminated by extremely contrasting micro-climate in habitats of

21 Festuca pallens. Similarly, in Sesleria albicans growing in the same habitats as F. pallens, altitudinal correlation with genome size was not confirmed (Lysák et al., 2000)

Microgeographic genome size differenciation Among plant species maybe well documented and widely accepted case of ecologically induced intraspecific genome size variability is flax, Linum usitatissimum (Cullis, 2005, and the literature therein). Intrapopulation genome size variability in relation to extreme local ecological gradients was reported from the Evolution Canyon (Nahal Oren, Israel) within the population of Hordeum spontaneum and caused by variation in BARE-1 copy number (Kalendar et al., 2000), and in population of Ceratonia siliqua from the same locality (Bureš et al., 2004) as a consequence of genome diversity induced by environmental stress (Nevo, 2001). Such relation to the most-contrasted tested microhabitat characters we did not confirmed between samples within the investigated variable populations.

Intraplant genome size variation Intraplant variation in genome size is documented, e.g., in Zea mays (Biradar and Rayburn, 1993), in roots of Vicia faba [caused by decreasing of highly repetitive DNA in developed tissues] (Bassi et al., 1984). In our experiment we can ommit such variation due to the preparation of the same part of tissue: young whitish basal part of just developing, tiller leaf.

Seasonal variation and cytosolic compounds Secondary cytosolic compounds can influence flow cytometry measurements (Price et al., 2000; Noirot et al., 2000; 2003). Some authors were found seasonal changes in fluorescence intensity of nuclei in various plant species or genera, e.g., in Actinidia deliciosa (Hopping, 1994). Such changes can be then interpreted as genome size variability. In our study, we try to eliminate this event by homogenous cultivation of Festuca pallens samples representing global scale and their measurement during two weeks as well as collecting of samples on local and landscape scale during four days and their measurement during following two weeks. For the same reason, we can except also any analogies with other seasonal changes in genome size documented, e.g., in Helianthus (Cavallini et al., 1989, Michaelson et al., 1991). Nice example of combination of seasonal influenced fluorescence intensity 1.04–1.08 fold within various Spain and Canarian populations (caused probably by furanocoumarins) well separated from geographicaly influenced true intraspecific genome size variation 1.121 fold among populations confirmed by double-peaks in Bituminaria bituminosa (Fabaceae) was

22 published by Walker et al. (2006). Also from double-peak histogram of simultaneous measurement of samples of different genome size is evident that our results of DNA content in Festuca pallens are not an fluorescence artifact caused by cytosolic compounds.

B chromosomes Especially in grasses, genome size variation may be influenzed by presence of B chromosomes, commonly reported from Festuca genus (Jones and Rees, 1982; Jones and Diez, 2004) and also known in F. pallens (Šmarda and Kočí, 2003). In present study the detected variation seems not to be caused by presence of B chromosomes, since 1.105-fold range of DNA content was observed in diploids with no B chromosomes (see Supplementary data at http://www.aob.oupjournals.org). The contribution of B chromosomes to the total DNA content is still unclear. On one hand, there is a positive correlation between genome size and number of B chromosomes (Ayonoadu and Rees 1971, Jones and Rees, 1982; Rosato et al., 1998; Delgado et al., 2004), on the other hand, genome size of plants with B chromosomes may be even smaller that those with no ones (Porter and Rayburn, 1990; Poggio et al., 1998). B chromosomes are widely accepted to be derived from the A chromosomes (Jones and Houben, 2003 and citations therein; Leach et al., 2005) and interchanges with normal A chromosomes are also documented (Nokkala and Nokkala, 2004; Ribeiro et al., 2004).

Intraspecific AT content variation Our method of relative DNA content estimation is based on AT selective DAPI staining. Thereofere, DNA content variability can be caused by eventual intraspecific AT-content variation. While among plants as a whole, genome size and AT frequency is not correlated (Barrow and Meisterm, 2002), in the most of papers in which both intercalar and AT-selective (GC selective) dyes were used, linear correlation is documented among related species (e.g., of the same genus) so much the more among individuals of the same species, e.g., in Lolium perenne (Sugiyama et al., 2002); also in maize was repeatedly documented correlation between DNA content and amount of heterochromatin (Laurie and Bennett, 1985; Rayburn et al., 1985).

Telomere length decreasing About 30–40 years is suggested as a maximum age of an individual tufts of Festuca pallens (Janišová, 1999), however, age of some tuft clones of related and structurally similar F. ovina

23 is supposed to be over 1000 years (Harberd, 1962). Telomere length decreases usually with age in nuclear DNA, physiological activity (telomerase activity) varies through the life of a plant, affecting the amounts of transfer DNA and RNAs produced, and plastid number and DNA amounts decline in age. In this sense, telomere length can be used as the biological clock, usable for organismal age estimation, e.g. in long-lived vertebrates (Nakagawa et al., 2004). Considerable variability in tuft age of long lived grass taxa can be related with DNA content variability. Unfortunately, morphological architecture which can serve for estimation of tuft age we did not studied in samples. It is not clear if quantitative DNA changes are detectable by flow cytometry (cf. Kapoor and Telford, 2004). All these events need further study.

Genome size downsizing in tetraploids Relative genome size in tetraploids is lower than those of diploids in Festuca pallens. It is another example among many others which argued for downsizing of genome in polyploids described by Leitch and Bennett (2004).

LITERATURE CITED Auquier P. 1977. Taxonomie et nomenclature de quelques Festuca tétraploides du groupe de Festuca ovina L. s.l. en Europe moyenne. Bulletin du Jardin Botanique National de Belgique 47: 99–116. Ayonoadu U, Rees H. 1971. The effects of B-chromosomes on the nuclear phenotype in root meristems of maize. Heredity 27: 365–383. Barrow M, Meister A. 2002. Lack of correlation between AT frequency and genome size in Higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47: 1–7. Bassi P, Cionini PG, Cremonini R, Seghizzi P. 1984. Under representation of nuclear DNA sequences in differentiating root cells of Vicia faba. Protoplasma 123: 70–77. Bennett MD. 1976. DNA amount, latitude and crop plant distribution. Environmental and Experimental Botany 16: 93–108. Bennett MD. 1985. Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics. In: Freeling M, ed. Plant genetics (UCLA Symposia on Molecular and Cellular Biology, New Ser. Vol. 35), New York: Alan Liss, 283–302.

24 Bennett ST, Bennett MD. 1992. Variation in nuclear DNA amount between wild and cultivated populations of Milium effusum (2n=28). Genome 35: 1050–1053. Bennetzen JL, Ma J, Devos KM. 2005. Mechanisms of recent genome size variation in flowering plants. Annals of Botany 95: 127–132. Biradar DP, Rayburn AL. 1993. Intraplant nuclear DNA content variation in diploid nuclei of maize (Zea mays L.). Journal of Experimental Botany 44: 1039– 1044. Bureš P, Pavlíček T, Horová L, Nevo E. 2004a. Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at “Evolution Canyon”, Israel. Annals of Botany 93: 529–535. Bureš P, Wang Y-F, Horová L, Suda J. 2004b. Genome Size Variation in Central European Species of Cirsium (Compositae) and their Natural Hybrids. Annals of Botany 94: 353–363. Caceres ME, Pace CD, Mugnozza GTS, Kotsonis P, Ceccarelli M, Cionini PG. 1998. Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behavior in reproduction. Theoretical and Applied Genetetics 96: 559–567. Cavallini A, Zolfino C, Natali L, Cionini G, Cionini PG. 1989. Nuclear DNA changes within Helianthus annuus L.: origin and control mechanism. Theoretical and Applied Genetics 77: 12–16. Cullis CA. 2005. Mechanisms and control of rapid genomic changes in flax. Annals of Botany 95: 201–206. Delgado M, Caperta A, Ribeiro T, Viegas W, Jones RN, Morais-Cecílio L. 2004. Different numbers of rye B chromosomes induce identical compaction changes in distinct A chromosome domains. Cytogenetic and Genome Research 106: 320–324. Doležel J, Göhde W. 1995. Sex determination in dioecious plants Melandrium album and Melandrium rubrum using high - resolution flow cytometry. Cytometry 19: 103–106. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R 1998. Plant genome size estimation by flow cytometry: interlaboratory comparison. Annals of Botany 82 (Suppl. A): 17-26. Evans GM, Durrant A, Rees H. 1966. Associated nuclear changes in the induction of flax genotrophs. Nature 212: 697–699. Greilhuber J, Ebert I. 1994. Genome size variation in Pisum sativum. Genome 37: 646– 655.

25 Greilhuber J, Obermayer R 1998. Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Plant Systematics and Evolution 212: 135–141. Greilhuber J, Obermayer R. 1997. Genome size and maturity group in Glycine max (soybean). Heredity 78: 547–551. Greilhuber J, Obermayer R. 1999. Cryptopolyploidy in Bunias (Brassicaceae) revisited – a flow-cytometric and densitometric study. Plant Systematics and Evolution 218: 1–4. Greilhuber J. 1988. Critical reassessment of DNA content variation in plants. In: Brandham PE ed. Kew Chromosome Conference III, London: HMSO, 39–50. Greilhuber J. 1997. The problem of variable genome size in plants (with special reference to woody plants). In: Z. Borzan Z, Schlarbaum SE, ed. Cytogenetic Studies of Forest Trees and Shrub Species, Zagreb: Croatian Forests, Inc. and Faculty of Forestry, University of Zagreb, 13–34. Greilhuber J. 1998. Intraspecific variation in genome size: a critical reassessment. Annals of Botany 82 (Suppl. A): 27–35. Harberd DJ. 1962. Some observations on natural clones of Festuca ovina. New Phytologist 61: 85–100. Hiremath SC, Salimath SS. 1991. Quantitative nuclear DNA changes in Eleusine (Gramineae). Plant Systematics and Evolution 178: 225–233. Hopping ME. 1994. Seasonal changes in fluorescence intensity of kiwifruit nuclei stained with propidium iodide and measured by flow cytometry. New Zealand Journal of Botany 32: 237-245. Jackson DA. 1995. PROTEST: A PROcrustean randomization TEST of community environment concordance. Ecoscience 2: 297–303. Jakob SS, Meister A, Blattner FR. 2004. The considerable size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology and speciation rates. Molecular Biology and Evolution 21: 860–869. Janišová M. 1999. Population biology of Festuca pallens Host. PhD Thesis, Slovac Academy of Sciences, Institute of Botany, Bratislava Slovakia. Jones N, Houben A. 2003. B chromosomes in plants: escapees from the A chromosome genome? Trends in Plant Sciences 8: 417–423. Jones N, Pasakinskiene I. 2005. Genome conflict in the Gramineae. New Phytologist 165: 391–409. Jones RN, Díez M. 2004. The B chromosome database. Cytogenetic and Genome Research 106: 149–150 (http://www.bchromosomes.org/bdb/).

26 Jones RN, Rees H. 1982. B chromosomes. New York & London: Academic Press. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the United States of America 97: 6603-6607. Kapoor V, Telford W. 2004. Telomere length measured by FISH and flow cytometry. In: Hawley TS, Hawley RG, eds. Flow Cytometry Protocols, 2nd edition. Methods in Molecular Biology, Volume 263. Totowa, NJ: Humana Press, 385–398. Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190. Lang G. 1994. Quartäre Vegetationsgeschichte Europas. Jena: Gustav Fischer, 462 pp. Laurie DA, Bennett MD. 1985. Nuclear content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation. Heredity 55: 307–313. Leach CR, Houben A, Field B, Pistrick K, Demidov D, Timmis JN. 2005. Molecular evidence for transcription of genes on a B chromosome in Crepis capillaris. Genetics 171: 269–278. Leitch IJ, Bennett MD. 2004. Genome downsizing in polyploidy plants. Biological Journal of the Linnean Society 82: 651–663. Lysák MA, Rostková A, Dixon JM, Rossi G, Doležel J. 2000. Limited genome size variation in Sesleria albicans. Annals of Botany 86: 399–403. Markgraf-Dannenberg I. 1980. Festuca. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, eds. Flora Europaea Vol. 5. Cambridge: Cambridge University Press, 125–153. Meusel H, Jäger EJ. 1992. Vergleichende Chorologie der Zentraleuropäischen Flora. Karten, Literatur, Register. Band III. Jena: Gustav Fischer. Michaelson MJ, Price HJ, Johnston JS, Ellison JR. 1991. Variation of nuclear DNA content in Helianthus annuus (Asteraceae). American Journal of Botany 78: 1238– 1243. Murray BG. 2005. When does intraspecific C-value variation become taxonomically significant? Annals of Botany 95: 119–125. Nakagawa S, Gemmell NJ, Burke T. 2004. Measuring vertebrate telomeres: applications and limitations. Molecular Ecology 13: 2523–2533. Nevo E. 2001. Evolution of genome-phenome diversity under environmental stress. Proceedings of National Academy of America 99: 6233–6240.

27 Noirot M, Barre P, Louarn C, Duperray C, Hamon S. 2000. Nucleus-cytosol interactions – a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plant. Annals of Botany 86: 309–316. Noirot M, Barre P, Louarn C, Duperray C, Hamon S. 2003. Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA. Consequence on genome size evaluation in coffee tree. Annals of Botany 92: 259–264. Noirot M, Barre P, Duperray C, Hamon S, De Kochko A. 2005. Investigation on the causes of stoichiometric error in genome size estimation using heat experiments: consequences on data interpretation. Annals of Botany 95: 111–118. Nokkala S, Nokkala C. 2004. Interaction of B chromosomes with A or B chromosomes in segregation in insects. Cytogenetic and Genome Research 106: 394–397. Obermayer R, Greilhuber J. 1999. Genome size in Chinese soybean accessions – stable or variable? Annals of Botany 84: 259–262. Obermayer R, Greilhuber J. 2005. Does genome size in Dasypyrum villosum vary with colour? Heredity 95: 91–95. Ohri D. 1998. Genome size variation and plant systematics. Annals of Botany 82 (Suppl. A): 75–83 Otto F. 1990. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z, eds. Methods in Cell Biology: Flow Cytometry, Vol. 33, 105–110. Peres-Neto PR, Jackson DA. 2000. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178 Pils G. 1981. Karyologie und Verbreitung von Festuca pallens Host in Österreich. Linzer Biologische Beiträge 13: 231–241. Poggio L, Rosato M, Chiavarino AM, Naranjo CA. 1998. Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Annals of Botany 82 (Supplement A): 107–115. Porter HL, Rayburn AL. 1990. B-chromosome and C-band heterochromatin variation in Arizona maize population adapted no different altitude. Genome 33: 659–662. Price HJ, Hodnett G, Johnston JS. 2000. Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Annals of Botany 86: 929-934.

28 Price HJ. 1988. Nuclear DNA content variation within angiosperm species. Evolutionary Trends in Plants 2: 53–60. Rai KS, Black WC. 1999. Mosquito genomes: structure, organization and evolution. In: Hall JC, Dunlap JC, Friedmann T, Gianelli F, ed. Advances in Genetics Vol. 41. San Diego: Academic Press, 1–33. Rayburn AL, Price HJ, Smith JD, Gold JR. 1985. C-band heterochromatin and DNA content in Zea mays. American Journal of Botany 72: 1610–1617. Reeves G, Francis D, Davies MS, Rogers HJ, Hodkinson TR. 1998. Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Annals of Botany 82 (Suppl. A.): 99–105. Ribeiro T, Pires B, Delgado M, Viegas W, Jones N, Morais-Cecilio L. 2004. Evidence for 'cross-talk' between A and B chromosomes of rye. Proceedings of the Royal Society of London, Series B-Biological sciences 271 (Suppl. 6): 482–484. Rosato M, Chiavarino AM, Naranjo CA, Camara Hernandez J, Poggio L. 1998. Genome size and numerical polymorphism for the B chromosome in races of Maize (Zea mays ssp. mays, Poaceae). American Journal of Botany 85: 168–174. Sugiyama S, Yamaguchi K, Yamada T. 2002. Intraspecific phenotypic variation associated with nuclear DNA content in Lolium perenne L. Euphytica 128: 145–151. Šmarda P, Kočí K. 2003. Chromosome number variability in Central European members of the Festuca ovina and F. pallens groups (sect. Festuca). Folia Geobotanica 38: 65–95. Šmarda P, Müller J, Vrána J, Kočí K. 2005. Ploidy level variability of some Central European fescues (Festuca L. subg. Festuca, Poaceae). Biologia (Bratislava) 60: 25– 36. Šmarda P. 2001. Středoevropské taxony Festuca ser. Psammophilae M. Pawlus. Master Thesis, Masaryk University, Brno. Temsch EM, Greilhuber J. 2000. Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43: 449–451. Tracey R. 1980. Beiträge zur Karyologie, Verbreitung und Systematik des Festuca ovina Formenkreises im Osten Österreichs. PhD Thesis, University of Vienna, Austria. Turpeinen T, Kulmala J, Nevo E. 1999. Genome size variation in Hordeum spontaneum populations. Genome 42: 1094–1099. Vilhar B, Vidic T, Jogan N, Dermastia M. 2002. Genome size and nucleolar number as estimators of ploidy level in Dactylis glomerata in Slovenian Alps. Plant Systematics and Evolution 234: 1–13.

29 Walker DJ, Monino I, Correal E. 2006. Genome size in Bituminaria bituminosa (L.) C. H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environmental and Experimental Botany 55: 258–265.

30 (7)

Šmarda P. et Grulich V. (in prep.):

Festuca L. In: Feráková V., Grulich V., Hodálová I., Hrouda L., Kochjarová J., Marhold K., Mártonfi P. et Mereďa P. [eds.], Určovací kľúč papraďorastov a semenných rastlín Slovenska.

Festuca L. – kostřava

Šmarda P. et Grulich V. (in prep.)

Kostřavy patří k taxonomicky komplikovaným rodům. Velký počet morfologicky podobných druhů způsobuje časté determinační záměny, některé druhy jsou přehlíženy a jejich skutečné rozšíření není dosud spolehlivě známo. Některé druhy jsou předmětem šlechtění a jsou součástí komerčních travních směsí a trávníků (F. arundinacea, F. pratensis, F. rubra s. l., F. brevipila); z umělých trávníků se kultivary mohou šířit do přirozených biotopů. Mnohé druhy se patrně často kříží, detekce hybridů klasickými morfologickými metodami je ale možná jen v ojedinělých případech. Většina druhů je nejsnadněji determinovatelná přímo v terénu, v širším populačním a stanovištním kontextu, spolehlivé určování chudých herbářových položek extrémních nebo sterilních rostlin je mnohdy nemožné. K určování jsou nejvhodnější plně vyvinuté a kvetoucí rostliny. K měření je třeba vybírat pouze nejlépe vyvinutá stébla, laty a klásky se čtyřmi a více plně vyvinutými květy (se stejně velkými pluchami) pocházející ze střední části laty. Délka klásku se měří od báze dolní plevy po vrchol čtvrté pluchy (bez osiny), délka pluchy se měří na druhé pluše klásku (bez osiny). Ojíněním se rozumí přítomnost stíratelného voskového povlaku, který nejčastěji zůstává zachován na pochvách, kolénkách nebo na kláscích (zejména u suchých listů herbářových položek nemusí korespondovat se sivým vzezřením rostlin). Charakter sklerenchymu a počet cévních svazků na průřezu listu se zjišťuje na listech sterilních výběžků (lsv.) mezi polovinou a horní čtvrtinou jejich délky, nejlépe u více listů a alespoň pod 100-násobným zvětšením. V terénu se charakter sklerenchymu zjišťuje nejlépe za suchého počasí na suchých hnědých lsv., kdy se na bočních stranách listu jeví separované sklerenchymatické provazce zpravidla jako nápadnější žebra nebo hrany v jinak seschlé parenchymatické výplni listu.

1a Všechny listy ploché, nejširší alespoň 5 mm široké, v pupenu řasnatě složené, rostliny robustní, 0,4-1,5 m vysoké ...... …………………………………………………… 2 (subgen. Drymochloa, subgen. Schedonorus)

1b Alepsoň lsv. štětinovité nebo za sucha svinuté, nejširší listy užší než 5 mm, rostliny drobnější, 0,1-0,7(1) m vysoké ...... ………………………………………………… 6 (subgen. Festuca) 6a Lsv. (1-)2-4 mm široké, za vlhka ploché (s velkým počtem žeber a 15-21 cév. svazky, obr. F. carpatica nový), vnější pochvy tlustých extravaginálních výběžků často bezčepelné, listy s krátkým brvitým jazýčkem – lata chudá, podlouhle vejčitá, s bledými 2-4květými klásky se suchomázdřitými plevami a bezosinnými nebo zašpičatělými pluchami // !4; 0,5- 0,7; VI-VIII; 2n=28 // vápencové sutě a skály, horské nivy v kosodřevině (H-Sa), Calamagrostion variae, Seslerion tatrae, MF, VF, Choč. vrchy, Mur. pl., vápencové obvody NT a VT roztr., karpatský endemit ...... ……………………….. F. carpatica F. G. Dietr.

6b Lsv. 0,2-1,3(-2,0) mm, štětinovité nebo vzácně ploché, s 1-5(-7) žebry a 3-11(-15) cévními svazky, (obr. 1327-1335), bezčepelné pochvy chybějí, listy bez nebo s blanitým jazýčkem ...... ……………………………………………. 7

7a Lsv. s 0,3-1,5 mm dl. blanitým jazýčkem, plevy široce suchomázdřité – na bázi čepele často vytvořeny zduřelé prstencové valy (obr. 1329), obilka nepřirůstá k pluše // !4; 0,15-0,3(- 0,5); VI-VIII; 2n=14 //vápencové nebo mylonitové skály, kamenité hole (H-A), Festucion versicoloris, Stráž. vrchy (Strážov), Babia hora?, MF, VF, Choč. vrchy, ZT, VT, BT, NT, roztr...... …………………………………………………………….. F. versicolor Tausch – u nás jen: subsp. versicolor

7b Lsv. bez jazýčku nebo max. s 0,2 mm dl. jazýčkem, plevy celé kožovité – báze čepele bez prstencových valů, obilka přirůstá k pluše ………...... ………………... 8

8a Volné kraje listové pochvy spojené jemnou 1- až vícebuněčnou blankou (patrné jako podélná rýha); lsv. s tlustými sklerenchymatickými vlákny v pruzích lemujících cévní svazky, místy zasahující až na vnitřní stranu listu (obr. 1327), zároveň pochvy kožovité, růžově naběhlé nebo slámově zbarvené; pluchy bezosinné nebo s krátkou nasazenou osinou ...... 9

8b Volné kraje listové pochvy v dolní části úplně srostlé nebo volné, lsv. se 3 výraznými sklerenchymatickými provazci na okrajích listu a naproti střední žilce nebo se sklerenchymatickým prstencem který může být různou měrou přerušený (obr. 1331-1335), pokud sklerenchymatická vlákna lemují cévní svazky, pak jsou pochvy lsv. blanité, červenohnědé až fialově naběhlé s nápadnými cévními svazky (obr. 1327, 1328, F. picturata nový); pluchy zřetelně osinaté, vz. bezosinné...... ……...... 10

9a Lsv. 0,3-0,6(-0,7) mm v průměru, drsné; stébelné listy štětinovité, – pochvy často růžově naběhlé // !4; 0,4-0,8; V-VII; 2n=28 // lemy listnatých lesů, křovinaté skalnaté stráně a louky, Erico-Pinion, Quercion pubescentis-petraeae, VF, Strážovské vrchy (Rokoš), Pov. In. a snad i v dalších pohořích, vz. ....……………………………..…………………... F. amethystina L. – u nás jen: subsp. amethystina

9b Lsv. 0,7-0,9(-1,3) mm v průměru; celé hladké; stébelné listy často ploché; // !4; 0,3-0,7; VI-VII; 2n=14 // vápencové a dolomitové skály (H-Sa), Seslerio-Asterion alpini, MF, VF, NT, ZT, VT, BT, Mur. pl., Choč. vrchy, roztr., karpatský endemit .... F. tatrae (Csakó) Degen

10a Lsv. se sklerenchymatickými provazci v pruzích lemující cévní svazky (obr. F. picturata nový), pochvy starších lsv. blanité, hnědavé, hnědočervené až fialově naběhlé, s nápadnými světlejšími cévními svazky, téměr k vrcholu srostlé – vněpochevní výběžky u některých druhů přítomny, stébelné listy často ploché .……….…………………………...... 11

10 b Lsv. se sklerenchymatickými provazci na okrajích listu a pod střední žilkou se slabšími vlákny mezi bočními cévními svazky, nebo sklerenchym tvoří celistvý až různou měrou přerušovaný prstenec (obr. 1331-1335), pochvy starších lsv. kožovité, slámově zbarvené nebo růžově až fialově naběhlé, bez nápadných cévních svazků, většinou až k bázi volné nebo jen do poloviny srostlé – výběžky vždy vnitropochevní (rostliny vždy trsnaté), stébelné listy štětinovité ...... …………...... …...... ………………...... 17

11a Lsv. 0,2-0,4(-0,5) mm v průměru, s 3 velmi slabými sklerenchymatickými provazci na okraji a pod střední žilkou (obr. F. alpina nový), prašníky 0,7-1,0(1,4) mm dl. – malé, hustě trsnaté rostliny, listy se 3(5) cévními svazky // !4; 0,05-0,20; VI; 2n=2x; EN DD// štěrbiny exponovaných vápencových skal (Sa-A), Potentillion caulescentis, VF (Kýšky) velmi vz...... ……………………………………………………………………………... F. alpina Suter – u nás jen: subsp. alpina

11b Lsv. 0,3-1,0(-1,3) mm v průměru s 5 a více dobře vyvinutými sklerenchymatickými provazci, prašníky výrazně delší – mohutnější rostliny, listy se 3-12 cévními svazky …...... 12

12a Lsv. s 3 cévními svazky a 5 provazci sklerenchymu (obr. XXX), na průřezu čtvercovité až trojúhelníkovité, 0,3-0,6 mm v průměru (obr. 1328) – rostliny trsnaté, bez vněpochevních výběžků, stébelné listy ploché, 2-4 mm široké, s 8-11 cévními svazky // !4; 0,5-1,2; VI-VII; 2n=28 // světlé listnaté lesy (N-Ph), Carpinion, Quercion roboris-petraeae, Quercion pubescentis, v celém území roztr...... ………………………………… F. heterophylla Lam.

12b Lsv. alespoň s 5 cévními svazky a 7 provazci sklerenchymu, mnohoúhelníkové až oválné, (0,3)0,4-1,0(-1,3) mm v průměru (obr. F. picturata nový) – rostliny výběžkaté nebo trsnaté, stébelné listy ploché nebo žlábkovité s 5-11 cévními svazky ...... 13

13a Listy živě zelené, lesklé; klásky lesklé, nápadně barevné, zelené, s fialovými skvrnkami na okraji pluch, semeník chlupatý – plevy na okrajích dlouze brvité // !4; 0,4-0,5; VII-VIII; 2n=14 // horské hole, nivy, kamenité svahy a sutě na nevápnitém podloží (Sa-A), Festucion pictae, Nardion, Calamagrostion villosae, VF, ZT, VT, BT?, NT, roztr. [F. picta Kit.] ...... …. ………………………………………………………………………………... F. picturata Pils

13b Listy šedozelené, nelesklé; klásky nelesklé, celé zelené nebo fialově naběhlé, semeník lysý ...... ……………………………………………………... 14 (15,-16, F. rubra agg.)

17a Lsv. na průřezu se souvislým nebo přerušovaným sklerenchymatickým prstencem, na průřezu oválné až kruhovité (obr. 1331, 1333), za sucha na odumřelých listech z boku zprav. bez patrného podélného žlábku...... ……………………..…………………………….... 18

17b Lsv. s 3 většími sklerenchymatickými provazci na okrajích a proti centrální žilce, často s menšími provazci na bocích listu které mohou vzácně splývat v nepravidelný sklerenchy- matický prstenec, na průřezu tvaru Y-V až oválné (obr. 1334, 1335), za sucha na odumřelých listech s 1-2 patrnými žlábky .....……………………...…………………………………….. 24

18a Lsv. (0,2)0,35-0,75(-0,9) mm v průměru, na vnitřní straně s 1(3) zřetelnými žebry, cévních svazků 5-7(-9), klásky 4,5-6,5(-7,2) mm dl., listy měkké až středně tuhé, na vnější straně zprav. zřetelně drsné, sklerenchymatický prstenec tvořený 1-2(-3) řadami buněk, rostliny ojíněné nebo neojíněné ...... …………………………………………...... 19

18b Lsv. (0,6-)0,8-1,3(-1,75) mm v průměru, na vnitřní staně s (1-)3-5 zřetelnými žebry, cévních svazků 7-13(-15), klásky 5,5-8,5(-9) mm dl., listy výrazně tuhé, na vnější straně zprav. hladké nebo slabě drsné, sklerenchymatický prstenec tvořený 2-4(-6) řadami buněk, rostliny alespoň na kolénkách nebo pochvách vždy ojíněné ...... ……………………….. 21

19a Pluchy bez osiny nebo osina nanejvýš 0,3 mm dl., listy tenké, 0,2-0,4(-0,5) mm v průměru // !4; 0,2-0,4; V-VII; 2n=2x; DD// krátkostébelné trávníky na kyselém podloží, světlé doubravy, vytěžená rašeliniště, (Ph) Nardion, Violion caninae, Záhorie, Tríbeč, Kremnické vrchy, snad zavlékána na SV Slovensko, přehlížena, rozšíření nedostatečně známé. [F. capillata Lam., F. tenuifolia Sibth.] …………...……………... F. filiformis Pourr.

19b Pluchy s alespoň 0,3 mm dlouhou osinou, listy 0,3-0,9 mm v průměru. .………...... 20

20a Listové pochvy lsv. v dolní 1/3-1/2 srostlé, sklerenchymatický prstenec často přerušený, rostliny nízké, hustě trsnaté, příležitostně viviparní // !4; 0,2-0,4; VII-VIII; 2n=28, 35 // horské hole, skály a sutě, na mělkém silikátovém podloží, (Sa-A) Nardion, Pinion mughi, Nardo-Caricion rigidae, Juncion trifidi, VF?, Babia hora, ZT, VT, NT, roztr. [F. vivipara auct., F. airoides auct.] ...... ……………………………..……...... F. supina Schur

20b Listové pochvy lsv. jen u báze nebo v dolní 1/3 srostlé, sklerenchymatický prstenec zřídka přerušený, rostliny vyšší, hustě až volně trsnaté, neviviparní // !4; 0,2-0,6; V-VII; 2n=14, 28 // světlé lesy, lesní lemy, písčiny, vřesoviště, pastviny (N-Ph(H), mimo horské masivy a vápencová území roztroušeně až hojně v celém území ...... F. ovina L. 01a Listy 0,3-0,7 mm v průměru, plucha 3,0-3,8(-4,2) mm dl. // 2n=14, roztr. až hoj. v celém území …...... ……….... F. o. subsp. ovina

01b Listy 0,5-0,9 mm v průměru, plucha (3,2-)3,6-4,2(-4,5) mm dl. // 2n=4x; DD, rozšíření nedokonale známo, častěji v panonské oblasti. [F. lemanii auct.] ……………………...... ……………………… F. o. subsp. guestfalica (Rchb.) Richter

21a Rostliny skalních stanovišť, osina druhé pluchy s (0,5-)0,9-2,5(-3,5) mm dlouhou osinou – klásky (5,7)6,5-8,3(9,1) mm dl., plucha (3,7)4,1-5,8(6,1) mm dl. …….. 22 (F. pallens agg.)

21b Rostliny písků, vzácně pískovců, osina druhé pluchy chybí nebo max. 1,2 mm dl. – klásky (4,8)5,3-7,6(7,9) mm dl., plucha (2,7)3,2-4,9(5,2) mm dl. …...... 23

22a Přinejmenším některé mladé lsv. na hřbetě alespoň slabě drsné (při protažení mezi rty směrem od vrcholu k bázi listu, nebo alespoň při 40x zvětšení), lata i před rozkvětem přímá, sklerenchymatický prstenec alespoň některých listů zprav. přerušen na délku několika buněk, cévních svazků 7-9(-11), stéblo pod latou alespoň s několika osténky až zřetelně drsné (alespoň 25x zvětšení) // !4; 0,2-0,6(-0,7); V-VI; 2n=28 // vápencové dolomitové nebo čedičové skalky v panonské oblasti a jejím širším okolí (Pa-Ph), Poo badensis-Festucion pallentis, Dev. K., M. Karp., Podun. níž. (Nitra), Tríbeč (Zobor), roztr. [F. stricta auct., F. pallens Pannonisches-Hügelland Sippe] ………………………... F. csikhegyensis Simonk.

22b Všechny lsv. na hřbetě úplně hladké, sklerenchymatický prstenec jen vzácně u jednotlivých listů přerušený, lata před rozkvětem často nící, cévních svazků (7-)9-11(-15), stébla pod latou hladká nebo jen vzácně s několika drobnými osténky // !4; 0,2-0,6(-0,7); V- VI; 2n=14, 21 // reliktní skalní výchozy, útesy, skalní stráně a navazující lomy (Pa-H), Seslerio-Festucion pallenstis, Alysso-Festucion pallenstis, Asplenio-Festucetum duriusculae, roztr. po celém území, hojnější zejména v krasových oblastech. [F. pannonica auct., F. longifolia auct., F. pallens Oberösterreich-Niederösterreich Sippe] ...... F. pallens Host – u nás jen: subsp. pallens

23a Druhá plucha bez nebo jen s 0-0,4 mm dl. osinou, nejdelší laty 9-20 cm dl. s 30-170(-200) klásky, nejdelší spodní větévky laty od uzlu po bázi apikálního klásku (3,0-)3,6-8,0(-10,5) cm dl. // !4; 0,3-0,8; VI-VII; 2n=14 // bazické váté písky, Festucion vaginatae, Podun. níž. mezi Komárnem a Štúrovem, Vsl. níž., roztr...... F. vaginata Willd.

23b Druhá plucha s (0,1-)0,2-0,6(-0,8) mm dl. osinou, nejdelší laty 7-15(-18) cm dl. s 20-80(-120) klásky – nejdelší spodní větévky laty od uzlu po bázi apikálního klásku (1,3-)2,1-5,7(-6,6) cm dl. // !4; 0,2-0,7; VI-VII; 2n=14 // acidofilní písčiny a písčité bory, písčitá vřesoviště, Plantagini-Festucion ovinae, Festuco ovinae-Quercetum, Záh. níž. roztr...... ……………………………………………. F. psammophila (Čelak.) Fritsch. – u nás jen subsp. dominii (Krajina) Šmarda nom. prov. [F. vaginata subsp. dominii (Krajina) Soó]

24a Lsv. na průřezu s nepravidelným, téměř vždy přerušovaným sklerenchymatickým prstencem nebo se (3)5-7 izolovanými sklerenchymatickými provazci, na vnitřní straně s 3-7(8) žebry, cévních svazků (5)7-9(13) (obr. 1335) – v populacích často ojíněné i neojíněné rostliny společně, lsv. 0,6-0,9(-1,2) mm v průměru ...... 25

24b Lsv. na průřezu se třemi silnými sklerenchymatickými provazci na okrajích listu (někdy rozdělené na dvě části) a naproti centrální žilce, občas se dvěmi slabšími provazci na bocích listu, téměř vždy se 3 žebry, cévních svazků 5(7) (obr. 1334), pokud je cévních svazků 7, pak jsou přítomny na téže rostlině i listy s 5 cévními svazky) – lsv. 0,3-0,9(-1,0) mm v průměru ...... ………………………….. 26

25a Rostliny antropických trávníků, skal, pastvin, a písčin; lsv. bez dlouhých, okem pozoro- vatelných chlupů, cévních svazků (5)7-9(13) – alepsoň některé rostliny v populaci sivé, ojíněné nebo neojíněné; pochvy lsv. příležitostně chlupaté // !4; 0,2-0,7; V-VI, 2n = 6x; DD // antropické trávníky, náspy, zarostlé výslunné skály, pastviny, písčité bory, suché acidofilní trávníky (N-Ph), Violoin caninae, Plantagini-Festucion ovinae, Festuco ovinae-Quercetum, Záh. níž vz., Vtáčník, Kremn. vrchy, Buk. vrchy, dosud přehlížený druh s nejasným rozšířením. [F. trachyphylla (Hackel) Krajina] ………………………...... F. brevipila Tracey

Druh zahrnuje pravděpodobně více typů, rostoucích na různých přirozených i antropických biotopech, jejichž taxonomické postavení je nejasné. Je předmětem šlechtění a v několika kultivarech se objevuje v komerčních travních směsích.

25b Rostliny bazických vátých písků; lsv. často s dlouhými nápadnými, okem pozorovatel- nými chlupy; cévních svazků 5-7 – rostliny v populaci převážně zelené, ojediněle slabě sivé, na pochvách příležitostně ojíněné; pochvy lsv. zpravidla hustě chlupaté // !4; 0,2-0,5; 2n=4x; DD // bazické váté písky (N), Vsl. níž. (Tarbucka), údaje z Podun. níž. vyžadují ověření, velmi vz. ……………………..…... F. wagneri (Degen, Thaisz et Flatt) Degen, Thaisz et Flatt

26a Rostliny zelené, za sucha jen slabě sivé, neojíněné nebo jen vzácně jednotlivé rostliny v populaci na kláscích ojíněné; pluchy lesklé, na ploše svrchní strany a na okrajích často s dlouhými lesklými štětinatými chlupy – lsv. většinou výrazně drsné, 0,45-0,7(-1,0) mm v průměru, pochvy většinou hustě srstnaté nebo chlupaté // !4; 0,3-0,7; V-VI, 2n=42 // suché trávníky, lesní lemy (N-H), Festuco-Brometea, Trifolio-Geranietea, Cnidion venosi, mimo horské oblasti všude hoj. [F. sulcata (Hackel) Nym.] ..…...………………. F. rupicola Heuff.

26b Rostliny zprav. ojíněné, i za živa zprav. nasivělé, pluchy zprav. matné, na ploše lysé nebo příležitostně jen na okrajích s dlouhými štětinatými chlupy – lsv. 0,3-0,6(0,8) mm ...... …………………………………………………………….………... 27

27a Lsv. hladké, jen při špici drsné, 0,7-0,9 mm v průměru; klásky 9-9,3 mm dlouhé – rostliny horských poloh nad 1200 m n.m.// !4; 0,2-0,6; ?V-VI; 2n=42 // vápnité pískovcové skály (H) Buk. vrchy (Stinka), velmi vz...... ………………………...….. F. saxatilis Schur

27b Lsv. zprav. celé drsné, 0,35-0,6(-0,8) mm v průměru; klásky (4,2-)4,5-8,3(-8,6) – rostliny od nížin do hor ...... ……………………………….... 28

28a Klásky (4,2-)4,5-5,5(-6,0) mm dl.; pluchy vejčitě kopinaté, (2,3-)2,5-3,6(-4,0) mm dl., osina obvykle kratší než třetina délky pluchy; lata malá 2-4(-5,5) cm dl. – rostliny šedozelené, sivé nebo zelené, ojíněné nebo neojíněné // !4; 0,1-0,3; V-VI; 2n=14 // suché, písčité nebo halofilní pastviny a louky, travnaté a kamenité stráně, travnaté cesty (N-Ph), Festucion pseudovinae, Festucion valesiacae, Cynosurion, různé typy antropogenní vegetace, v nižších polohách roztr...... ……….…………………...…..... F. pseudovina (Wiesb.) Nyman

28b Klásky (5,5-)5,8-8,3(-8,6) mm dl.; pluchy kopinaté, 3,4-5,7(-6,0) mm dl., osina obvykle delší než třetina délky pluchy; lata větší (3-)5-12(-14) cm dl. – rostliny sivé nebo sivozelené, alespoň na kolénkách nebo pochvách vždy ojíněné …………………..... 29 (F. valesiaca agg.)

29a Střední průměr lsv. 0,35-0,45(-0,5) mm; klásky průměrně (5,5-)5,8-7,1(-7,6) mm dl., pluchy 3,4-4,9(-5,2) mm dl. – nejdelší laty obvykle kratší než 10 cm, stébla obvykle 10-30(- 50) cm dl. // !4; 0,1-0,5; V-VI; 2n=14 // sprašové, písčité i kamenité stepi, lesostepi (N-Ph), Festucion valesiacae, v teplejších oblastech roztr...... ……...... F. valesiaca Gaud.

29b Střední průměr lsv. (0,35-)0,4-0,6(-0,7) mm; klásky průměrně (5,7-)6,2-8,3(-8,6) mm dl., pluchy (3,6-)4,1-5,7(-6,0) mm dl. – nejdelší laty (3-)5-12(-14) cm dl. s nejdelšími dolními větévkami (1,4-)1,8-5,0(-5,8) mm dl.; rostliny vyšší, stébla obvykle 30-60(-70) cm vysoká, příležitostně s nápadně dlouhými chabými listy přesahujícími polovinu délky stébla // !4; 0,3- 0,7; V-VII; 2n=28 // suché skalnaté trávníky na andezitech, čedičích, vápencích i silikátových horninách, lemy teplomilných doubrav na skalnatém podloží (Pa-H), Asplenio-Festucion, j. a str. Sl. od Burdy po Slan. vrchy roztr...... ………………...... F. pseudodalmatica Domin

Kríženci F. rupicola !x F. vaginata (F. !xinterjecta Vetter) [F. javorkae Májovský nom. inval., F. majovskyi Holub], Podun. níž. (Čenkov) F. ovina !x F. pallens (F. !xduernsteinensis Vetter) [F. !xvihorlatica Májovský], Vih. vrchy F. pallens !x F. pseudodalmatica (F. !xkrizovienseis Májovský), Spiš. kotl. F. pseudovina !x F. vaginata (F. !xcenkovensis Dost.), Podun. níž. F. rubra !x F. vaginata (F. !xteyberi Vetter), Záh. níž.

Další navrhované ilustrace: − příčný řez listem F. alpina – viz Šmarda et Kočí: Biologia 60/4: 383-385, Fig. 2 − příčný řez listem F. carpatica – viz Beldie in Savulescu (1972): Flora Republicae Socialiste Romania, Vol. 12: str. 493, obr. 1b − příčný řez listem F. picturata (F. picta) – viz Beldie in Savulescu (1972): Flora Republicae Socialiste Romania, Vol. 12: str. 514, obr. 1b − zvětšit o 40% obr. 1327