Raman and Photoluminescence Mapping of Gem Materials

Total Page:16

File Type:pdf, Size:1020Kb

Raman and Photoluminescence Mapping of Gem Materials minerals Article Raman and Photoluminescence Mapping of Gem Materials Sally Eaton-Magaña *, Christopher M. Breeding, Aaron C. Palke, Artitaya Homkrajae, Ziyin Sun and Garrett McElhenny Gemological Institute of America, Carlsbad, CA 92008, USA; [email protected] (C.M.B.); [email protected] (A.C.P.); [email protected] (A.H.); [email protected] (Z.S.); [email protected] (G.M.) * Correspondence: [email protected] Abstract: Raman and photoluminescence (PL) mapping is a non-destructive method which allows gemologists and scientists to evaluate the spatial distributions of defects within a gem; it can also provide a method to quickly distinguish different species within a composite gem. This article provides a summary of this relatively new technology and its instrumentation. Additionally, we provide a compilation of new data for various applications on several gemstones. Spatial differences within diamonds can be explored using PL mapping, such as radiation stains observed on the rough surface of natural green diamonds. Raman mapping has proven useful in distinguishing between omphacite and jadeite within a composite of these two minerals, identifying various tourmaline species within a heterogeneous mixture, and determining the calcium carbonate polymorphs in pearls. Additionally, it has potential to be useful for country-of-origin determination in blue sapphires and micro-inclusion analysis. As new avenues of research are explored, more applications for gem materials will inevitably be discovered. Keywords: Raman mapping; photoluminescence mapping; spectroscopy; diamond; corundum; tourmaline; jadeite; pearl; gemology Citation: Eaton-Magaña, S.; Breeding, C.M.; Palke, A.C.; Homkrajae, A.; Sun, Z.; McElhenny, G. Raman and Photoluminescence Mapping of Gem Materials. Minerals 1. Introduction 2021, 11, 177. https://doi.org/ Gemological laboratories rely on non-destructive analytical techniques that are gen- 10.3390/min11020177 erally based on optical methods such as absorption spectroscopy along with Raman and photoluminescence (PL) spectroscopy. PL and Raman spectroscopy, as used for gemstones, Academic Editor: is a microscope-assisted analytical technique in which a material is illuminated with laser Thomas Hainschwang light and the resulting emission is measured with a high-resolution spectrometer. Received: 12 January 2021 PL spectroscopy has become an indispensable tool used by major gemological labora- Accepted: 1 February 2021 tories to distinguish treated and lab-grown diamonds from their natural counterparts [1,2]. Published: 8 February 2021 Within diamond, the presence, and thus the detection, of various defects differs with its growth history along with any subsequent treatment. PL spectroscopy can detect these Publisher’s Note: MDPI stays neutral features even at concentrations lower than 10 ppb [3]. Raman spectroscopy has proven with regard to jurisdictional claims in vital for a host of other gemstones as well to aid in their identification [4–7]. published maps and institutional affil- Raman and PL mapping is a logical extension of these methods in which spectra iations. can be collected quickly and automatically across an area instead of a single point (or the sample manually moved to collect multiple spectra across a sample). These mapping techniques have become possible in the past few years as the technology for the necessary instrumentation has improved. Therefore, Raman and PL mapping have become ideal Copyright: © 2021 by the authors. methods to analyze the spatial differences in these diamonds and similar diamonds that are Licensee MDPI, Basel, Switzerland. distinguished by distinct growth regions. This new instrumentation automatically collects This article is an open access article hundreds to thousands of spectra across a sample and has provided several new, exciting distributed under the terms and research opportunities and identification avenues in recent years. conditions of the Creative Commons This article provides a brief account of investigations across a broad range of research Attribution (CC BY) license (https:// and identification interests for a wide array of different gemstones. It offers an indication creativecommons.org/licenses/by/ 4.0/). of the variety of research possibilities across the breadth of the gemological world. Minerals 2021, 11, 177. https://doi.org/10.3390/min11020177 https://www.mdpi.com/journal/minerals Minerals 2021, 11, x FOR PEER REVIEW 2 of 34 This article provides a brief account of investigations across a broad range of research and identification interests for a wide array of different gemstones. It offers an indication Minerals 2021, 11, 177 2 of 31 of the variety of research possibilities across the breadth of the gemological world. 2. Materials and Methods 2. MaterialsGenerally, and Raman/PL Methods mapping is used to show the distribution of the peak intensity associatedGenerally, with the Raman/PL concentration mapping of an is optical used to defect; show thehowever distribution, other ofdata the such peak as intensity peak positionassociated or peak with width the concentration can be plotted of instead, an optical depending defect; however,on the application. other data A such Raman/PL as peak mappingposition microscope or peak width can can collect be plotted thousands instead, of dependingspectra in a on raster the application. pattern (Figure A Raman/PL 1) and recordmapping a spectrum microscope at each can point. collect The thousands collection ofarea spectra on the in gem’s a raster surface pattern for (Figureeach individ-1) and ualrecord spectrum a spectrum can be at quite each point.small (<1 The µ collectionm2) or quite area large on the (>1000 gem’s µm surface2) if needed for each to individual accom- 2 2 modatespectrum time can constraints be quite small or a (<1 veryµm weak) or quiteemission large signal. (>1000 Theµm )spectral if needed data to accommodate(typically a usertime-specified constraints peak or selected a very from weak the emission spectrum) signal. are then The interpolated spectral data to (typicallyproduce a a map user- ofspecified a defect’s peak distribution. selected fromWith thestandard spectrum) data collection, are then interpolated a single location to produce (represented a map by of a thedefect’s green distribution.circle) is chosen With for standard data collection data collection, which agenerally single location serves (representedas a proxy for by an the entiregreen sample circle) (although is chosen fora researcher data collection can collect which from generally multiple serves spots as on a a proxy sample for to an gauge entire thesample heterogeneity (although). With a researcher mapping can spectroscopy, collect from the multiple data collection spots on is a automated sample to such gauge that the dataheterogeneity). from the entire With surface mapping may spectroscopy, be collected the and data stitched collection together is automated, yielding such a that much data greaterfrom theand entire more surface complete may image be collected of the defects and stitched within together, the sample yielding and generally a much greater offering and thousandsmore complete of collected image spectra of the defects instead within of a single the sample spectrum. and generally offering thousands of collected spectra instead of a single spectrum. FigureFigure 1. 1.DataData collection collection across across the the table table facet facet of of a around round diamond diamond with with standard standard spectroscopy (Left) (Leftis compared) is compared against against mapping mapping spectroscopy spectroscopy in which in which spectra spectra are collectedare collected across across the entirethe entire surface surface(Right ()[Right8]. ) [8]. SomeSome of of the the considerations considerations that that we we encountered encountered during during the the proc processess of of data data collection collection includedincluded balancing balancing the the collection collection time time against against data data quality quality,, mitigatingmitigating thethe effectseffects of of internal inter- nalreflections, reflections, and and ensuring ensuring that that the the plane plane of of data data collection collection is properlyis properly leveled. leveled. MostMost gemstones gemstones cannot cannot be be cooled cooled to to liquid liquid nitrogen nitrogen temperatures temperatures to to optimize optimize the the resultsresults from from PL PL spectroscopy. spectroscopy. Diamonds Diamonds are are the the exception exception as as they they have have a alow low thermal thermal expansionexpansion coefficient coefficient and and extremely extremely high high thermal thermal conductivity, conductivity, so so they they can can be be cool cooleded to to lowlow temperatures. temperatures. Other Other gems, gems, if ifcooled, cooled, have have a amuch much higher higher risk risk of of fracture. fracture. For For example, example, thethe coefficient coefficient of of thermal thermal expansion expansion of of corundum corundum is is five five times times greater greater [9] [9 and] and the the thermal thermal conductivityconductivity is isat at least least 65 65 times times lower lower than than diamond diamond [10] [10. ]. Therefore,Therefore, since since diamonds diamonds can can be be cooled cooled,, PL PL maps maps are are typically typically conducted conducted with with the the ◦ stonestone immersed immersed in in liquid liquid nitrogen nitrogen (− (196−196 °C)C),, although although using using a cryostat a cryostat is isalso also a possibility
Recommended publications
  • Magnetite and Hematite Intheiron Ores of the Kiruna Type and Some Other Iron Ore Types
    SERIE C NR 625 AVHANDLINGAR OCH UPPSATSER ARSBOK 6 1 NR 10 RUDYARD FRIETSCH THE RELATIONSHIP BETWEEN MAGNETITE AND HEMATITE INTHEIRON ORES OF THE KIRUNA TYPE AND SOME OTHER IRON ORE TYPES STOCKHOLM 1967 SVERIGES GEOLOGISKA UNDERSOKNING SERIE C NR 625 ARSBOK 61 NR 10 RUDYARD FKIETSCH THE RELATIONSHIP BETWEEN MAGNETITE AND HEMATITE IN THE IRON ORES OF THE KIRUNA TYPE AND SOME OTHER IRON ORE TYPES STOCKHOLM 1967 Manuscript received May 8th, 1967 Editor: Per H. Lundegårdh Stockholm 1967 Kungl. Boktryckeriet P. A. Norstedt & Söner CONTENTS Abstracc ................................. Introdiiction ................................ The relationship between magnetite and hernatite in kon ores of the Kiruna type ... Northern Sweden ............................ Central Sweden ............................ Chile .................................. Mexico ................................. United States ............................. The formation of'hematite in iron ores of the Kiruna type ............ Examples of the occurrence of hematite in connection with metasomalic processes ... The relationship between magnetite and hematite in ~henon-apatitic irvri ores of Central Sweden .................................. Conclusions ................................ Acknowledgements ............................. References ................................. 7 1.670383 . SGU. Frietsch ABSTRACT I11 the magmatic iron ores of thc Kiruna type the primary iron oxide is inostly magnetite. Hematite is rather common and except when clue to superficial weathering is a later metasomatic alteration of the magnetite. The alteration in the wall-rock (and to a less exteiit in the orc) has given rise to new minerals, e. g. quarte, muscovite, chlorite, calcite, clay minerals and small amounts of tourmaline, fluoritc, barite, allanite and zircoii. It is a later phase of the main ore- forming process. The tcmpcraturc at which the alteration took place is, on account of the niiner- al paragenesis in the altered wall-rock, believed to have been moderate tc.
    [Show full text]
  • Mount Apatite Park, Auburn, Maine
    Mount Apatite Park is a 325-acre wooded park located in the western portion of the city. The park offers a wide variety of recreational opportunities not often found in municipal park settings. Rock hounds have known about this area for over 150 years, when the first discoveries of gem-quality tourmaline were found there. Since then, the area has experienced a great deal of mineral exploration, both commercial and amateur. Today amateurs may still search the mine tailings for apatite, tourmaline, and quartz specimens (special rules apply). The park features approximately four miles of trails for non-motorized uses such as hiking, mountain biking, cross-country skiing, and snowshoeing. The Andy Valley Sno Gypsies also maintain a snowmobile trailhead within the park, which links to miles of regional snowmobile trails.The park is open from dawn until dusk year-round. As with all municipal parks, hunting is not allowed within park boundaries. Park brochures, which include a trail map, park rules, and other park information, are available at the Auburn Parks & Recreation Department office, Monday through Friday, 8a.m.-4:30p.m. Mount Apatite Park, Auburn, Maine Significance The Mt. Apatite quarries were important producers of commercial feldspar in the early 1900's. They played a prominent part in Maine's mining history. During the course of this mining activity, rare minerals and colorful crystals of green and pink tourmaline were found in both the Greenlaw and Maine Feldspar Quarries. These quarries also produced many large crystals of transparent smoky quartz. The complexity of the mineral assemblage at Mt.
    [Show full text]
  • Tourmaline Announces Formation of Topaz Energy, Unlocking Value in Tourmaline's Significant Asset Base
    NOT FOR DISTRIBUTION IN THE UNITED STATES OR DISSEMINATION OVER UNITED STATES NEWSWIRE SERVICES. NEWS RELEASE OCTOBER 10, 2019 TOURMALINE ANNOUNCES FORMATION OF TOPAZ ENERGY, UNLOCKING VALUE IN TOURMALINE'S SIGNIFICANT ASSET BASE Calgary, Alberta - Tourmaline Oil Corp. (TSX:TOU) ("Tourmaline") is pleased to announce the formation of Topaz Energy Corp. (“Topaz”), a new private royalty and infrastructure energy company. Tourmaline will sell to Topaz: a royalty interest on Tourmaline lands, a non-operated interest in two of Tourmaline‘s existing 19 natural gas processing plants, and a contracted interest in a portion of Tourmaline‘s current third-party revenue for total cash and share consideration of $775 million. Topaz will be a low-risk, high-distribution, hybrid royalty and infrastructure energy company with long-term growth plans. Topaz will be capitalized initially with a $150 to $200 million third-party equity private placement, with Tourmaline retaining a 75% to 81% equity ownership interest. Tourmaline intends to reduce a portion of its ownership as Topaz participates in future acquisition activities and an anticipated Topaz public liquidity event in 2020. The initial acquisition from Tourmaline is expected to generate approximately $90 million in revenue(1) in 2020, of which it is anticipated approximately 75% will be paid out in quarterly dividends ($0.80 per share annually, 8% yield). The assets to be acquired from Tourmaline will consist of three components: 1. A gross overriding royalty (“GORR”) on natural gas, oil, and condensate production on 100% of Tourmaline’s existing lands (approximately 2.2 million net acres). 2. A non-operated 45% working interest in two natural gas processing plants underpinned by long-term take- or-pay commitments from Tourmaline.
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • Economic Dimensions of Precious Metals, Stones, and Feathers: the Aztec State Society
    ECONOMIC DIMENSIONS OF PRECIOUS METALS, STONES, AND FEATHERS: THE AZTEC STATE SOCIETY FRANCES F. BERDAN In the spring of 1519, Hernán Cortés and his band of Spanish conquistadores feasted their eyes on the wealth of an empire. While resting on the coast of Veracruz, before venturing inland, Cortés was presented with lavish gifts from the famed Aztec emperor Mocte· zuma IV- While only suggestive of the vastness of imperial wealth, these presents included objects of exquisite workmanship fashioned of prized materials: gold, silver, feathers, jadeite, turquoise.2 There was an enormous wheel of gold, and a smaller one of silver, one said to represent the sun, the other the moon. There were two impressive collars (necklaces) of gold and stone mosaic work: they combined red stones, green stones, and gold bells. s There were fans and other elabo­ 1 Saville (1920: 20-39, 191-206) provides a detailed summary of the many accounts of the gifts presented to Cortés on this occasion. 2 Up to this point in their adventure, sorne of the conquistadores apparently had been sorely disappointed in the mainland's wealth. Bernal Diaz del Castillo repeatedly refers to the gold encountered by the Hernández de Córdova and Gri­ jalva expeditions (1517 and 1518, respectively) as "Iow grade" or "inferior", and small in quantity (Díaz del Castillo, 1956: 8, 22,23, 25, 28). While Díaz, writing many years after the events he describes, seems especially critical of the quality of the gold avaiJable on the coast, the friar Juan Díaz's account of the Grijalva ex­ pedition betrays no such dísappointment.
    [Show full text]
  • The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
    The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig.
    [Show full text]
  • Magnificent Jewels Spring 2013 Sale Highlights a 75.36Ct D/If Type Iia (Ex) Briolette Diamond Pendent Necklace Tops the Sale
    PRESS RELEASE | HONG KONG | 7 MAY 2 0 1 3 FOR IMMEDIATE RELEASE MAGNIFICENT JEWELS SPRING 2013 SALE HIGHLIGHTS A 75.36CT D/IF TYPE IIA (EX) BRIOLETTE DIAMOND PENDENT NECKLACE TOPS THE SALE | Magnificent Jewels, Woods Room, May 28, 1:30pm, Sale 3218| Hong Kong – Christie’s Hong Kong will stage its Magnificent Jewels sale on May 28, 2013. Comprising over 290 jewels, the sale is estimated to realize in excess of HK$590 million/US$74 million. Signed pieces from world-class jewelry houses will be presented in the sale. A number of the fine jewels feature distinctive shapes, structures and colour combinations that will attract the attention of collectors with an eye for design. The leading highlight of the sale is a magnificent diamond and coloured diamond pendent necklace. Highlights also extend to an exceptional emerald and diamond necklace, and a ruby and diamond ring. HIGHLIGHTS OF THE SALE With a blend of high-calibre craftsmanship, top-quality stones and unique design characteristics, three masterpieces stand out in this sale. The first, a magnificent diamond and coloured diamond pendent necklace (illustrated right, lot 1706, estimate: HK$66,800,000-98,000,000/US$8,500,000- 12,500,000), has a marquise-cut purplish pink diamond suspending a briolette diamond weighing 75.36 carats, the biggest briolette diamond that has ever appeared in auction. While less than one carat in every 100,000 carats of diamond will be found in a perfect condition, this briolette of imposing size is certified by the Gemological Institute of America (GIA) to be D colour and type IIa, indicating its internally flawless clarity, excellent polish, highest level of chemical purity and exceptional optical transparency.
    [Show full text]
  • Christie's Presents Jewels: the Hong Kong Sale
    FOR IMMEDIATE RELEASE October 28, 2008 Contact: Kate Swan Malin +852 2978 9966 [email protected] CHRISTIE’S PRESENTS JEWELS: THE HONG KONG SALE Jewels: The Hong Kong Sale Tuesday, December 2 Christie’s Hong Kong Hong Kong – Christie’s announces the fall sale of magnificent jewellery, Jewels: The Hong Kong Sale, which will take place on December 2 at the Hong Kong Convention and Exhibition Centre. This sale features an exquisite selection of over 300 extraordinary jewels across a spectrum of taste and style, from masterpieces of the Belle Époque to contemporary creations, and from the rarest of white and coloured diamonds to important coloured stones. COLOURLESS DIAMONDS Leading the auction is a rare pair of D colour, Flawless diamonds weighing 16.11 and 16.08 carats (illustrated right, estimate: HK$40,000,000-60,000,000 / US$5,000,000-8,000,000). These marvellous stones are also graded ‘Excellent’ for polish, symmetry and cut grade, making them exceedingly rare for their superb quality. Classified as Type IIa, these diamonds are the most the chemically pure type of diamonds known, with no traces of the colorant nitrogen. The absence of this element, seen in 98% of diamonds, gives these stones a purity of colour and degree of transparency that is observed only in the finest white diamonds. The modern round brilliant cut is the diamond’s most basic and popular shape, as it allows the potential for the highest degree of light return. But more importantly, the round diamond sustains the highest value as its production requires riddance of the greatest amount of diamond rough.
    [Show full text]
  • Gemmologythe Journal of Volume 28 No.7 July 2003
    ^ GemmologyThe Journal of Volume 28 No.7 July 2003 The Gemmological Association and Gem Testing Laboratory of Great Britain ~ ~. ~ Gemmological Association , ~ '.~ , and Gem Testing Laboratory ~, :~ of Great Britain • 27 Greville Street, London ECIN 8TN Tel: +44 (0)20 7404 3334 Fax: +44 (0)20 7404 8843 e-mail: [email protected] Website: www.gem-a.info President: Professor A.T Collins Vice-Presidents: N. W. Deeks, A.E. Farn, RA Howie, D.G. Kent, RK. Mitchell Honorary Fellows: Chen Zhonghui, RA Howie, K. Nassau Honorary Life Members: H . Bank, D.J. Ca llaghan, E.A [obbins, H . Tillander Council of Management: T J. Davidson, RR Harding, I. Mercer, J. Monnickendam, M.J. 0'Donoghue, E. Stern, I. Thomson, Y.P. Watson Members' Council: A J. Allnutt, S. Burgoyne, P. Dwyer-Hickey, S.A Everitt, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, P.J. Wates, CH. Winter Branch Chairmen: Midlands -G.M. Green, North West -D. M. Brady, Scottish - B. Jackson, South Eas t - CH. Winter, South West - RM. Slater Examiners: A J. Allnutt, M.5e., Ph.D., FGA, L. Bartlett, B.5e., M.Ph il., FGA, DGA, S. Coelho, BS e., FGA, DGA, Prof. AT Co llins, BSe., Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, S. Greatwood, FGA, DGA, G.M. Green, FGA, DGA, G.M. Howe, FGA, DGA, S. Hue Williams MA, FGA, DGA , B. Jackson, FGA, DGA, G.H. Jones, BSe., PhD., FGA, Li Li Ping, FGA, DGA, M.A Medniuk, FGA, DGA, M. Newton, BSe. , D.Phil., CJ.E. Oldershaw, BSe. (Hans), FGA, DGA, H.L.
    [Show full text]
  • Blue Diamond Prices Are on the Rise
    This copy is for your personal, non-commercial use only. To order presentation-ready copies for distribution to your colleagues, clients or customers visit http://www.djreprints.com. https://www.barrons.com/articles/blue-diamond-prices-are-on-the-rise-1518037930 Blue Diamond Prices Are on the Rise By Ariel R. Shapiro Feb. 7, 2018 4:12 p.m. ET The fancy color diamond market is on the upswing, according to a report, with blue diamonds seeing the largest gains. Blue diamonds saw a 5.9% increase in value in the fourth quarter of 2017 in a year-over-year comparison, according to data published on Feb. 1 by the Fancy Color Research Foundation (FCRF). Pink and yellow diamond prices decreased slightly in the same period, at 0.8% and 1.8%, respectively. The market overall was up 0.1%. A fancy vivid blue diamond ring (est. $14-18 million) goes on view at Sotheby's on Oct. 13, 2017 in London. ILLUSTRATION: GETTY IMAGES FOR SOTHEBY'S In November 2017, Christie’s sold a 8.67-carat fancy intense blue diamond ring in Geneva, Switzerland for $13.2 million. The reason for this disparity has less to do with demand, than it does with the rarity of the stone, says FCRF Chairman Eden Rachminov. Demand for yellow and pink diamonds is actually higher, but the amount of blue diamonds being mined is decreasing. “Almost nothing is coming out of the ground,” he says. Pink diamonds have seen the highest gains in the last 13 years with an overall appreciation of 361.9%, according to FCRF’s index, which is compiled through survey data provided by manufacturers and brokers.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • Not for Publication United States Court of Appeals
    NOT FOR PUBLICATION FILED DEC 20 2018 UNITED STATES COURT OF APPEALS MOLLY C. DWYER, CLERK FOR THE NINTH CIRCUIT U.S. COURT OF APPEALS CYNTHIA CARDARELLI PAINTER, No. 17-55901 individually and on behalf of other members of the general public similarly situated, D.C. No. 2:17-cv-02235-SVW-AJW Plaintiff-Appellant, v. MEMORANDUM* BLUE DIAMOND GROWERS, a California corporation and DOES, 1-100, inclusive, Defendants-Appellees. Appeal from the United States District Court for the Central District of California Stephen V. Wilson, District Judge, Presiding Argued and Submitted December 3, 2018 Pasadena, California Before: D.W. NELSON and WARDLAW, Circuit Judges, and PRATT,** District Judge. * This disposition is not appropriate for publication and is not precedent except as provided by Ninth Circuit Rule 36-3. ** The Honorable Robert W. Pratt, United States District Judge for the Southern District of Iowa, sitting by designation. Cynthia Painter appeals the district court’s order dismissing her complaint with prejudice on grounds of preemption and failure to state a claim pursuant to Federal Rule of Civil Procedure 12(b)(6). On behalf of a putative class, Painter claims that Blue Diamond Growers (“Blue Diamond”) mislabeled its almond beverages as “almond milk” when they should be labeled “imitation milk” because they substitute for and resemble dairy milk but are nutritionally inferior to it. See 21 C.F.R. § 101.3(e)(1). We have jurisdiction under 28 U.S.C. § 1291 and review the district court’s dismissal de novo. Durnford v. MusclePharm Corp., 907 F.3d 595, 601 (9th Cir.
    [Show full text]