Developing Methodologies for the Investigation of Free-Living Amoeba As a Tool for Pathogen Surveillance on Dairy Farms and Aquaculture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co. -
Reverse Blot Hybridization Assay
Detection of Waterborne Pathogens by Polymerase Chain Reaction- Reverse Blot Hybridization Assay Yeonim Choi The Graduate School Yonsei University Department of Biomedical Laboratory Science Detection of Waterborne Pathogens by Polymerase Chain Reaction- Reverse Blot Hybridization Assay A Dissertation Submitted to the Department of Biomedical Laboratory Science and the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Yeonim Choi July 2011 G This certifies that the dissertation of Yeonim Choi is approved. Thesis Supervisor : Hyeyoung Lee Ok Doo Awh : Thesis Committee Member Tae Ue Kim : Thesis Committee Member Jong Bae Kim : Thesis Committee Member Yong Serk Park : Thesis Committee Member The Graduate School Yonsei University July 2011 G G Dedicated to my family and my friends, who have encouraged me. G G CONTENTS LIST OF FIGURES AND TABLES ------------------------------------------------ iv ABBREVIATIONS ------------------------------------------------------------------- ix ABSTRACT IN ENGLISH ----------------------------------------------------------- x I. INTRODUCTION ------------------------------------------------------------- 1 II. MATERIALS AND METHODS -------------------------------------------- 9 1. Development of PCR-REBA targeting waterborne pathogens -------- 9 Bacterial reference strains and cultivation ------------------------------- 9 Genomic DNA extraction -
Pocket Guide to Clinical Microbiology
4TH EDITION Pocket Guide to Clinical Microbiology Christopher D. Doern 4TH EDITION POCKET GUIDE TO Clinical Microbiology 4TH EDITION POCKET GUIDE TO Clinical Microbiology Christopher D. Doern, PhD, D(ABMM) Assistant Professor, Pathology Director of Clinical Microbiology Virginia Commonwealth University Health System Medical College of Virginia Campus Washington, DC Copyright © 2018 Amer i can Society for Microbiology. All rights re served. No part of this publi ca tion may be re pro duced or trans mit ted in whole or in part or re used in any form or by any means, elec tronic or me chan i cal, in clud ing pho to copy ing and re cord ing, or by any in for ma tion stor age and re trieval sys tem, with out per mis sion in writ ing from the pub lish er. Disclaimer: To the best of the pub lish er’s knowl edge, this pub li ca tion pro vi des in for ma tion con cern ing the sub ject mat ter cov ered that is ac cu rate as of the date of pub li ca tion. The pub lisher is not pro vid ing le gal, med i cal, or other pro fes sional ser vices. Any ref er ence herein to any spe cific com mer cial prod ucts, pro ce dures, or ser vices by trade name, trade mark, man u fac turer, or oth er wise does not con sti tute or im ply en dorse ment, rec om men da tion, or fa vored sta tus by the Ameri can Society for Microbiology (ASM). -
The Risk to Human Health from Free-Living Amoebae Interaction with Legionella in Drinking and Recycled Water Systems
THE RISK TO HUMAN HEALTH FROM FREE-LIVING AMOEBAE INTERACTION WITH LEGIONELLA IN DRINKING AND RECYCLED WATER SYSTEMS Dissertation submitted by JACQUELINE MARIE THOMAS BACHELOR OF SCIENCE (HONOURS) AND BACHELOR OF ARTS, UNSW In partial fulfillment of the requirements for the award of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL ENGINEERING SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING FACULTY OF ENGINEERING MAY 2012 SUPERVISORS Professor Nicholas Ashbolt Office of Research and Development United States Environmental Protection Agency Cincinnati, Ohio USA and School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Professor Richard Stuetz School of Civil and Environmental Engineering Faculty of Engineering The University of New South Wales Sydney, Australia Doctor Torsten Thomas School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia ORIGINALITY STATEMENT '1 hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom 1 have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.' Signed ~ ............................ -
Detection, Survival and Infectious Potential of Mycobacterium Tuberculosis in the Environment: a Review of the Evidence and Epidemiological Implications
REVIEW TUBERCULOSIS Detection, survival and infectious potential of Mycobacterium tuberculosis in the environment: a review of the evidence and epidemiological implications Leonardo Martinez1, Renu Verma1, Julio Croda2,3, C. Robert Horsburgh Jr4,5, Katharine S. Walter1, Nicholas Degner1, Keren Middelkoop6,7, Anastasia Koch8, Sabine Hermans6,9, Digby F. Warner 8,10, Robin Wood6, Frank Cobelens9 and Jason R. Andrews1 Affiliations: 1Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA. 2Oswaldo Cruz Foundation, Campo Grande and Salvador, Brazil. 3School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Brazil. 4Dept of Medicine, Boston University School of Medicine, Boston, MA, USA. 5Dept of Epidemiology, Biostatistics and Global Health, Boston University School of Public Health, Boston, MA, USA. 6The Desmond Tutu HIV Centre, Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. 7Dept of Medicine, University of Cape Town, Cape Town, South Africa. 8SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Dept of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. 9Dept of Global Health, Amsterdam Institute for Global Health and Development, Academic Medical Center, Amsterdam, The Netherlands. 10Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Diseases -
Antimicrobial Resistance EMERGING INFECTIOUS DISEASES Pages 681-814 Peer-Reviewed Journal Tracking and Analyzing Disease Trends Pages 681–814
Vol 13, No 5, May 2007 Vol ® May 2007 Antimicrobial Resistance EMERGING INFECTIOUS DISEASES Pages 681-814 Pages Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 681–814 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Managing Senior Editor Dennis Alexander, Addlestone Surrey, United Kingdom Polyxeni Potter, Atlanta, Georgia, USA Barry J. Beaty, Ft. Collins, Colorado, USA Associate Editors Martin J. Blaser, New York, New York, USA Paul Arguin, Atlanta, Georgia, USA David Brandling-Bennet, Washington, D.C., USA Charles Ben Beard, Ft. Collins, Colorado, USA Donald S. Burke, Baltimore, Maryland, USA David Bell, Atlanta, Georgia, USA Arturo Casadevall, New York, New York, USA Jay C. Butler, Anchorage, Alaska, USA Kenneth C. Castro, Atlanta, Georgia, USA Charles H. Calisher, Ft. Collins, Colorado, USA Thomas Cleary, Houston, Texas, USA Stephanie James, Bethesda, Maryland, USA Anne DeGroot, Providence, Rhode Island, USA Brian W.J. Mahy, Atlanta, Georgia, USA Vincent Deubel, Shanghai, China Paul V. Effler, Honolulu, Hawaii, USA Nina Marano, Atlanta, Georgia, USA Ed Eitzen, Washington, D.C., USA Martin I. Meltzer, Atlanta, Georgia, USA Duane J. Gubler, Honolulu, Hawaii, USA David Morens, Bethesda, Maryland, USA Richard L. Guerrant, Charlottesville, Virginia, USA J. Glenn Morris, Baltimore, Maryland, USA Scott Halstead, Arlington, Virginia, USA Marguerite Pappaioanou, St. Paul, Minnesota, USA David L. Heymann, Geneva, Switzerland Tanja Popovic, Atlanta, Georgia, USA Daniel B. Jernigan, Atlanta, Georgia, USA Patricia M. Quinlisk, Des Moines, Iowa, USA Charles King, Cleveland, Ohio, USA Jocelyn A. Rankin, Atlanta, Georgia, USA Keith Klugman, Atlanta, Georgia, USA Didier Raoult, Marseilles, France Takeshi Kurata, Tokyo, Japan Pierre Rollin, Atlanta, Georgia, USA S.K. -
Genetic and Functional Studies of the Mip Protein of Legionella
t1.ì. Genetic and Functional Studies of the Mip Protein of Legionella Rodney Mark Ratcliff, BSc (Hons)' MASM Infectious Diseases Laboratories Institute of Medical and Veterinary Science and Department of Microbiology and Immunology UniversitY of Adelaide. Adelaide, South Australia A thesis submitted to the University of Adelaide for the degree of I)octor of Philosophy 15'h March 2000 amended 14th June 2000 Colonies of several Legionella strains on charcoal yeast extract agar (CYE) after 4 days incubation at 37"C in air. Various magnifications show typical ground-glass opalescent appearance. Some pure strains exhibit pleomorphic growth or colour. The top two photographs demonstrate typical red (LH) and blue-white (RH) fluorescence exhibited by some species when illuminated by a Woods (IJV) Lamp. * t Table of Contents .1 Chapter One: Introduction .1 Background .............'. .2 Morphology and TaxonomY J Legionellosis ............. 5 Mode of transmission "..'....'. 7 Environmental habitat 8 Interactions between Legionella and phagocytic hosts 9 Attachment 11 Engulfment and internalisation.'.. 13 Intracellular processing 13 Intracellular replication of legionellae .. " "' " "' 15 Host cell death and bacterial release 18 Virulence (the Genetic factors involved with intracellular multiplication and host cell killing .20 icm/dot system) Legiolysin .25 Msp (Znn* metaloprotease) ...'..... .25 .28 Lipopolysaccharide .29 The association of flagella with disease.. .30 Type IV fimbriae.... .31 Major outer membrane proteins....'.......'. JJ Heat shock proteins'.'. .34 Macrophage infectivity potentiator (Mip) protein Virulenceiraits of Legionella species other than L. pneumophila..........' .39 phylogeny .41 Chapter One (continued): Introduction to bacterial classification and .41 Identificati on of Legionella...'.,..'.. .46 Phylogeny .52 Methods of phylogenetic analysis' .53 Parsimony methods.'.. .55 Distance methods UPGMA cluster analYsis.'.'... -
APPENDIX a Media and Reagents
APPENDIX A Media and Reagents Pauline K. w. Yu, M.S. The use of appropriate and dependable media is integral to the isolation and identification of microorganisms. Unfortunately, comparative data docu menting the relative efficacy or value of media designed for similar purposes are often lacking. Moreover, one cannot presume identity in composition of a given generic product which is manufactured by several companies because each may supplement the generic products with components, often of a proprietary nature and not specified in the product's labeling. Finally, the actual production of similar products may vary among manufacturers to a sufficient extent to affect their performance. For all of these reasons, therefore, product selection for the laboratory should not be strictly based on cost considerations and should certainly not be based on promotional materials. Evaluations that have been published in the scientific literature should be consulted when available. Alternatively, the prospective buyer should consult a recognized authority in the field. It is seldom necessary for the laboratory to prepare media using basic components since these are usually available combined in dehydrated form from commercial sources; however, knowledge of a medium's basic compo nents is helpful in understanding how the medium works and what might be wrong when it does not work. Hence, the components have been listed for each medium included in this chapter. All dehydrated media must be prepared exactly according to the manu facturers' directions. Any deviation from these directions may adversely affect or significantly alter a medium's performance. Containers of media should be dated on receipt and when opened, and the media should never be used beyond expiration dates specified by the manufacturers or recom mended by quality control programs. -
Mycobacteria in Northern Tanzania: Exposure and Risk of Disease Among Agropastoralists and Programmatic Challenges in Investigation of Re-Treatment Cases
0\FREDFWHULDLQQRUWKHUQ7DQ]DQLD ([SRVXUHDQGULVNRIGLVHDVHDPRQJDJURSDVWRUDOLVWVDQG SURJUDPPDWLFFKDOOHQJHVLQLQYHVWLJDWLRQRIUHWUHDWPHQWFDVHV $QGUHZ0DUWLQ.LODOH Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen Dissertation date: © Copyright: Andrew Martin Kilale, 2015 The material in this publication is protected by copyright law Title: Mycobacteria in northern Tanzania: Exposure and risk of disease among agropastoralists and programmatic challenges in investigation of re-treatment cases Author: Andrew Martin Kilale Print: AiT Bjerch AS / University of Bergen ii Dedication To the memory of my beloved Father, the late Martin Meza and my Mother, Twingilage Mwandawila Sanga iii Acknowledgements I thank His Almighty God for blessing me with this opportunity and keeping me strong throughout the period of my studies. My heartfelt acknowledgement goes to the University of Bergen, Centre for International Health for providing me the opportunity for this training. I wish to express my deepest sincere gratitude to my supervisors Prof. Sven Gudmund Hinderaker and Dr. Bernard James Ngowi for their tireless efforts, encouragement, support and always being available for the guidance. My special thanks goes to Dr. Godfrey Sayoki Mfinanga the Director at Muhimbili Medical Research Centre and Afrique One Consortium Deputy Director whose love and dedication to health research appointed me to join the consortium as a PhD student. My compliment goes to my family, my wife Elina, my son Audphas, and my daughters Irene and Doris for their intimate love, endless support, encouragement, prayers and endurance during my absence have been essential. I would like to express my earnest thanks to my employer, the National Institute for Medical Research and Welcome Trust through Afrique One Consortium for their financial support for research and my studies. -
Computational Identification of the Proteins Associated with Quorum
fmicb-10-03011 January 22, 2020 Time: 12:51 # 1 ORIGINAL RESEARCH published: 22 January 2020 doi: 10.3389/fmicb.2019.03011 Computational Identification of the Proteins Associated With Quorum Sensing and Biofilm Formation in Mycobacterium tuberculosis Shubhada R. Hegde* Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India With prolonged therapy and increased instances of drug resistance, tuberculosis is viewed as a serious infectious disease causing high mortality. Emerging concepts in Mycobacterium tuberculosis pathogenicity include biofilm formation, which endows bacterial survival in the host for a long time. To tackle chronic tuberculosis infection, a detailed understanding of the bacterial survival mechanisms is crucial. Using comparative genomics and literature mining, 115 M. tuberculosis proteins were shortlisted for their likely association with biofilm formation or quorum sensing. These include essential genes such as secA2, lpqY-sugABC, Rv1176c, and Rv0195, many of which are also known virulence factors. Furthermore, the functional relationship among these proteins was established by considering known protein-protein interactions, Edited by: regulatory interactions, and gene expression correlation data/information. Graph Rachel Susan Poretsky, centrality and motif analyses predicted the importance of proteins, such as Rv0081, University of Illinois at Chicago, United States DevR, RegX3, Rv0097, and Rv1996 in M. tuberculosis biofilm formation. Analysis Reviewed by: of conservation across other biofilm-forming bacteria suggests that most of these Seyed Ehtesham Hasnain, genes are conserved in mycobacteria. As the processes, such as quorum sensing, Jamia Hamdard University, India Nasreen Zafar Ehtesham, leading to biofilm formation involve diverse pathways and interactions between National Institute of Pathology, India proteins, these system-wide studies provide a novel perspective toward understanding *Correspondence: mycobacterial persistence. -
Occurrence of New Polyenoic Very Long Chain Acyl Residues in Lipids from Acanthamoeba Castellanii
Acta Protozool. (2009) 48: 63–72 ACTA PROTOZOOLOGICA Occurrence of New Polyenoic Very Long Chain Acyl Residues in Lipids from Acanthamoeba castellanii Marta PALUSIŃSKA-SZYSZ, Anna TURSKA-SZEWCZUK, Magdalena KARAŚ, Ryszard RUSSA and Wincenty J. DROŻAŃSKI Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin Poland Summary. The cellular fatty acid composition of Acanthamoeba castellanii, a unicellular bacteriovorous organism, was reinvestigated. Lipids from amoebae grown axenically in proteose peptone-yeast extract-glucose medium were extracted with chloroform–methanol and separated by silicic acid column chromatography into non-polar and polar fractions. The fatty acid composition of the lipids and the double-bond position of the unsaturated acids have been determined by capillary gas chromatography-mass spectrometry (GC-MS) of their corresponding methyl esters, 2-alkenyl-4,4-dimethyloxazoline (DMOX) derivatives and dimethyldisulfide (DMDS) adducts. Evidence is given that lipids from A. castellanii in addition to the three already identified saturated straight chain fatty acids: tetradecanoic (C14:0), hexadecanoic (C16:0), octadecanoic (C18:0), and six preponderant unsaturated fatty acids: hexadecenoic (C16:1 Δ7), octadecenoic (C18:1 Δ9), octadecadienoic (C18:2 Δ9,12), eicosadienoic (C20:2 Δ11,14), eicosatrienoic (C20:3 Δ8,11,14), and eicosatetraenoic (C20:4 Δ5,8,11,14), contain additionally four very long chain unsaturated fatty acids: octacosenoic (C28:1 Δ21), octacosadienoic (C28:2 Δ5,21), triacontadienoic (30:2 Δ21,24), and triacontatrienoic (C30:3 Δ5,21,24) previously unreported in lipids of A. castellanii. These new long chain fatty acids account for approximately 25% of total fatty acids. To our knowledge, this is the first report of very long chain polyenoic fatty acids present in lipids extracted from A. -
BD Industry Catalog
PRODUCT CATALOG INDUSTRIAL MICROBIOLOGY BD Diagnostics Diagnostic Systems Table of Contents Table of Contents 1. Dehydrated Culture Media and Ingredients 5. Stains & Reagents 1.1 Dehydrated Culture Media and Ingredients .................................................................3 5.1 Gram Stains (Kits) ......................................................................................................75 1.1.1 Dehydrated Culture Media ......................................................................................... 3 5.2 Stains and Indicators ..................................................................................................75 5 1.1.2 Additives ...................................................................................................................31 5.3. Reagents and Enzymes ..............................................................................................75 1.2 Media and Ingredients ...............................................................................................34 1 6. Identification and Quality Control Products 1.2.1 Enrichments and Enzymes .........................................................................................34 6.1 BBL™ Crystal™ Identification Systems ..........................................................................79 1.2.2 Meat Peptones and Media ........................................................................................35 6.2 BBL™ Dryslide™ ..........................................................................................................80