The Macroevolutionary Dynamics of Symbiotic and Phenotypic Diversification in Lichens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny and Classification of Cryptodiscus, with a Taxonomic Synopsis of the Swedish Species
Fungal Diversity Phylogeny and classification of Cryptodiscus, with a taxonomic synopsis of the Swedish species Baloch, E.1,3*, Gilenstam, G.2 and Wedin, M.1 1Department of Cryptogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. 2Department of Ecology and Environmental Sciences, Umeå University, SE-901 87 Umeå, Sweden. 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK. Baloch, E., Gilenstam, G. and Wedin, M. (2009). Phylogeny and classification of Cryptodiscus, with a taxonomic synopsis of the Swedish species. Fungal Diversity 38: 51-68. The phylogeny, taxonomy and classification of Cryptodiscus are examined. The current generic and species delimitations, and the relationship of the genus within the Ostropomycetidae, are tested by molecular phylogenetic analyses of the nuclear ITS and LSU rDNA and the mitochondrial SSU rDNA. In our new circumscription Cryptodiscus is a monophyletic group of saprotrophic and lichenized fungi characterized by small, urceolate apothecia, mostly hyaline ascomatal walls without any embedded crystals, no clear periphysoids, and with oblong to narrow- cylindrical septate ascospores. Cryptodiscus forms a well-supported clade together with Absconditella and the remaining Stictidaceae. Paschelkiella and Bryophagus are synonymised with Cryptodiscus. Species excluded from Cryptodiscus are Cryptodiscus anguillosporus, C. angulosus, C. microstomus, and C. rhopaloides. Cryptodiscus in Sweden is revised and six species are accepted, of which one is newly described: C. foveolaris, C. gloeocapsa comb. nov. (≡ Bryophagus gloeocapsa), C. incolor sp. nov., C. pallidus, C. pini comb. nov. (≡ Paschelkiella pini), and the rediscovered species C. tabularum. The additional new combinations Cryptodiscus similis comb. nov. and C. -
Taxonomy and New Records of Graphidaceae Lichens in Western Pangasinan, Northern Philippines
PRIMARY RESEARCH PAPER | Philippine Journal of Systematic Biology DOI 10.26757/pjsb2019b13006 Taxonomy and new records of Graphidaceae lichens in Western Pangasinan, Northern Philippines Weenalei T. Fajardo1, 2* and Paulina A. Bawingan1 Abstract There are limited studies on the diversity of Philippine lichenized fungi. This study collected and determined corticolous Graphidaceae from 38 collection sites in 10 municipalities of western Pangasinan province. The study found 35 Graphidaceae species belonging to 11 genera. Graphis is the dominant genus with 19 species. Other species belong to the genera Allographa (3 species) Fissurina (3), Phaeographis (3), while Austrotrema, Chapsa, Diorygma, Dyplolabia, Glyphis, Ocellularia, and Thelotrema had one species each. This taxonomic survey added 14 new records of Graphidaceae to the flora of western Pangasinan. Keywords: Lichenized fungi, corticolous, crustose lichens, Ostropales Introduction described Graphidaceae in the country (Parnmen et al. 2012). Most recent surveys resulted in the characterization of six new Graphidaceae is the second largest family of lichenized species (Lumbsch et al. 2011; Tabaquero et al.2013; Rivas-Plata fungi (Ascomycota) (Rivas-Plata et al. 2012; Lücking et al. et al. 2014). In the northwestern part of Luzon in the Philippines 2017) and is the most speciose of tropical crustose lichens (Region 1), an account on the Graphidaceae lichens was (Staiger 2002; Lücking 2009). The inclusion of the initially conducted only from the Hundred Islands National Park (HINP), separate family Thelotremataceae (Mangold et al. 2008; Rivas- Alaminos City, Pangasinan (Bawingan et al. 2014). The study Plata et al. 2012) in the family Graphidaceae made the latter the reported 32 identified lichens, including 17 Graphidaceae dominant element of lichen communities with 2,161 accepted belonging to the genera Diorygma, Fissurina, Graphis, Thecaria species belonging to 79 genera (Lücking et al. -
Lepraria Normandinoides
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2020: T180096955A180097006 Scope(s): Global Language: English Lepraria normandinoides Assessment by: Lendemer, J. View on www.iucnredlist.org Citation: Lendemer, J. 2020. Lepraria normandinoides. The IUCN Red List of Threatened Species 2020: e.T180096955A180097006. https://dx.doi.org/10.2305/IUCN.UK.2020- 3.RLTS.T180096955A180097006.en Copyright: © 2020 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Fungi Ascomycota Lecanoromycetes Lecanorales Stereocaulaceae Scientific Name: Lepraria normandinoides Lendemer & R.C. Harris Taxonomic Source(s): Index Fungorum Partnership. 2020. Index Fungorum. Available at: http://www.indexfungorum.org. -
New Species of Graphidaceae from the Neotropics and Southeast Asia
Phytotaxa 189 (1): 289–311 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.189.1.21 New species of Graphidaceae from the Neotropics and Southeast Asia HARRIE J. M. SIPMAN Freie Universität, Botanischer Garten & Botanisches Museum, Königin-Luise-Strasse 6-8, D-14195 Berlin, Germany; email: [email protected] Abstract Descriptions and illustrations are provided for 20 new species in the family Graphidaceae (lichenized fungi) originating from El Salvador, the Guianas, Venezuela, Colombia, and Malaysia: Acanthothecis adjuncta Welz & Sipman, differing from all other Acanthothecis species by the rounded ascocarps with covered discs; Astrochapsa albella Sipman, differing from A. meridensis in the white apothecium rim, the corticolous growth habit, the more or less clear hymenium, and the protocetraric acid chemistry; A. columnaris Sipman, differing from other Astrochapsa species by the columnar marginal slips; Chapsa francisci Sipman, differing from other Chapsa species by the numerous marginal lacinae; C. nubila Sipman, differing from other Chapsa species by the combination of a guttulate hymenium and 4- to 8-spored asci; Diorygma extensum Sipman, differing from D. minisporum in producing norstictic acid instead of stictic acid; Fissurina chapsoides Sipman, a Fissurina species with large, muriform ascospores and short ascocarps opening mostly by branched slits; F. gigas Sipman, differing from F. rufula in the larger ascomata and muriform ascospores; F. v or a x Sipman, differing from other Fissurina species by the aggregated ascocarps in combination with papillose paraphysis tips; Graphis murali-elegans Sipman, differing from G. -
Phylogeny of the Cetrarioid Core (Parmeliaceae) Based on Five
The Lichenologist 41(5): 489–511 (2009) © 2009 British Lichen Society doi:10.1017/S0024282909990090 Printed in the United Kingdom Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers Arne THELL, Filip HÖGNABBA, John A. ELIX, Tassilo FEUERER, Ingvar KÄRNEFELT, Leena MYLLYS, Tiina RANDLANE, Andres SAAG, Soili STENROOS, Teuvo AHTI and Mark R. D. SEAWARD Abstract: Fourteen genera belong to a monophyletic core of cetrarioid lichens, Ahtiana, Allocetraria, Arctocetraria, Cetraria, Cetrariella, Cetreliopsis, Flavocetraria, Kaernefeltia, Masonhalea, Nephromopsis, Tuckermanella, Tuckermannopsis, Usnocetraria and Vulpicida. A total of 71 samples representing 65 species (of 90 worldwide) and all type species of the genera are included in phylogentic analyses based on a complete ITS matrix and incomplete sets of group I intron, -tubulin, GAPDH and mtSSU sequences. Eleven of the species included in the study are analysed phylogenetically for the first time, and of the 178 sequences, 67 are newly constructed. Two phylogenetic trees, one based solely on the complete ITS-matrix and a second based on total information, are similar, but not entirely identical. About half of the species are gathered in a strongly supported clade composed of the genera Allocetraria, Cetraria s. str., Cetrariella and Vulpicida. Arctocetraria, Cetreliopsis, Kaernefeltia and Tuckermanella are monophyletic genera, whereas Cetraria, Flavocetraria and Tuckermannopsis are polyphyletic. The taxonomy in current use is compared with the phylogenetic results, and future, probable or potential adjustments to the phylogeny are discussed. The single non-DNA character with a strong correlation to phylogeny based on DNA-sequences is conidial shape. The secondary chemistry of the poorly known species Cetraria annae is analyzed for the first time; the cortex contains usnic acid and atranorin, whereas isonephrosterinic, nephrosterinic, lichesterinic, protolichesterinic and squamatic acids occur in the medulla. -
Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). -
Cuivre Bryophytes
Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen -
Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota)
Microbial Ecology https://doi.org/10.1007/s00248-020-01633-3 FUNGAL MICROBIOLOGY Global Biodiversity Patterns of the Photobionts Associated with the Genus Cladonia (Lecanorales, Ascomycota) Raquel Pino-Bodas1 & Soili Stenroos2 Received: 19 August 2020 /Accepted: 22 October 2020 # The Author(s) 2020 Abstract The diversity of lichen photobionts is not fully known. We studied here the diversity of the photobionts associated with Cladonia, a sub-cosmopolitan genus ecologically important, whose photobionts belong to the green algae genus Asterochloris. The genetic diversity of Asterochloris was screened by using the ITS rDNA and actin type I regions in 223 specimens and 135 species of Cladonia collected all over the world. These data, added to those available in GenBank, were compiled in a dataset of altogether 545 Asterochloris sequences occurring in 172 species of Cladonia. A high diversity of Asterochloris associated with Cladonia was found. The commonest photobiont lineages associated with this genus are A. glomerata, A. italiana,andA. mediterranea. Analyses of partitioned variation were carried out in order to elucidate the relative influence on the photobiont genetic variation of the following factors: mycobiont identity, geographic distribution, climate, and mycobiont phylogeny. The mycobiont identity and climate were found to be the main drivers for the genetic variation of Asterochloris. The geographical distribution of the different Asterochloris lineages was described. Some lineages showed a clear dominance in one or several climatic regions. In addition, the specificity and the selectivity were studied for 18 species of Cladonia. Potentially specialist and generalist species of Cladonia were identified. A correlation was found between the sexual reproduction frequency of the host and the frequency of certain Asterochloris OTUs. -
<I>Cyanodermella Asteris</I> Sp. Nov. (<I>Ostropales</I>)
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 January–March 2017—Volume 132, pp. 107–123 http://dx.doi.org/10.5248/132.107 Cyanodermella asteris sp. nov. (Ostropales) from the inflorescence axis of Aster tataricus Linda Jahn1,*, Thomas Schafhauser2, Stefan Pan2, Tilmann Weber2,7, Wolfgang Wohlleben2, David Fewer3, Kaarina Sivonen3, Liane Flor4, Karl-Heinz van Pée4, Thibault Caradec5, Philippe Jacques5,8, Mieke M.E. Huijbers6,9, Willem J.H. van Berkel6 & Jutta Ludwig-Müller1,* 1 Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany 2 Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany 3 Microbiology and Biotechnology Division, Dept. of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, FIN-00014, Helsinki, Finland 4 Allgemeine Biochemie, Technische Universität Dresden, 01069 Dresden, Germany 5 Laboratoire ProBioGEM, Université Lille1- Sciences et Technologies, Villeneuve d’Ascq, France 6 Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands 7 moved to: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark 8 moved to: Gembloux Agro-Bio Tech, Université de Liege, Passage des Déportés 2, 5030 Gembloux, Belgium 9 moved to: Department of Biotechnology, Technical University Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands *Correspondence to: [email protected], [email protected] Abstract—An endophytic fungus isolated from the inflorescence axis ofAster tataricus is proposed as a new species. Phylogenetic analyses based on sequences from the ribosomal DNA cluster (the ITS1+5.8S+ITS2, 18S, and 28S regions) and the RPB2 gene revealed a relationship between the unknown fungus and the Stictidaceae lineage of the Ostropales. -
Lectotypification of Usnea Confusa (Parmeliaceae, Ascomycota)
Bull. Natl. Mus. Nat. Sci., Ser. B, 45(2), pp. 63–70, May 22, 2019 Lectotypification of Usnea confusa (Parmeliaceae, Ascomycota) Yoshihito Ohmura1, * and Philippe Clerc2 1 Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo Tsukuba, Ibaraki 305–0005, Japan 2 Conservatoire et Jardin botaniques de la Ville de Genève, Geneva, Switzerland * E-mail: [email protected] (Received 25 February 2019; accepted 27 March 2019) Abstract The original material of Usnea confusa Asahina consists of several thalli glued on a cardboard. In order to avoid any future taxonomic confusion especially presence or absence of “isidiate soredia”, a single specimen with numerous isidiofibrils developing on the soralia was cho- sen as lectotype. The lectotype of U. confusa contains usnic, salazinic, constictic acids and trace amount of protocetraric acid as the secondary substances. ITS rDNA sequences of Japanese and Taiwanese specimens that have the same morphology and chemistry with the lectotype form two distinct clades nested within the strongly supported clade representing the core group of Usnea cornuta (containing U. cornuta Körber s.str.). Our molecular phylogenetic result based only on ITS rDNA sequences doesn’t allow to confirm or contradict the conspecificity of U. confusa with U. cornuta. Key words: isidiofibrils, ITS rDNA, lectotype, lichenized fungi, phylogeny, soralia, taxonomy. Introduction type (Gerlach et al., 2017), the density of medul- lary hyphae varies from dense to lax; the many In lichenology, the genus Usnea Adans. is chemotypes designated by main substances such known as one of the most difficult genera due to as: salazinic, constictic, stictic, norstictic, proto- the high morphological variability within species cetraric, psoromic, galbinic, thamnolic or lobaric (Clerc, 1998). -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Fungal Planet Description Sheets: 716–784 By: P.W
Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.