A CONTRIBUTION to the LICHEN FAMILY GRAPHIDACEAE (OSTROPALES, ASCOMYCOTA) of BOLIVIA. 2 Ulf Schiefelbein, Adam Flakus, Harrie J

Total Page:16

File Type:pdf, Size:1020Kb

A CONTRIBUTION to the LICHEN FAMILY GRAPHIDACEAE (OSTROPALES, ASCOMYCOTA) of BOLIVIA. 2 Ulf Schiefelbein, Adam Flakus, Harrie J Polish Botanical Journal 59(1): 85–96, 2014 DOI: 10.2478/pbj-2014-0017 A CONTRIBUTION TO THE LICHEN FAMILY GRAPHIDACEAE (OSTROPALES, ASCOMYCOTA) OF BOLIVIA. 2 Ulf Schiefelbein, Adam Flakus, Harrie J. M. Sipman, Magdalena Oset & Martin Kukwa1 Abstract. Microlichens of the family Graphidaceae are important components of the lowland and montane tropical forests in Bolivia. In this paper we present new records for 51 taxa of the family in Bolivia. Leiorreuma lyellii (Sm.) Staiger is reported as new for the Southern Hemisphere, while Diploschistes caesioplumbeus (Nyl.) Vain., Graphis daintreensis (A. W. Archer) A. W. Archer, G. duplicatoinspersa Lücking, G. emersa Müll. Arg., G. hossei Vain., G. immersella Müll. Arg. and G. subchrysocarpa Lücking are new for South America. Thirty taxa are reported for the first time from Bolivia. Notes on distribution are provided for most species. Key words: biodiversity, biogeography, lichenized fungi, Neotropics, South America Ulf Schiefelbein, Blücherstr. 71, D-18055 Rostock, Germany Adam Flakus, Laboratory of Lichenology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland Harrie J. M. Sipman, Botanischer Garten & Botanisches Museum Berlin Dahlem, Königin-Luise-Strasse 6 – 8, D-14195 Berlin, Germany Martin Kukwa & Magdalena Oset, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; e-mail: [email protected] Introduction Bolivia has the highest ecosystem diversity in Material and methods South America and the forest communities form a mosaic of vegetation which offers a variety Specimens are deposited at B, GOET, KRAM, LPB, of potential habitats for numerous microlichens UGDA (acronyms after Thiers 2012) and the private (Navarro & Maldonado 2002; Josse et al. 2003; herbaria of A. Flakus and U. Schiefelbein. Secondary Ibisch & Mérida 2004; Navarro & Ferreira 2007). lichen metabolites were identified by thin layer chro- matography (TLC) according to Orange et al. (2001). Thus a large number of such species should be Data on general distribution are presented only for expected to occur in Bolivia; however, current species reported for the first time from Bolivia. New knowledge of this group in Bolivia is very in- national records are asterisked (*), those new for South complete, and the family Graphidaceae is no America have two asterisks (**), and those new for the exception in this regard. On the basis of mate- Southern Hemisphere have three (***). rial we collected recently during lichenological The following abbreviations are used in the “Speci- exploration in Bolivia, here we document some mens examined” sections: AF – A. Flakus; MK – M. of this hidden diversity. Kukwa; OP – O. Plata; PR – P. Rodriguez Flakus; RIM This paper is the second contribution dealing – R. I. Meneses; US – U. Schiefelbein; RN – Reserva Nacional; AMBORÓ – Parque Nacional y Área Natural with the family Graphidaceae in Bolivia (Kukwa de Manejo Integrado Amboró; APOLOBAMBA – Área et al. 2013). Natural de Manejo Integrado Nacional Apolobamba; CARRASCO – Parque Nacional Carrasco; COTAPATA – Parque Nacional y Área Natural de Manejo Integrado 1 Corresponding author Cotapata; KAA-IYA – Parque Nacional y Área Natural 86 POLISH BOTANICAL JOURNAL 59(1). 2014 de Manejo Integrado Kaa-Iya del Gran Chaco; SAJAMA Diorygma epiglaucum (Müll. Arg.) Kalb, Staiger – Parque Nacional Sajama; TARIQUÍA – Reserva Na- & Elix cional de Flora y Fauna Tariquía (abbreviations of pro- tected areas according to SERNAP Bolivia; http://www. Previously known from three records in Bolivia sernap.gob.bo). (Kalb et al. 2004; Flakus 2008). Specimens examined. BOLIVIA. Dept. Beni. Results Prov. Marbán, near road from Camiaco to San Lor- enzo, 15°14′49″S, 64°49′11″W, 160 m, lowland *Diorygma antillarum (Vain.) Nelsen, Lücking Amazon forest surrounded by los Llanos de Moxos & Rivas Plata savanna, corticolous, 30 Aug. 2012, MK 11951 (LPB, UGDA); Dept. Santa Cruz. Prov. Guarayos, RN de A Neotropical species previously reported Vida Silvestre Ríos Blanco y Negro, Virgen de Pilar from Brazil, Costa Rica, El Salvador, the Lesser near Chonta, 15°38′54″S, 62°57′37″W, 229 m, lowland Antilles, Panama, Peru, Venezuela and the USA Amazon forest, corticolous, 22 July 2009, AF & PR (Florida) (Aptroot et al. 2009; Nelsen et al. 2012). 13143 (KRAM, LPB). Specimens examined. BOLIVIA. Dept. Tarija. Prov. Diorygma intermedium Kalb, Staiger & Elix Aniceto Arce, Filo de Sidras, 22°14′50″S, 64°33′28″W, 1064 m, Tucumano-Boliviano submontane forest, on Kukwa et al. (2013) reported this species from bark, 22 Nov. 2010. AF 18421 & 18672 (KRAM, LPB); four localities in Bolivia. Serranía de Propiedad Arnold, 22°13′19″S, 64°33′41″W, 1309 m, Tucumano-Boliviano montane forest, on Specimens examined. BOLIVIA. Dept. Santa bark, 24 Nov. 2010, AF 18708 (KRAM, LPB); Prov. Cruz. Prov. Guarayos, RN de Vida Silvestre Ríos ° ′ ″ Burnet O’Connor, Lomas de la Soledad, road between Blanco y Negro, Plan de Manejo AISU, 15 01 49 S, ° ′ ″ Entre Ríos and Chiquiacá, 21°39′38″S, 64°07′31″W, 62 46 36 W, 236 m, lowland Amazon forest, corti- 1670 m, Tucumano-Boliviano altimontane forest, cor- colous, 25 July 2009, AF 14200 & PR (KRAM, LPB). ticolous, 10 Aug. 2012, MK 11264 (LPB, UGDA); TARIQUÍA, near Salinas, 21°49′15″S, 64°12′44″W, Diorygma poitaei (Fée) Kalb, Staiger & Elix 1400 m, Tucumano-Boliviano montane forest, corti- This Neotropical lichen was recently reported colous, 10 Aug. 2012, MK 11246 (LPB, UGDA). from two localities in Bolivia (Kukwa et al. 2013). Diorygma confluens (Fée) Kalb, Staiger & Elix Specimens examined. BOLIVIA. Dept. Beni. Prov. Cercado, Casa del Tigre near Chuchini, 14°43′17″S, This species was only recently reported from 64°56′53″W, 160 m, lowland Amazon forest, corti- Bolivia from six localities (Kukwa et al. 2013). colous, 31 Aug. 2012, MK 11997 (LPB, UGDA). Diorygma confluens is chemically variable (Kalb et al. 2004). The material reported so far *Diorygma reniforme (Fée) Kalb, Staiger & Elix from Bolivia contained lichexanthone, stictic and This species has been reported from the Neo- constictic acids (major), and sometimes traces of tropics in Brazil, Colombia, Cuba, British Guiana, hypoconstictic, hypostictic, norstictic and cryp- Peru and Venezuela, and elsewhere from Cam- tostictic acids (Kukwa et al. 2013). In one of the eroon and Tanzania (Kalb et al. 2004). specimens cited below (MK 7111), lichexanthone, hypoconstictic (major), constictic (submajor) and Specimen examined. BOLIVIA. Dept. Santa Cruz. stictic (trace) acids were detected. Prov. Guarayos, RN de Vida Silvestre Ríos Blanco y Negro, Plan de Manejo AISU, 15°01′58″S, 62°46′36″W, Specimens examined. BOLIVIA. Dept. Beni. Prov. 242 m, lowland Amazon forest, corticolous, 24 July Ballivian, Palmar, 14°58′56″S, 67°05′16″W, 250 m, by 2009, AF 13899 & PR (LPB). road, corticolous, 2 Aug. 2008, MK 7111 (LPB, UGDA); Dept. La Paz. Prov. Iturralde, between Tumapasa and *Diorygma sipmanii Kalb, Staiger & Elix Mamuque, 300 m, garden, corticolous, 5 Mar. 1987, S. Stab LB-33 (B). This Neotropical species was known previ- U. SCHIEFELBEIN ET AL.: A CONTRIBUTION TO GRAPHIDACEAE OF BOLIVIA. 2 87 ously from Brazil, Costa Rica, Guatemala and El ceous schist, 31 May 2011, AF & OP 22123 (KRAM, Salvador (Kalb et al. 2004, Cáceres 2007). LPB); near Cumbre pass, 16°19′18″S, 68°04′42″W, 4550 m, high Andean Puna, on siliceous rock, 17 June Specimen examined. BOLIVIA. Dept. Santa Cruz. 2006, AF 8530 (herb. Flakus). Prov. Guarayos, RN de Vida Silvestre Ríos Blanco y Negro, Virgen de Pilar near Chonta, 15°38′54″S, Diploschistes cinereocaesius (Sw. ex Ach.) Vain. 62°57′37″W, 229 m, lowland Amazon forest, corti- colous, 22 July 2009, AF 13273 & PR (LPB). This species was reported from Bolivia by Feuerer et al. (1998) and Flakus et al. (2012). It Diploschistes actinostomus (Ach.) Zahlbr. appears to be a common lichen at high elevations in the Andes. This species was reported in Bolivia from only one locality (Feuerer & Sipman 2005) Specimens examined. BOLIVIA. Dept. Cocha- bamba. Prov. Quillacollo, area of Incarraya-Sipesipe, Specimens examined. BOLIVIA. Dept. La Paz. 17°29′25″S, 66°22′09″W, 3146 m, semi-desert open Prov. Camacho, Pacoamba cerca Wila Kala, 15°24′40″S, area, on soil, 17 Dec. 2004, AF 4977 (LPB); Dept. La 69°04′24″W, 4283 m, Puna Húmeda, on sandstone, Paz. Prov. Camacho, cerca de la comunidad de Ulla 6 July 2010, AF 17740 & PR (KRAM); Prov. Manco Ulla, en el cerro Wilamuku, 15°02′04″S, 69°11′53″W, Kapac, near Copacabana Mt. Horca del Inca, 16°10′15″S, 4739 m, vegetación altoandina, terrestre, 4 Dec. 69°05′05″W, 3974 m, high Andean Puna, on volcanic 2007, PR 272 (B, LPB); near Villa Cala, 15°25′53″S, rock, 18 June 2006, AF 8637 (LPB). 69°05′07″W, 4250 m, high Andean vegetation, on soil, 19 May 2011, AF 21236 & OP (KRAM, LPB); Prov. **Diploschistes caesioplumbeus (Nyl.) Vain. Franz Tamayo, APOLOBAMBA, Socondori Chico near Ulla Ulla, 15°00′38″S, 69°13′48″W, 4479 m, high An- This species was known previously from Af- dean open vegetation, on soil, 4 July 2010, AF 17473 rica (e.g., Algeria, Canary Islands, Madeira, Mo- & PR (KRAM, LPB); Prov. Murillo, near Cumbre pass, rocco, St. Helena and Ascension Island), Asia (e.g., 16°19′18″S, 68°04′42″W, 4550 m, high Andean Puna, on India, Israel, Turkey), Europe (the Azores, France, soil and terricolous bryophytes, 17 June 2006, AF 8533 Greece, Great Britain, Ireland, Italy, Spain) and (KRAM, LPB, herb. Flakus); Valle del Zongo, Laguna western North America (Breuss 1988; Lumbsch Viscachani, 16°11′54″S, 68°07′33″W, 3862 m, Páramo 1989, 2002; Follmann 1990; Pant & Upreti 1993; Yungueño, on soil, 30 May 2011, AF 22085, 22103 & OP (KRAM, LPB); Prov. Sud Yungas, Mururata, Hafellner 1995; Llimona & Hladun 2001; Yazici bajo la Mina Bolsa Negra, 16°35′S, 67°45′W, 4000 m, & Aslan 2003; Aptroot 2008; Seaward 2010; Roux saxicolous, 1995, J.
Recommended publications
  • Taxonomy and New Records of Graphidaceae Lichens in Western Pangasinan, Northern Philippines
    PRIMARY RESEARCH PAPER | Philippine Journal of Systematic Biology DOI 10.26757/pjsb2019b13006 Taxonomy and new records of Graphidaceae lichens in Western Pangasinan, Northern Philippines Weenalei T. Fajardo1, 2* and Paulina A. Bawingan1 Abstract There are limited studies on the diversity of Philippine lichenized fungi. This study collected and determined corticolous Graphidaceae from 38 collection sites in 10 municipalities of western Pangasinan province. The study found 35 Graphidaceae species belonging to 11 genera. Graphis is the dominant genus with 19 species. Other species belong to the genera Allographa (3 species) Fissurina (3), Phaeographis (3), while Austrotrema, Chapsa, Diorygma, Dyplolabia, Glyphis, Ocellularia, and Thelotrema had one species each. This taxonomic survey added 14 new records of Graphidaceae to the flora of western Pangasinan. Keywords: Lichenized fungi, corticolous, crustose lichens, Ostropales Introduction described Graphidaceae in the country (Parnmen et al. 2012). Most recent surveys resulted in the characterization of six new Graphidaceae is the second largest family of lichenized species (Lumbsch et al. 2011; Tabaquero et al.2013; Rivas-Plata fungi (Ascomycota) (Rivas-Plata et al. 2012; Lücking et al. et al. 2014). In the northwestern part of Luzon in the Philippines 2017) and is the most speciose of tropical crustose lichens (Region 1), an account on the Graphidaceae lichens was (Staiger 2002; Lücking 2009). The inclusion of the initially conducted only from the Hundred Islands National Park (HINP), separate family Thelotremataceae (Mangold et al. 2008; Rivas- Alaminos City, Pangasinan (Bawingan et al. 2014). The study Plata et al. 2012) in the family Graphidaceae made the latter the reported 32 identified lichens, including 17 Graphidaceae dominant element of lichen communities with 2,161 accepted belonging to the genera Diorygma, Fissurina, Graphis, Thecaria species belonging to 79 genera (Lücking et al.
    [Show full text]
  • New Species of Graphidaceae from the Neotropics and Southeast Asia
    Phytotaxa 189 (1): 289–311 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.189.1.21 New species of Graphidaceae from the Neotropics and Southeast Asia HARRIE J. M. SIPMAN Freie Universität, Botanischer Garten & Botanisches Museum, Königin-Luise-Strasse 6-8, D-14195 Berlin, Germany; email: [email protected] Abstract Descriptions and illustrations are provided for 20 new species in the family Graphidaceae (lichenized fungi) originating from El Salvador, the Guianas, Venezuela, Colombia, and Malaysia: Acanthothecis adjuncta Welz & Sipman, differing from all other Acanthothecis species by the rounded ascocarps with covered discs; Astrochapsa albella Sipman, differing from A. meridensis in the white apothecium rim, the corticolous growth habit, the more or less clear hymenium, and the protocetraric acid chemistry; A. columnaris Sipman, differing from other Astrochapsa species by the columnar marginal slips; Chapsa francisci Sipman, differing from other Chapsa species by the numerous marginal lacinae; C. nubila Sipman, differing from other Chapsa species by the combination of a guttulate hymenium and 4- to 8-spored asci; Diorygma extensum Sipman, differing from D. minisporum in producing norstictic acid instead of stictic acid; Fissurina chapsoides Sipman, a Fissurina species with large, muriform ascospores and short ascocarps opening mostly by branched slits; F. gigas Sipman, differing from F. rufula in the larger ascomata and muriform ascospores; F. v or a x Sipman, differing from other Fissurina species by the aggregated ascocarps in combination with papillose paraphysis tips; Graphis murali-elegans Sipman, differing from G.
    [Show full text]
  • Lichenicolous Biota (Nos 201–230)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fritschiana Jahr/Year: 2015 Band/Volume: 80 Autor(en)/Author(s): Hafellner Josef Artikel/Article: Lichenicolous Biota (Nos 201-230) 21-41 - 21 - Lichenicolous Biota (Nos 201–230) Josef HAFELLNER* HAFELLNER Josef 2015: Lichenicolous Biota (Nos 201–230). – Frit- schiana (Graz) 80: 21–41. - ISSN 1024-0306. Abstract: The 9th fascicle (30 numbers) of the exsiccata 'Lichenicolous Biota' is published. The issue contains ma- terial of 20 non-lichenized fungal taxa (14 teleomorphs of ascomycetes, 4 anamorphic states of ascomycetes, 2 an- amorphic states of basidiomycetes) and 9 lichenized as- comycetes, including paratype material of Dimelaena li- chenicola K.Knudsen et al. (no 223), Miriquidica invadens Hafellner et al. (no 226, 227), and Stigmidium xantho- parmeliarum Hafellner (no 210). Furthermore, collections of the type species of the following genera are distributed: Illosporiopsis (I. christiansenii), Illosporium (I. carneum), Marchandiomyces (M. corallinus), Marchandiobasidium (M. aurantiacum, sub Erythricium aurantiacum), Micro- calicium (M. disseminatum), Nigropuncta (N. rugulosa), Paralecanographa (P. grumulosa), Phaeopyxis (P. punc- tum), Placocarpus (P. schaereri), Rhagadostoma (R. li- chenicola), and Stigmidium (S. schaereri). *Institut für Pflanzenwissenschaften, NAWI Graz, Karl-Franzens-Universität, Holteigasse 6, 8010 Graz, AUSTRIA e-mail: [email protected] Introduction The exsiccata 'Lichenicolous Biota' is continued with fascicle 9, containing 30 numbers. The exsiccata covers all lichenicolous biota, i.e., it is open not only to non- lichenized and lichenized fungi, but also to myxomycetes, bacteria, and even animals, whenever they cause a characteristic symptom on their host (e.g. discoloration or galls).
    [Show full text]
  • Insights Into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont
    Insights into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont Katja Fedrowitz Faculty of Natural Resources and Agricultural Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2011 Acta Universitatis agriculturae Sueciae 2011:96 Cover: Lobaria pulmonaria, Nephroma bellum, and fallen bark in an old-growth forest in Finland with Populus tremula. Part of the tRNALeu (UAA) sequence in an alignment. (photos: K. Fedrowitz) ISSN 1652-6880 ISBN 978-91-576-7640-5 © 2011 Katja Fedrowitz, Uppsala Print: SLU Service/Repro, Uppsala 2011 Insights into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont Abstract Nature conservation requires an in-depth understanding of the ecological processes that influence species persistence in the different phases of a species life. In lichens, these phases comprise dispersal, establishment, and growth. This thesis aimed at increasing the knowledge on epiphytic cyanolichens by studying different aspects linked to these life stages, including species colonization extinction dynamics, survival and vitality of lichen transplants, and the genetic symbiont diversity in the genus Nephroma. Paper I reveals that local colonizations, stochastic, and deterministic extinctions occur in several epiphytic macrolichens. Species habitat-tracking metapopulation dynamics could partly be explained by habitat quality and size, spatial connectivity, and possibly facilitation by photobiont sharing. Simulations of species future persistence suggest stand-level extinction risk for some infrequent sexually dispersed species, especially when assuming low tree numbers and observed tree fall rates. Forestry practices influence the natural occurrence of species, and retention of trees at logging is one measure to maintain biodiversity. However, their long-term benefit for biodiversity is still discussed.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • New Or Otherwise Interesting Lichens. VII, Including a World Key to the Lichen Genus Heiomasia
    New or otherwise interesting lichens. VII 1 New or otherwise interesting lichens. VII, including a world key to the lichen genus Heiomasia Klaus Kalb Lichenologisches Institut Neumarkt Im Tal 12, D-92318 Neumarkt/Opf., Germany and Institute of Plant Sciences, University of Regensburg, Universitätsstraße 31 D-93053 Regensburg, Germany. email: [email protected] Abstract Eight species new to science are described, Allographa grandis from Cameroon which is distinguished by its very large ascomata, richly muriform, large ascospores and an inspersed hymenium (type B); Bapalmuia microspora from Malaysia which differs from B. consanguinea in having shorter and broader ascospores and a granular thallus; Diorygma cameroonense from Cameroon which differs from D. sticticum in having larger ascospores with more septa; Glyphis frischiana which is similar to G. atrofusca but differs in producing secondary lichen compounds, the first species in Glyphis in doing so. Two new species are added to the genus Heiomasia, viz. H. annamariae from Malaysia, which differs from H. sipmanii in producing the stictic acid aggr. and H. siamensis from Thailand, distinguished from H. sipmanii in containing hypoprotocetraric acid as a major metabolite. The published chemistry of several species of Heiomasia is revised and a new substance, heiomaseic acid, with relative Rf-values 5/19/8, is demonstrated for H. seavey- orum, H. siamensis and H. sipmanii. A world-wide key to the known species of Heiomasia is presented. Myriotrema squamiferum, a fertile species from Malaysia, is distinguished from M. frondosolucens by lacking lichexanthone. As there are conflicting literature data concerning Ocellularia crocea, the type specimen was investigated and the results are reported.
    [Show full text]
  • <I>Diorygma Fuscum</I>
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 © 2016. Mycotaxon, Ltd. July–September 2016—Volume 131, pp. 717–721 http://dx.doi.org/10.5248/131.717 Diorygma fuscum sp. nov. from China Jian Li & Ze-Feng Jia* College of Life Sciences, Liaocheng University, Liaocheng, 252059, China * Correspondence to: [email protected] Abstract—A new lichen species, Diorygma fuscum, is described from Fujian Province, China. It is characterized by the conspicuous open immersed lirellae with densely white pruinose discs, the hyaline to brownish muriform ascospores sized 40–60 × 12–18 µm, and the presence of stictic acid. The type specimen is deposited in HMAS-L. Key words—Ascomycota, Ostropales, Graphidaceae, taxonomy Introduction Diorygma Eschw. (Graphidaceae) is mainly a tropical to subtropical genus (Staiger 2002; Kalb et al. 2004), characterized by its inconspicuous pseudocortex, lirellate ascocarps with a pruinose disc, branched or anastomosing paraphyses with a thick gelatinous wall, Graphis-type 1–8-spored asci, ascospores that are transversely septate with lenticular spore locules or muriform, and the presence of norstictic, stictic, and/or protocetraric acid. At present, more than 50 species are known worldwide (Kalb et al. 2004; Cáceres 2007; Archer 2009; Makhija et al. 2009; Sharma & Makhija 2009a, b; Sharma & Khadilkar 2012; Lima et al. 2013; Feuerstein et al. 2014; Sutjaritturakan et al. 2014). Nine Diorygma species have been reported from China: D. hieroglyphicum, D. hololeucum, D. junghuhnii [= Graphina mendax], D. macgregorii, D. megasporum, D. pachygraphum, D. poitaei [= Graphina virginea], D. pruinosum, and D. soozanum [≡Graphina soozana] (Jia & Wei 2016, Kalb et al. 2004, Lamb 1963, Meng & Wei 2008, Nakanishi et al.
    [Show full text]
  • Three Challenges to Contemporaneous Taxonomy from a Licheno-Mycological Perspective
    Megataxa 001 (1): 078–103 ISSN 2703-3082 (print edition) https://www.mapress.com/j/mt/ MEGATAXA Copyright © 2020 Magnolia Press Review ISSN 2703-3090 (online edition) https://doi.org/10.11646/megataxa.1.1.16 Three challenges to contemporaneous taxonomy from a licheno-mycological perspective ROBERT LÜCKING Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany �[email protected]; https://orcid.org/0000-0002-3431-4636 Abstract Nagoya Protocol, and does not need additional “policing”. Indeed, the Nagoya Protocol puts the heaviest burden on This paper discusses three issues that challenge contempora- taxonomy and researchers cataloguing biodiversity, whereas neous taxonomy, with examples from the fields of mycology for the intended target group, namely those seeking revenue and lichenology, formulated as three questions: (1) What is gain from nature, the protocol may not actually work effec- the importance of taxonomy in contemporaneous and future tively. The notion of currently freely accessible digital se- science and society? (2) An increasing methodological gap in quence information (DSI) to become subject to the protocol, alpha taxonomy: challenge or opportunity? (3) The Nagoya even after previous publication, is misguided and conflicts Protocol: improvement or impediment to the science of tax- with the guidelines for ethical scientific conduct. Through onomy? The importance of taxonomy in society is illustrated its implementation of the Nagoya Protocol, Colombia has using the example of popular field guides and digital me- set a welcome precedence how to exempt taxonomic and dia, a billion-dollar business, arguing that the desire to name systematic research from “access to genetic resources”, and species is an intrinsic feature of the cognitive component of hopefully other biodiversity-rich countries will follow this nature connectedness of humans.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • One Hundred and Seventy-Five New Species of Graphidaceae: Closing the Gap Or a Drop in the Bucket?
    Phytotaxa 189 (1): 007–038 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.189.1.4 One hundred and seventy-five new species of Graphidaceae: closing the gap or a drop in the bucket? ROBERT LÜCKING1, MARK K. JOHNSTON1, ANDRÉ APTROOT2, EKAPHAN KRAICHAK1, JAMES C. LENDEMER3, KANSRI BOONPRAGOB4, MARCELA E. S. CÁCERES5, DAMIEN ERTZ6, LIDIA ITATI FERRARO7, ZE-FENG JIA8, KLAUS KALB9,10, ARMIN MANGOLD11, LEKA MANOCH12, JOEL A. MERCADO-DÍAZ13, BIBIANA MONCADA14, PACHARA MONGKOLSUK4, KHWANRUAN BUTSATORN PAPONG 15, SITTIPORN PARNMEN16, ROUCHI N. PELÁEZ14, VASUN POENGSUNGNOEN17, EIMY RIVAS PLATA1, WANARUK SAIPUNKAEW18, HARRIE J. M. SIPMAN19, JUTARAT SUTJARITTURAKAN10,18, DRIES VAN DEN BROECK6, MATT VON KONRAT1, GOTHAMIE WEERAKOON20 & H. THORSTEN 1 LUMBSCH 1Science & Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605-2496, U.S.A.; email: [email protected], [email protected], [email protected], [email protected] 2ABL Herbarium, G.v.d.Veenstraat 107, NL-3762 XK Soest, The Netherlands; email: [email protected] 3Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126, U.S.A.; email: [email protected] 4Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng 24 road, Bangkok, 10240 Thailand; email: [email protected] 5Departamento de Biociências, Universidade Federal de Sergipe, CEP: 49500-000,
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Checklist of the Lichens and Allied Fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A
    Opuscula Philolichenum, 18: 420–434. 2019. *pdf effectively published online 2December2019 via (http://sweetgum.nybg.org/philolichenum/) Checklist of the lichens and allied fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A. J. KEVIN ENGLAND1, CURTIS J. HANSEN2, JESSICA L. ALLEN3, SEAN Q. BEECHING4, WILLIAM R. BUCK5, VITALY CHARNY6, JOHN G. GUCCION7, RICHARD C. HARRIS8, MALCOLM HODGES9, NATALIE M. HOWE10, JAMES C. LENDEMER11, R. TROY MCMULLIN12, ERIN A. TRIPP13, DENNIS P. WATERS14 ABSTRACT. – The first checklist of lichenized, lichenicolous and lichen-allied fungi from the Kathy Stiles Freeland Bibb County Glades Preserve in Bibb County, Alabama, is presented. Collections made during the 2017 Tuckerman Workshop and additional records from herbaria and online sources are included. Two hundred and thirty-eight taxa in 115 genera are enumerated. Thirty taxa of lichenized, lichenicolous and lichen-allied fungi are newly reported for Alabama: Acarospora fuscata, A. novomexicana, Circinaria contorta, Constrictolumina cinchonae, Dermatocarpon dolomiticum, Didymocyrtis cladoniicola, Graphis anfractuosa, G. rimulosa, Hertelidea pseudobotryosa, Heterodermia pseudospeciosa, Lecania cuprea, Marchandiomyces lignicola, Minutoexcipula miniatoexcipula, Monoblastia rappii, Multiclavula mucida, Ochrolechia trochophora, Parmotrema subsumptum, Phaeographis brasiliensis, Phaeographis inusta, Piccolia nannaria, Placynthiella icmalea, Porina scabrida, Psora decipiens, Pyrenographa irregularis, Ramboldia blochiana, Thyrea confusa, Trichothelium
    [Show full text]