(12) Patent Application Publication (10) Pub. No.: US 2017/0211121 A1 Stern Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2017/0211121 A1 Stern Et Al US 20170211121A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0211121 A1 Stern et al. (43) Pub. Date: Jul. 27, 2017 (54) METHODS FOR RAPID ANTIBOTC filed on Feb. 23, 2016, provisional application No. SUSCEPTIBILITY TESTING 62/326,545, filed on Apr. 22, 2016, provisional ap plication No. 62/338,376, filed on May 18, 2016, (71) Applicant: SeLux Diagnostics, Inc., Cambridge, provisional application No. 62/370,579, filed on Aug. MA (US) 3, 2016, provisional application No. 62/383, 198, filed on Sep. 2, 2016. (72) Inventors: Eric Stern, Cambridge, MA (US); Aleksandar Vacic, Cambridge, MA (US); Benjamin Spears, Cambridge, Publication Classification MA (US); Kelly Flentie, Cambridge, (51) Int. C. MA (US); Alec Flyer, Cambridge, MA CI2O 1/18 (2006.01) (US) CI2O 1/02 (2006.01) (52) U.S. C. (21) Appl. No.: 15/464,240 CPC ............... CI2O 1/18 (2013.01); C12O I/025 (2013.01); G0IN 24.58/00 (2013.01); G0IN (22) Filed: Mar. 20, 2017 2333/195 (2013.01); G0IN 2500/10 (2013.01) Related U.S. Application Data (63) Continuation of application No. PCT/US 17/14343, (57) ABSTRACT filed on Jan. 20, 2017. The present invention relates, in part, to methods and kits for (60) Provisional application No. 62/281,698, filed on Jan. rapidly determining antimicrobial Susceptibility of microor 21, 2016, provisional application No. 62/298,821, ganisms. Patent Application Publication Jul. 27, 2017. Sheet 2 of 49 US 2017/0211121 A1 3. 48 as ca s sistsa sassic Patent Application Publication Jul. 27, 2017 Sheet 3 of 49 US 2017/0211121 A1 & 8 s: i. 8xx w & 8. 3 - 3. t w s 8: & 8.3 peoid 33:3S piepies 3.8f3 30E 8A:isod-to-338 it Patent Application Publication Jul. 27, 2017 Sheet 4 of 49 US 2017/0211121 A1 fitekine tex AS esti ck:s FG. 4 Patent Application Publication Jul. 27, 2017 Sheet 5 of 49 US 2017/0211121 A1 OO x Fast-AS to Overnight 5. D.O. O. O Clindamycin Conc. (ugiml) F.G. 5 Patent Application Publication Jul. 27, 2017 Sheet 6 of 49 US 2017/0211121 A1 150 « Fast-AST to Overnight 100, 50 2 3. 4. Ceftazidine Conc. (ig/ml.) F.G. 6 Patent Application Publication Jul. 27, 2017. Sheet 7 of 49 US 2017/0211121 A1 axis ked %{}{}{}} %{}{}{} %{}{} to 3.03;0 se%gy Patent Application Publication Jul. 27, 2017. Sheet 8 of 49 US 2017/0211121 A1 Susceptible (29213) Resistant (43300 4. Pseudomonas aeruginosa Susceptible (27853) 2 imipenen isks AA 208)int (BAA 32 32 Escherichia caii, anpiciin Susceptible (25922) 4 4 Resistani (35238) 32 32 FIG. 8 Patent Application Publication Jul. 27, 2017 Sheet 9 of 49 US 2017/0211121 A1 2- Starting 05 106 107 108 109 010 S. aureus CFUlm. FIG. 9 Patent Application Publication Jul. 27, 2017. Sheet 10 of 49 US 2017/0211121 A1 & Patent Application Publication Jul. 27, 2017. Sheet 11 of 49 US 2017/0211121 A1 Patent Application Publication Jul. 27, 2017. Sheet 12 of 49 US 2017/0211121 A1 FIG. 12A F.G. 12B F.G. 12C Patent Application Publication Jul. 27, 2017. Sheet 13 of 49 US 2017/0211121 A1 rig: xacii |-|--Reference Results (CSON) F.G. 13A Drug Vancomycin FIG. 13B Patent Application Publication Jul. 27, 2017. Sheet 14 of 49 US 2017/0211121 A1 -- Reference Results (CLSOIN) 0.25 05 || 1 || 2 | 4 || 8 -- F.G. 13C Patent Application Publication Jul. 27, 2017 Sheet 15 of 49 US 2017/0211121 A1 Drug Apicii ---------------------------------------------------------------------------------------------------------Reference Results (CLSION) F.G. 14A Drug Ciprofloxacin reference Resuits (CLS O'N) S0.25 0.5 2 4 8 CA 00 FIG, 14B Patent Application Publication Jul. 27, 2017. Sheet 16 of 49 US 2017/0211121 A1 Drug tripeners. Reference Resuits CS 8 ---------------------------------------- F.G. 14C Brug: Gentaticis. Reference Resuits 8 CSION) 4 -eeeeeeeeeeeeeeeeeeeeeeeee ---------- re-eeeeeeeeee-ee ------------------------------- Patent Application Publication Jul. 27, 2017. Sheet 17 of 49 US 2017/0211121 A1 1.5 . M b x 8 o S N N. Run number (temporal, over 1 month) FIG. 15 Patent Application Publication Jul. 27, 2017. Sheet 19 of 49 US 2017/0211121 A1 {}{}{}{}{}} {}{}{}{}} {{}{}{}{} {{}{}{}; {{}}? Patent Application Publication Jul. 27, 2017. Sheet 22 of 49 US 2017/0211121 A1 {}{}{}{}{}; {}{}{}{}} Ü{{}{}{} cy Kid c c g {{}{}{}}} {{}{}{} Yy 83.83$80s 8Agee Patent Application Publication Jul. 27, 2017. Sheet 23 of 49 US 2017/0211121 A1 ? 83.8388:0:8A388 Patent Application Publication Jul. 27, 2017. Sheet 24 of 49 US 2017/0211121 A1 {}{}{}{}} {}{}{}{} {{}{}{} 83.8388 (E8Aege Patent Application Publication Jul. 27, 2017. Sheet 26 of 49 US 2017/0211121 A1 {{}}? {}{}{}{}; {}{}{}{} 83.8388,0888 Patent Application Publication Jul. 27, 2017. Sheet 27 of 49 US 2017/0211121 A1 ||||||||||||ç.§§|-Ž?$ {{}}? {}{}{}{}; {}{}{}{}; {{}}} 8383S3308Agee Patent Application Publication Jul. 27, 2017. Sheet 28 of 49 US 2017/0211121 A1 Vidi {}{}{}{} {}{}{}}} 83.33S3:08.88 Patent Application Publication Jul. 27, 2017. Sheet 29 of 49 US 2017/0211121 A1 Sub-culture FAS Patent Application Publication Jul. 27, 2017. Sheet 30 of 49 US 2017/0211121 A1 Patent Application Publication Jul. 27, 2017. Sheet 31 of 49 US 2017/0211121 A1 6. 50 u 30 2. 1. ( OE-00 007 2E-G 3. Eif 400-Gi 5.0-07 6.0-07 Saifetis CF FG. 29 40 Y 20 t COS+7 2: 3.007 . SES-07 $3.7 Ecoli Ci F.G. 30 Patent Application Publication Jul . 27, 2017. Sheet 33 Of 49 US 2017/0211121 A1 Jul. 27, 2017. Sheet 34 of 49 US 2017/0211121 A1 Patent Application Publication Jul. 27, 2017. Sheet 35 of 49 US 2017/0211121 A1 {{}{}; {}{}{}{}{}} Patent Application Publication Jul. 27, 2017. Sheet 36 of 49 US 2017/0211121 A1 Patent Application Publication Jul. 27, 2017. Sheet 37 of 49 US 2017/0211121 A1 O 899 3 }}}}}{{{1}--~~~~ ->*,** 90+3096 Patent Application Publication Jul. 27, 2017. Sheet 38 of 49 US 2017/0211121 A1 O99'9|- {}{}{}{}{}; {}{}{}{}; {{}}}, {{}} Patent Application Publication Jul. 27, 2017. Sheet 39 of 49 US 2017/0211121 A1 {}{}{}{}{}; 0000;†were X?03~~~~~X,33~~~~(}}--~~~~ {}{}{}{}{}} {{}{}{}; {}{}{}; {{}} Patent Application Publication Jul. 27, 2017. Sheet 40 of 49 US 2017/0211121 A1 00 E. Co. NS-8i 0. - OE-08 Bacteria Concentration -o- EC2 F.G. 38 Patent Application Publication Jul. 27, 2017. Sheet 41 of 49 US 2017/0211121 A1 '88teria” ce with side a s X ray fesistant: I rity susceptise: iividing : iaiets Acces x - k x : x &8 : ::: &: i: 388x3 - or x x facifix . x- . was 4x 38 : : to A. 3x ' s Fiatentous SA ratic approaches2.f3 the 'esistant SA FIG. 39 Patent Application Publication Jul. 27, 2017. Sheet 42 of 49 US 2017/0211121 A1 8:8; 83: i: t: it: *::::::::x:y: traps $&rix: tickxistics: wi: ;33-8s :::::: iii.33&ts as waii: 88say &: fixty8::s ::::: fiat 8::s 8ixx's six:8:8: :::::::::sts: 33cteria to 3888 FIG. 40 Patent Application Publication Jul. 27, 2017. Sheet 43 of 49 US 2017/0211121 A1 Patent Application Publication Jul. 27, 2017. Sheet 44 of 49 US 2017/0211121 A1 2. s: s: S3 Ampieir Cortc. gfrni FG. 42 Patent Application Publication Jul. 27, 2017. Sheet 45 of 49 US 2017/0211121 A1 3. 2 O,1. O.E+00 5.E+05 1.E+06 2.E+06 2.E+06 3.E+06 E. coli CFU/mL. Patent Application Publication Jul. 27, 2017. Sheet 46 of 49 US 2017/0211121 A1 -O- Ceftazidime an e a 3 O Xa Cin 9. A Vanco mycin g 9 2 (5 O O a 0 10 - 1 Antibiotic C on c. (gfm L.) FG. 44 Patent Application Publication Jul. 27, 2017. Sheet 47 of 49 US 2017/0211121 A1 --- A . : rt r ( i \, : x- as go ses ca xw 8: Patent Application Publication Jul. 27, 2017. Sheet 48 of 49 US 2017/0211121 A1 Fictioai Cationic SitiaCe Protective she Polymer matrix core Encapsulated species FG. 46A Patent Application Publication Jul. 27, 2017. Sheet 49 of 49 US 2017/0211121 A1 i. 20 E 10 Oy1 1. N. N FE 8. i O2 in O ? 1000 Catalyst Concentration pii C 30 -KY- RP -- Nailab8 is 2 & Clostricium difficie Fox: A pg/ml) FG. 46C US 2017/0211121 A1 Jul. 27, 2017 METHODS FOR RAPID ANTIBOTC include signaling agents (e.g., Europium compounds) that SUSCEPTIBILITY TESTING are bound to microorganisms non-specifically rather than specifically (e.g., via chemically conserved groups or bio RELATED APPLICATIONS chemically conserved binding sites on microorganisms), thereby expanding the generalization of the present inven 0001. This application is a continuation of International tion to any microorganism and allowing onset of an appro Patent Application No. PCT/US 17/14343 filed Jan. 20, priate treatment without first needing to identify the particu 2017. PCT/US 17/14343 designates the United States and lar infectious microorganism. Also, the present invention claims priority to and benefit of U.S. Provisional Patent permits signal amplification Such that microbes may be Application No. 62/281,698, filed Jan. 21, 2016; U.S. Pro rapidly detected at lower concentrations, e.g., from a dilute visional Patent Application No. 62/298,821, filed Feb. 23, culture of microorganisms or via a patient’s biological 2016; U.S. Provisional Patent Application No. 62/326,545, sample. Additionally, the present invention may use Euro filed Apr. 22, 2016; U.S. Provisional Patent Application No. pium formulations as chemical moiety, thereby expanding 62/338,376, filed May 18, 2016; U.S. Provisional Patent the dynamic range of the methods and allowing for more Application No. 62/370,579, filed Aug. 3, 2016; and U.S. accurate determinations from a range of microbial samples.
Recommended publications
  • Neena Valecha1, Deepali Savargaonkar1, Bina Srivastava1, B
    Valecha et al. Malar J (2016) 15:42 DOI 10.1186/s12936-016-1084-1 Malaria Journal RESEARCH Open Access Comparison of the safety and efficacy of fixed‑dose combination of arterolane maleate and piperaquine phosphate with chloroquine in acute, uncomplicated Plasmodium vivax malaria: a phase III, multicentric, open‑label study Neena Valecha1, Deepali Savargaonkar1, Bina Srivastava1, B. H. Krishnamoorthy Rao2, Santanu K. Tripathi3, Nithya Gogtay4, Sanjay Kumar Kochar5, Nalli Babu Vijaya Kumar6, Girish Chandra Rajadhyaksha7, Jitendra D. Lakhani8, Bhagirath B. Solanki9, Rajinder K. Jalali10, Sudershan Arora10, Arjun Roy10, Nilanjan Saha10, Sunil S. Iyer10, Pradeep Sharma10 and Anupkumar R. Anvikar1* Abstract Background: Chloroquine has been the treatment of choice for acute vivax malaria for more than 60 years. Malaria caused by Plasmodium vivax has recently shown resistance to chloroquine in some places. This study compared the efficacy and safety of fixed dose combination (FDC) of arterolane maleate and piperaquine phosphate (PQP) with chloroquine in the treatment of uncomplicated vivax malaria. Methods: Patients aged 13–65 years with confirmed mono-infection of P. vivax along with fever or fever in the previ- ous 48 h were included. The 317 eligible patients were randomly assigned to receive FDC of arterolane maleate and PQP (n 159) or chloroquine (n 158) for 3 days. Primaquine was given as an anti-relapse measure on day 3 and continued= for 14 consecutive days.= Primary efficacy analysis included assessment of the proportion of aparasitaemic and afebrile patients at 72 h. Safety endpoints were analysis of adverse events, vital signs, laboratory data, and abnor- malities on electrocardiograph. Patients participated in the study for at least 42 days.
    [Show full text]
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • 2002 FSIS National Residue Program, Section 4
    Table 4.1 Scoring Table for Veterinary Drugs 2002 FSIS NRP, Domestic Monitoring Plan COMPOUND/COMPOUND Historical Regula- With- Relative Predicted Predicted Impact Acute or Lack of Relative CLASS Testing tory drawal Number V = V, Except New & Chronic Testing Public Health Info. on Concern Time of (0.19437* When Existing Toxicity Info. on Concern Violations (CVM) (CVM) Animals R*N) + Actual V Human Con- Viola- Score = (FSIS) Treated 0.84625 is Disease cerns tions V*[(D+3*T)/4] (CVM) Available (CDC) (CVM) (FSIS) *{1+[(L- (V) (R) (W) (N) (D) (T) (L) 1)*0.05]} Those antibiotics quantitated by the 4 4 4 4 3.956 4.000 3 4 1 15.0 FSIS Bioassay MRM Amikacin (aminoglycoside) NT 3 4 2 2.012 2.012 3 2 4 5.2 Apramycin (aminoglycoside) NT 4 4 2 2.401 2.401 3 2 4 6.2 Kanamycin (aminoglycoside) NT 3 4 2 2.012 2.012 3 2 4 5.2 Spectinomycin (aminoglycoside) NA-D, M 4 4 3 3.179 3.179 3 2 4 8.2 Streptomycin (aminoglycoside) NA-D 4 4 3 3.179 3.179 3 2 4 8.2 Amoxicillin (beta-lactam) NT 3 2 2 2.012 2.012 3 4 4 8.7 Ampicillin (beta-lactam) NT 3 2 2 2.012 2.012 3 4 4 8.7 Cloxacillin (beta-lactam) NT 3 2 2 2.012 2.012 3 4 4 8.7 Hetacillin (beta-lactam) NT 2 2 2 1.624 1.624 3 4 4 7.0 Ticarcillin (beta-lactam) NT 2 2 2 1.624 1.624 3 4 4 7.0 Ceftiofur (cefalosporin) NT 3 2 3 2.596 2.596 4 2 4 7.5 Cefazolin (synthetic cefalosporin) NT 3 2 2 2.012 2.012 3 2 4 5.2 Chloramphenicol NA-N 4 2 1 1.624 1.624 4 4 4 7.5 Florfenicol (chloramphen.
    [Show full text]
  • Review Article Efforts Made to Eliminate Drug-Resistant Malaria and Its Challenges
    Hindawi BioMed Research International Volume 2021, Article ID 5539544, 12 pages https://doi.org/10.1155/2021/5539544 Review Article Efforts Made to Eliminate Drug-Resistant Malaria and Its Challenges Wote Amelo 1,2,3 and Eyasu Makonnen 1,2 1Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia 2Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia 3Department of Pharmacology and Toxicology, School of Pharmacy, Jimma University, Jimma, Ethiopia Correspondence should be addressed to Wote Amelo; [email protected] Received 21 January 2021; Accepted 9 August 2021; Published 30 August 2021 Academic Editor: Jane Hanrahan Copyright © 2021 Wote Amelo and Eyasu Makonnen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Since 2000, a good deal of progress has been made in malaria control. However, there is still an unacceptably high burden of the disease and numerous challenges limiting advancement towards its elimination and ultimate eradication. Among the challenges is the antimalarial drug resistance, which has been documented for almost all antimalarial drugs in current use. As a result, the malaria research community is working on the modification of existing treatments as well as the discovery and development of new drugs to counter the resistance challenges. To this effect, many products are in the pipeline and expected to be marketed soon. In addition to drug and vaccine development, mass drug administration (MDA) is under scientific scrutiny as an important strategy for effective utilization of the developed products.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Annual Review 2004 Contents Contentsforeword
    Annual Review 2004 Contents ContentsForeword ........................................................................................................................... 3 Editor’s Note ..................................................................................................................... 4 Organization Chart ............................................................................................................ 5 Administrative Board .......................................................................................................... 6 Special Events..................................................................................................................... 8 Consultants ...................................................................................................................... 13 Visiting Professors ............................................................................................................ 13 Faculty Board ...................................................................................................................13 Faculty Senate ..................................................................................................................14 Department of Clinical Tropical Medicine ........................................................................ 15 Department of Helminthology ......................................................................................... 22 Department of Medical Entomology ...............................................................................
    [Show full text]
  • Review Article Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions
    SAGE-Hindawi Access to Research Molecular Biology International Volume 2011, Article ID 571242, 23 pages doi:10.4061/2011/571242 Review Article Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions Arun Kumar Haldar,1 Pradip Sen,2 and Syamal Roy1 1 Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata West Bengal 700032, India 2 Division of Cell Biology and Immunology, Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India Correspondence should be addressed to Syamal Roy, [email protected] Received 18 January 2011; Accepted 5 March 2011 Academic Editor: Hemanta K. Majumder Copyright © 2011 Arun Kumar Haldar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the recent past the standard treatment of kala-azar involved the use of pentavalent antimonials Sb(V). Because of progressive rise in treatment failure to Sb(V) was limited its use in the treatment program in the Indian subcontinent. Until now the mechanism of action of Sb(V) is not very clear. Recent studies indicated that both parasite and hosts contribute to the antimony efflux mechanism. Interestingly, antimonials show strong immunostimulatory abilities as evident from the upregulation of transplantation antigens and enhanced T cell stimulating ability of normal antigen presenting cells when treated with Sb(V) in vitro. Recently, it has been shown that some of the peroxovanadium compounds have Sb(V)-resistance modifying ability in experimental infection with Sb(V) resistant Leishmania donovani isolates in murine model.
    [Show full text]
  • Artemisinin Resistance: Current Status and Scenarios for Containment
    REVIEWS Artemisinin resistance: current status and scenarios for containment Arjen M. Dondorp*‡, Shunmay Yeung*§, Lisa White*‡, Chea Nguon§, Nicholas P.J. Day*‡, Duong Socheat§|| and Lorenz von Seidlein*¶ Abstract | Artemisinin combination therapies are the first-line treatments for uncomplicated Plasmodium falciparum malaria in most malaria-endemic countries. Recently, partial artemisinin-resistant P. falciparum malaria has emerged on the Cambodia–Thailand border. Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years, and the availability of substandard artemisinins, have probably been the main driving force in the selection of the resistant phenotype in the region. A multifaceted containment programme has recently been launched, including early diagnosis and appropriate treatment, decreasing drug pressure, optimising vector control, targeting the mobile population, strengthening management and surveillance systems, and operational research. Mathematical modelling can be a useful tool to evaluate possible strategies for containment. Parenteral In nearly all countries in which malaria is endemic, antimalarial properties (artemisinin) was identified, and Administered by injection. artemisinin combination therapies (ACT) are now the several more potent derivatives were synthesized, includ- recommended first-line therapy for uncomplicated ing artesunate, artemether and dihydroartemisinin11 Plasmodium falciparum malaria, a policy endorsed by (FIG. 1). Artemisinin derivatives have an excellent safety the WHO1. This change in policy followed a period profile in the treatment of malaria, a rapid onset of action of increasing failure rates with chloroquine and later and are active against the broadest range of stages in the sulphadoxine–pyrimethamine treatment, which arose life cycle of Plasmodium spp. compared with other anti- from the development of resistant P.
    [Show full text]
  • ANTIPARASITAIRES Mécanismes D’Action
    ANTIPARASITAIRES Mécanismes d’action Pr Ag Anis KLOUZ Service de Pharmacologie Clinique, Centre National de Pharmacovigilance & Faculté de Médecine de Tunis DDÉÉFINITIONSFINITIONS Antiparasitaires : substances d’origine naturelle ou de synthèse capables de détruire différents organismes ayant un développement parasite Regroupe des médicaments et des pesticides : insecticides, anthelminthiques, antifongiques, protozoocides Critères d’efficacité 1- Agir sur le parasite 2- Atteindre des localisations parfois profondes 3- Etre actif sur différents stades Critères de sélectivité 1- Mécanisme d’action spécifique 2- Pharmacocinétique particulière Facteurs liés à l’hôte • Anatomie, physiologie –mammifères – oiseaux (reptiles …) • Diversité des espèces atteintes – animaux de compagnie – animaux de production • Diversité de localisation • Impératifs économiques • Protection de l’environnement • Absence de toxicité Facteurs liés aux parasites • Anatomie, physiologie • Diversité des espèces pathogènes – Insectes, acariens – Nématodes, trématodes, cestodes • Diversité de localisation – Ex des gales: invasion variable de l’épiderme – Ex des nématodes: digestifs, respiratoires, sanguins … • Diversité des stades d’évolution – œufs, larves, adultes – contamination de l’hôte et de l’environnement • Difficulté des études in vitro Anatomie Organe de prédation, fixation TD, organe de reproduction Cuticule CT Helminthe Structure de la cuticule Perméabilité de la cuticule • Perméabilité : – Aux composés lipophiles (diffusion des acides gras volatils à travers
    [Show full text]
  • T. Cruzi Invasion Summary Leishmania Phagosome
    What is happening in invasion? T. cruzi invasion- non phagocytic Phagocytosis Active invasion Yeast Trypanosoma cruzi Actin filaments Lamp-1 T. cruzi invasion summary Leishmania phagosome Treatment for kinetoplastid diseases HAT Early (these drugs cannot cross the blood/brain barrier) Suramin (1916) highly charged compound Mode of action (?) - inhibits metabolic enzymes (NAD+) Pentamidine (some resistance) Mode of action (?) - likely multiple targets Differential uptake of drug - parasite conc. mM quantites Late Melarsoprol (lipophilic) (1947) Highly toxic arsenical - up to 10% treated die Mode of action (?) - possibly energy metabolism Eflornithine (drug has similar affinity to mammalian enzyme) suicide inhibitor of ornithine decarboxylase blocking polyamine biosynthesis Treatments for HAT 1985 2005 Early Stage First-line drugs Pentamidine Pentamidine Suramin Suramin Clinical trials - DB 289 (Phase III) Pre-clinical stage - - Late-stage/CNS First-line drugs Melarsoprol Melarsoprol Eflornithine Clinical trials - Nifurtimox + Eflornithine Pre-clinical stage - - Treatment for kinetoplastid diseases Chagas Acute Nifurtimox 60-90 days Mode of action (?) ROS - then DNA damage Benznidazole 30-120 days Mode of action - thought to inhibit nucleic acid synthesis (ROS?) Chronic Virtually untreatable - just treat symptoms Treatments for Chagas 1985 2005 Acute Stage First-line drugs Benznidazole Benznidazole Nifurtimox Nifurtimox Clinical trials Allopurinal Indeterminate Stage Clinical trials - Benznidazole Chronic Stage First-line drugs -
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Artemether-Lumefantrine (Six-Dose Regimen) for Treating Uncomplicated Falciparum Malaria (Review)
    Artemether-lumefantrine (six-dose regimen) for treating uncomplicated falciparum malaria (Review) Omari AAA, Gamble CL, Garner P This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2009, Issue 1 http://www.thecochranelibrary.com Artemether-lumefantrine (six-dose regimen) for treating uncomplicated falciparum malaria (Review) Copyright © 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 3 METHODS ...................................... 3 RESULTS....................................... 5 DISCUSSION ..................................... 9 AUTHORS’CONCLUSIONS . 9 ACKNOWLEDGEMENTS . 10 REFERENCES ..................................... 10 CHARACTERISTICSOFSTUDIES . 13 DATAANDANALYSES. 20 Analysis 1.1. Comparison 1 Artemether-lumefantrine vs amodiaquine, Outcome 1 Total failure by day 28. 22 Analysis 1.2. Comparison 1 Artemether-lumefantrine vs amodiaquine, Outcome 2 Total failure by day 14. 23 Analysis 1.3. Comparison 1 Artemether-lumefantrine vs amodiaquine, Outcome 3 Gametocyte carriage on day 14. 23 Analysis 2.1. Comparison 2 Artemether-lumefantrine vs chloroquine plus sulfadoxine-pyrimethamine, Outcome 1 Total failurebyday28. ................................ 24 Analysis 2.2. Comparison 2 Artemether-lumefantrine
    [Show full text]