How to Break the Light Barrier by AD 2079

Total Page:16

File Type:pdf, Size:1020Kb

How to Break the Light Barrier by AD 2079 University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2010 BEGIN THE ADVENTURE : How to Break the Light Barrier by A.D. 2079 (3rd ed.) Florentin Smarandache University of New Mexico, [email protected] Homer B. Tilton Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Cosmology, Relativity, and Gravity Commons, External Galaxies Commons, Mathematics Commons, Other Astrophysics and Astronomy Commons, Physical Processes Commons, Stars, Interstellar Medium and the Galaxy Commons, and the The Sun and the Solar System Commons Recommended Citation H.B. Tilton & F. Smarandache (eds.) BEGIN THE ADVENTURE : How to Break the Light Barrier by A.D. 2079, 3rd ed. Tucson: Pima College Press, 2010 This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. BeginAdventure3 - Cover:Layout 1 11/30/2009 3:50 PM Page 1 Begin the Adventure / How to Break the Light Barrier by A.D. 2079 (third edition) * Homer B. Tilton * Florentin Smarandache Tilton A.D. 2079 (third edition) * Homer B. Adventure / How to Break the Light Barrier by Begin the In 1905 Einstein found from relativity that there is anabsolute light barrier. He reiterated his “finden” in 1916, writing, “…We conclude that in the theory of relativity the velocity c plays the part of limiting velicity, which can neither be reached nore exceeded by any real body.” Poincaré and Lorentz did not share Einstein’s view of relativity in that regard. Nor, later, did Fermi and Teller it seems. There were others who hesitated to come forward. Then in a 1921 lecture and a 1922 look, “sidelights on Relativity,” Einstein wrote (pp. 35- 6), “Poincaré is right. The idea of the measuring-rod and the idea of the clock co-ordinated with it in the theory of relativity do not find their exact correspondence in the real world.” Thus the light barrier was questioned by the same man who erected it, and the last theoretical obstacle to practical star travel was mortally wounded but few noticed. There is still a conditional light barrier, but no longer one that is impenetrable. It became clear that the second postulate of special relavitity does not equate to an absolute light barrier as many continue to believe even to this day; some highly-regarded scientists continue to subscribe to this faulty logic: “I believe that special relativity is correct and consequently exceeding the speed of light [by] (just accelerating more and more) is impossible,” …Don Lincoln, Fermilab, email dated 3 Feb. 2005. Such statements reflect a misunderstanding of the second postulate. The key is that the second postulate applies to photons but not to rocketships; rocketships are not macrophotons as Sachs pointed out. In the September 1971 issue of the journal “Physics Today” Mendel Sachs wrote about Einstein’s 1921-22 “change of mind” as he referred to it, again in 1985, 1993 and at other times; but Sachs’ writings were scorned by other scientists. It was as if others wanted there to be a truly impenetrable light barrier perhaps because it seemed to hold open the exciting promise of time travel. The first author became aware of Sachs’ writings in 2004 and the two exchanged views for a time as reported here. This book presents a hard-science case for practical star travel. The first six chapters lay it all out in a logical and factual manner consistent with the theory of relativity. Chapters 7 & 8 outline a “Grand Experiment” designed to probe the light barrier. Chapters 7-9 give future-fiction accounts of possible scenarios of Humanity’s first hesitant steps to the stars. Chapter 10 presents a separate argument questioning the idea of an absolute light barrier. -------------------------------------- Related book now in publication from the first author: “Pharmacy Math in the Space Age,” 4th edition, Pima College Press, 2010; a cutting-edge textbook for pharmacy technicians pursuing a Space Sciences curriculum. Homer B. Tilton Florentin Smarandache How to Break the Light Barrier by BEGIN the ADVENTURE 3 rd Edition A.D. 2079 PimaCommunityCollege i BEGIN THE ADVENTURE How to Break the Light Barrier by A.D. 2079 3rd Edition Homer B. Tilton Department of Mathematics and Engineering Pima Community College, EC, Tucson, AZ 85710, USA Florentin Smarandache Department of Mathematics and Sciences The University of New Mexico at Gallup, USA Pima College Press 2010 ii To the memory of Benjamin E. Tilton (1876-1955), a close contemporary of Albert Einstein (1879-1955) ISBN-13: 978-1-599731-094 Production Editor Gloria Valles Research specialist Esther Walker © Copyright 2004, 2005, 2010 by Homer B. Tilton / Tucson, Arizona USA All rights reserved. Keywords: Physics, Relativity, Superluminal Speed, Starflight Printed in the United States of America iii Contents Page Preface ............................................................................................................................. vi Chapter 1 The Light Barrier ............................................................................................. 1 Notes ............................................................................................................................. 6 Chapter 2 The Human Barrier Einstein’s Challenge ........................................................ 7 Introduction .................................................................................................................. 7 Einstein’s conclusion .................................................................................................. 10 Relativity Light Barrier ......................................................................................... 11 Einstein’s retraction .................................................................................................... 13 Notes ........................................................................................................................... 17 Chapter 3 Anatomy of the Light Barrier ........................................................................ 20 Section 1. The second postulate close-up .................................................................. 21 Section 2. The barrier: absolute, or only conditional ................................................. 27 Notes ........................................................................................................................... 33 Chapter 4 Acceleration Due to Light Pressure ............................................................... 35 Analysis ...................................................................................................................... 36 Light sailing ................................................................................................................ 37 A sop to the gods ........................................................................................................ 37 Notes ........................................................................................................................... 38 Appendix 4A The Maxwell-Schelkunoff analog and the speed of light ..................... 41 Cerenkov electrons - ................................................................................................... 45 Appendix 4B ............................................................................................................... 46 The roles of speed and acceleration ............................................................................ 46 Chapter 5 Light Sailing Is Not All There Is ................................................................... 47 Project SETI expanded ............................................................................................... 50 The homesick Centaurians .......................................................................................... 52 H. G. Wells’ time machine ......................................................................................... 52 Einstein’s time machine .............................................................................................. 53 What is the truth? ........................................................................................................ 55 Summing up ................................................................................................................ 55 Notes ........................................................................................................................... 56 Chapter 6 Einstein’s Conclusion and his Later Change of Mind .................................... 59 Venerable force or cognitive illusion .......................................................................... 60 Compounding velocities ............................................................................................. 61 Risky business ............................................................................................................ 62 Venerable force or kinematical perspective? .............................................................. 63 The dreams of the young die hard ............................................................................... 65 Finally, we find, Einstein changed his mind ............................................................... 65 Notes ..........................................................................................................................
Recommended publications
  • Theoretical Physics
    IC/80/166 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS AW EFFICIENT KORRINGA-KOHN-ROSTOKER METHOD FOR "COMPLEX" LATTICES M. Yussouff and INTERNATIONAL ATOMIC ENERGY R. Zeller AGENCY UNITED NATIONS EDUCATIONAL SCIENTIFIC AND CULTURAL ORGANIZATION 19R0 MIRAMARE-TRIESTE IC/90/166 The well known rapid convergence and precision of the KKR- Green's function method (Korringa 1947, Kohn and Rostocker 1954) International Atomic Energy Agency have made it useful for the calculation of the electronic struc- and United Rations Educational Scientific and Cultural Organization ture of perfect as well as disordered solids (Ham and Segall 1961, IHTEBSATIOHAL CENTRE FOR THEORETICAL PHYSICS Ehrenrelch and Schwartz 1976). Although extensive calculations of this kind exist for cubic crystals (Moruzzi, Janak and Williams 1978), there are so far very few calculations for the equally important class of hexagonal close packed solids. This is due to the computational efforts involved in evaluating the KKR matrix AH EFFICIENT KORRIHGA-KOHH-ROSTOKER METHOD FOR "COMPLEX" LATTICES • elements ATT,{k,E) using the conventional KKR for 'complex' lattices, i.e. crystals with several atoms per unit cell- Some simplifications can be achieved (Bhokare and Yussouff 1972, 1974) for k" vectors International Centre for Theoretical Physics, Trieste, Italy, in symmetry directions but the renewed interest in simplifying the and computations (Segall and Yang 19 80) has arisen in connection with self-consistent calcualtions. Here we describe an efficient modi- R. Zeller Institut fur FeBtkorperforschung der Kernforschungsanlage, fication of the KKR method which is particularly useful for 'complex1 D-5170 Jiilieh, Federal Republic of Germany. lattices. ABSTRACT In our approach, the transformed KKR matrix elements are calcu- We present a modification of the exact KKR-band structure method lated directly using reciprocal space summation.
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • Available Online Journal of Scientific and Engineering Research, 2019, 6(11):202-215 Research Article Theoretical
    Available online www.jsaer.com Journal of Scientific and Engineering Research, 2019, 6(11):202-215 ISSN: 2394-2630 Research Article CODEN(USA): JSERBR Theoretical Consideration of Star Trek's Space Navigation Yoshinari Minami Advanced Space Propulsion Investigation Laboratory (ASPIL), (Formerly NEC Space Development Division), Japan, E-Mail: [email protected] Abstract As is well known, Star Trek is a masterpiece that has been known worldwide since 1966 as a science fiction set in the famous galaxy universe. A starship (Enterprise) arrives at a star system in a short period of time to a star system that is tens, hundreds and thousands of light years away from the Earth. This method of making a starship reach a distant star system is skillfully expressed in the movie using images. Unfortunately, however, there is no concrete explanation from the physical point of view of the propulsion method of the starship and the principle of warp navigation, that is, the space propulsion theory and the space navigation theory. This paper is an attempt to explain Star Trek's space navigation by applying the hyper-space navigation theory to the field propulsion theory that the author has published in international conferences and peer-reviewed journals since 1993 [1]. Since this paper mainly describes the concept of the principle, most of the mathematical expressions are reduced. See the references for theoretical formulas [1- 6]. Keywords Star Trek; starship; galaxy; space-time; interstellar travel; star flight; navigation; field propulsion; space drive; imaginary time; hyperspace; wormhole; time hole; astrophysics 1. Introduction Space development in the 21st century, unless there is a groundbreaking advance in the space transportation system, the area of activity of human beings will be restricted to the vicinity of the Earth forever and new knowledge cannot be obtained.
    [Show full text]
  • Teaching Speculative Fiction in College: a Pedagogy for Making English Studies Relevant
    Georgia State University ScholarWorks @ Georgia State University English Dissertations Department of English Summer 8-7-2012 Teaching Speculative Fiction in College: A Pedagogy for Making English Studies Relevant James H. Shimkus Follow this and additional works at: https://scholarworks.gsu.edu/english_diss Recommended Citation Shimkus, James H., "Teaching Speculative Fiction in College: A Pedagogy for Making English Studies Relevant." Dissertation, Georgia State University, 2012. https://scholarworks.gsu.edu/english_diss/95 This Dissertation is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. TEACHING SPECULATIVE FICTION IN COLLEGE: A PEDAGOGY FOR MAKING ENGLISH STUDIES RELEVANT by JAMES HAMMOND SHIMKUS Under the Direction of Dr. Elizabeth Burmester ABSTRACT Speculative fiction (science fiction, fantasy, and horror) has steadily gained popularity both in culture and as a subject for study in college. While many helpful resources on teaching a particular genre or teaching particular texts within a genre exist, college teachers who have not previously taught science fiction, fantasy, or horror will benefit from a broader pedagogical overview of speculative fiction, and that is what this resource provides. Teachers who have previously taught speculative fiction may also benefit from the selection of alternative texts presented here. This resource includes an argument for the consideration of more speculative fiction in college English classes, whether in composition, literature, or creative writing, as well as overviews of the main theoretical discussions and definitions of each genre.
    [Show full text]
  • |||GET||| Can the Laws of Physics Be Unified? 1St Edition
    CAN THE LAWS OF PHYSICS BE UNIFIED? 1ST EDITION DOWNLOAD FREE Paul Langacker | 9781400885503 | | | | | Can the Laws of Physics be Unified? Answer Key. In American physicist Sheldon Glashow proposed that the weak nuclear forceelectricity and magnetism could arise Can the Laws of Physics Be Unified? 1st edition a partially unified electroweak theory. Law II: The alteration of motion is ever proportional to the motive force impress'd; and is made in the direction of the right line in which that force is impress'd. In the s Mendel Sachs proposed a generally covariant field theory that did not require recourse to renormalisation or perturbation theory. Discoveries are made; models, theories, and laws are formulated; and the beauty of the physical universe is made more sublime for the insights gained. Download as PDF Printable version. Lots of equations, but not much detail explaining exactly what they mean, for that some background is needed. I find that literally inconceivable. These laws are Can the Laws of Physics Be Unified? 1st edition systematically to topics such as phase equilibria, chemical reactions, external forces, fluid-fluid surfaces and interfaces, and anisotropic crystal-fluid interfaces. Cohen and A. The physical universe is enormously complex in its detail. One of her daughters also won a Nobel Prize. Archived from the original PDF on 31 March Thank you for posting a review! And, whereas a law is a postulate that forms the foundation of the scientific method, a theory is the end result of that process. I know of none whatsoever. Paul Langacker is senior scientist at Princeton University, visitor at the Institute for Advanced Study in Princeton, and professor emeritus of physics at the University of Pennsylvania.
    [Show full text]
  • Quantum Mechanics from General Relativity : Particle Probability from Interaction Weighting
    Annales de la Fondation Louis de Broglie, Volume 24, 1999 25 Quantum Mechanics From General Relativity : Particle Probability from Interaction Weighting Mendel Sachs Department of Physics State University of New York at Bualo ABSTRACT. Discussion is given to the conceptual and mathemat- ical change from the probability calculus of quantum mechanics to a weighting formalism, when the paradigm change takes place from linear quantum mechanics to the nonlinear, holistic eld theory that accompanies general relativity, as a fundamental theory of matter. This is a change from a nondeterministic, linear theory of an open system of ‘particles’ to a deterministic, nonlinear, holistic eld the- ory of the matter of a closed system. RESUM E. On discute le changement conceptuel et mathematique qui fait passer du calcul des probabilites de la mecanique quantique a un formalisme de ponderation, quand on eectue le changement de paradigme substituantalam ecanique quantique lineairelatheorie de champ holistique non lineaire qui est associee alatheorie de la relativitegenerale, prise comme theorie fondamentale de la matiere. Ce changement mene d’une theorie non deterministe et lineaire decrivant un systeme ouvert de ‘particules’ a une theorie de champ holistique, deterministe et non lineaire, de la matiere constituant un systeme ferme. 1. Introduction. In my view, one of the three most important experimental discov- eries of 20th century physics was the wave nature of matter. [The other two were 1) blackbody radiation and 2) the bending of a beam of s- tarlight as it propagates past the vicinity of the sun]. The wave nature of matter was predicted in the pioneering theoretical studies of L.
    [Show full text]
  • Ringworld 01 Ringworld Larry Niven CHAPTER 1 Louis Wu
    Ringworld 01 Ringworld Larry Niven CHAPTER 1 Louis Wu In the nighttime heart of Beirut, in one of a row of general-address transfer booths, Louis Wu flicked into reality. His foot-length queue was as white and shiny as artificial snow. His skin and depilated scalp were chrome yellow; the irises of his eyes were gold; his robe was royal blue with a golden steroptic dragon superimposed. In the instant he appeared, he was smiling widely, showing pearly, perfect, perfectly standard teeth. Smiling and waving. But the smile was already fading, and in a moment it was gone, and the sag of his face was like a rubber mask melting. Louis Wu showed his age. For a few moments, he watched Beirut stream past him: the people flickering into the booths from unknown places; the crowds flowing past him on foot, now that the slidewalks had been turned off for the night. Then the clocks began to strike twenty-three. Louis Wu straightened his shoulders and stepped out to join the world. In Resht, where his party was still going full blast, it was already the morning after his birthday. Here in Beirut it was an hour earlier. In a balmy outdoor restaurant Louis bought rounds of raki and encouraged the singing of songs in Arabic and Interworld. He left before midnight for Budapest. Had they realized yet that he had walked out on his own party? They would assume that a woman had gone with him, that he would be back in a couple of hours. But Louis Wu had gone alone, jumping ahead of the midnight line, hotly pursued by the new day.
    [Show full text]
  • Fundamental Nature of the Fine-Structure Constant Michael Sherbon
    Fundamental Nature of the Fine-Structure Constant Michael Sherbon To cite this version: Michael Sherbon. Fundamental Nature of the Fine-Structure Constant. International Journal of Physical Research , Science Publishing Corporation 2014, 2 (1), pp.1-9. 10.14419/ijpr.v2i1.1817. hal-01304522 HAL Id: hal-01304522 https://hal.archives-ouvertes.fr/hal-01304522 Submitted on 19 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Fundamental Nature of the Fine-Structure Constant Michael A. Sherbon Case Western Reserve University Alumnus E-mail: michael:sherbon@case:edu January 17, 2014 Abstract Arnold Sommerfeld introduced the fine-structure constant that determines the strength of the electromagnetic interaction. Following Sommerfeld, Wolfgang Pauli left several clues to calculating the fine-structure constant with his research on Johannes Kepler’s view of nature and Pythagorean geometry. The Laplace limit of Kepler’s equation in classical mechanics, the Bohr-Sommerfeld model of the hydrogen atom and Julian Schwinger’s research enable a calculation of the electron magnetic moment anomaly. Considerations of fundamental lengths such as the charge radius of the proton and mass ratios suggest some further foundational interpretations of quantum electrodynamics.
    [Show full text]
  • Simone Caroti – the Generation Starship in Science Fiction
    Book Review: The Generation Starship In Science Fiction A Critical History, 1934-2001 Simone Caroti reviewed by John I Davies Dr Simone Caroti has now delivered his presentation on The Generation Starship In Science Fiction to students taking the i4is-led interstellar elective at the International Space University in both 2020 and 2021. Here John Davies reviews his 2011 book based on his PhD work at Purdue University*. Within an overall chronological plan the major themes in Dr Caroti's book seem to me to be - ■ The conflict between the two conceptions of a worldship. Is it a world which happens have an artificial "substrate" or is it a ship with a mission which happens to require a multi-generation crew. ■ How can the vision of dreamers like Tsiolkovsky, J D Bernal and Robert Goddard be made to inspire the source civilisation, for whom this is a massive enterprise, the initial travellers, their intermediate descendants and those who must make a new world at journeys end? ■ And, more practically, how can culture, science and technology be sufficiently preserved over many generations? Opening Chapters The book sees the development of the worldship as a fictional theme in six overlapping eras - the first worldship ideas (not all as fiction), Published: McFarland 2011 mcfarlandbooks.com The Gernsback Era, 1926-1940 , The Campbell Era, 1937-1949, The Image credit: Bill Knapp,Arrival Birth of the Space Age, 1946-1957, The New Wave and Beyond, www.artprize.org/bill-knapp 1957-1979 and The Information Age, 1980-2001. Caroti read a lot of science fiction and speculative non-fiction before beginning his PhD at Purdue University.
    [Show full text]
  • SW Adventure Template
    VEHICLE OPS: Star Journeys INTRODUCTION Travel amongst the stars is a complex business, whether it be for trade, pleasure, or adventure. Vehicle Ops: Star Journeys, details astrogation, sublight travel, & starports a ship crew may encounter during their travels. TABLE OF CONTENTS CREDITS Starports p. 2 Source material by Fantasy Flight Games In-System Ops p. 5 Original material by Sturn of FFG Forums Arrival p. 5 Operational Costs by Dave “RebelDave” Approach p. 5 Brown. Primary inspiration & initial source. METOSP p. 6 Customs p. 7 Hyperspace description by Ryoden of FFG Docking p. 8 Forums. Departure p. 8 Editing & review by BradKnowles of FFG Astrogation p. 9 Forums. Navigation Data p. 12 Hyperspace Tricks p. 14 Consolidated Tables p. 17 VEHICLE OPS SERIES This is a portion of the greater Vehicle Ops series of fan-made supplements. Each tries to provide greater detail to vehicle operations while not changing any core book rules, if possible. While each may be used separately, these supplements will sometimes refer to each other. See Sturn’s Stuff for more. EDGE OF THE EMPIRE STARPORTS The most important location for any world within the Star Wars galaxy is its starport. A world’s starport is a nexus of trade and travel. A good port of call is a blessing for any starship crew as a large variety of needed services may be available. The Empire rates starports by a letter grade and a more descriptive title. The five grades of starports are described below using the following descriptors: Docking: Facilities for landing, storage, and unloading cargo.
    [Show full text]
  • Can the Laws of Physics Be Unified? 1St Edition Pdf, Epub, Ebook
    CAN THE LAWS OF PHYSICS BE UNIFIED? 1ST EDITION PDF, EPUB, EBOOK Paul Langacker | 9781400885503 | | | | | Can the Laws of Physics Be Unified? 1st edition PDF Book To test this, you open the hood of the car and examine the oil level. And, whereas a law is a postulate that forms the foundation of the scientific method, a theory is the end result of that process. These analytical skills will help you to excel academically, and they will also help you to think critically in any professional career you choose to pursue. Hawking 28 February Over the centuries, the curiosity of the human race has led us collectively to explore and catalog a tremendous wealth of information. Order a print copy. Such laws are intrinsic to the universe; humans did not create them and so cannot change them. Physical laws in classical mechanics. Newton's laws of motion". You need not be a scientist to use physics. Similarly, the operation of a car's ignition system as well as the transmission of electrical signals through our body's nervous system are much easier to understand when you think about them in terms of basic physics. Physicists use models for a variety of purposes. Answer Key. Leonardo da Vinci , who studied flight and designed many speculative flying machines , understood that "An object offers as much resistance to the air as the air does to the object". Galileo Galilei , however, realised that a force is necessary to change the velocity of a body, i. He goes on to explain field theory, internal symmetries, Yang-Mills theories, strong and electroweak interactions, the Higgs boson discovery, and neutrino physics.
    [Show full text]
  • On Entropy and Objective Reality
    fl/ote Indian J. Phys. 82(7) 907-911 (2008) CD On entropy and objective reality Mendel Sachs Emeritus Professor of Physics, University at Buffalo, State University of New York, USA E-mail : [email protected] Received 30 January 2008, accepted 14 March 2008 Abstract : This essay discusses Schordinger's answer to his question "What is Life?" in terms of negative entropy, as a thermodynamic description, rather than a fundamental explanation. Discussion is given to explaining a life system as an objective reality. Keywords : Biology, entropy, quantum theory PACS Nos.: 03.65.-w, 05.70.-a, 87.10.+e Erwin Schr6dinger wrote an interesting essay entitled : "What is Life?" [1]. He calls for a different type of physical force to explain the maintenance of a living organism in terms of 'negative entropy'. The idea is this : According to the second law of thermodynamics, an initially ordered system, such as the union of a male sperm cell and a female egg, starts the process of continued cell division and duplication (mitosis), eventually resulting in a living entity that continues a lifespan until its expiration, at death. Accompanying the process of cell division and growth is the emergence of the ordered system proceeding toward increased disorder. This is described by the increase of entropy (disorder) until equilibrium is reached, at maximum entropy, which occurs at the death of the living being. In regard to human beings, the lifespan is normally much greater than the time of normal decay of a complex system to equilibrium. The question is : How does this living organism maintain its lifespan? Schrddinger's answer is : 'negative entropy'.
    [Show full text]