Lecture 41: Interstellar Travel and Colonization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Space Launch System for Exploration and Science. K
45th Lunar and Planetary Science Conference (2014) 2234.pdf THE SPACE LAUNCH SYSTEM FOR EXPLORATION AND SCIENCE. K. Klaus1, M. S. Elsperman1, B. B. Donahue1, K. E. Post1, M. L. Raftery1, and D. B. Smith1, 1The Boeing Company, 13100 Space Center Blvd, Houston TX 77059, [email protected], [email protected], [email protected], mi- [email protected], [email protected], [email protected]. Introduction: The Space Launch System (SLS) is same time which will simplify mission design and re- the most powerful rocket ever built and provides a duce launch costs. One of the key features of the SLS critical heavy-lift launch capability enabling diverse in cislunar space is performance to provide “dual-use”, deep space missions. This exploration class vehicle i.e. Orion plus 15t of any other payload. launches larger payloads farther in our solar system An opportunity exists to deliver payload to the lu- and faster than ever before. Available fairing diameters nar surface or lunar orbit on the unmanned 2017 range from 5 m to 10 m; these allow utilization of ex- MPCV/ SLS test flight (~4.5t of mass margin exists for isting systems which reduces development risks, size this flight). Concepts of this nature can be done for limitations and cost. SLS injection capacity shortens less than Discovery class mission budgets (~$450M) mission travel time. Enhanced capabilities enable a and may be done as a joint venture by the NASA Sci- variety of missions including human exploration, plan- ence Mission Directorate and Human Exploration Op- etary science, astrophysics, heliophysics, planetary erations Mission Directorate using the successful Lu- defense, Earth observaton and commercial space en- nar Reconnaissance Orbiter as a program model. -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
Available Online Journal of Scientific and Engineering Research, 2019, 6(11):202-215 Research Article Theoretical
Available online www.jsaer.com Journal of Scientific and Engineering Research, 2019, 6(11):202-215 ISSN: 2394-2630 Research Article CODEN(USA): JSERBR Theoretical Consideration of Star Trek's Space Navigation Yoshinari Minami Advanced Space Propulsion Investigation Laboratory (ASPIL), (Formerly NEC Space Development Division), Japan, E-Mail: [email protected] Abstract As is well known, Star Trek is a masterpiece that has been known worldwide since 1966 as a science fiction set in the famous galaxy universe. A starship (Enterprise) arrives at a star system in a short period of time to a star system that is tens, hundreds and thousands of light years away from the Earth. This method of making a starship reach a distant star system is skillfully expressed in the movie using images. Unfortunately, however, there is no concrete explanation from the physical point of view of the propulsion method of the starship and the principle of warp navigation, that is, the space propulsion theory and the space navigation theory. This paper is an attempt to explain Star Trek's space navigation by applying the hyper-space navigation theory to the field propulsion theory that the author has published in international conferences and peer-reviewed journals since 1993 [1]. Since this paper mainly describes the concept of the principle, most of the mathematical expressions are reduced. See the references for theoretical formulas [1- 6]. Keywords Star Trek; starship; galaxy; space-time; interstellar travel; star flight; navigation; field propulsion; space drive; imaginary time; hyperspace; wormhole; time hole; astrophysics 1. Introduction Space development in the 21st century, unless there is a groundbreaking advance in the space transportation system, the area of activity of human beings will be restricted to the vicinity of the Earth forever and new knowledge cannot be obtained. -
Teaching Speculative Fiction in College: a Pedagogy for Making English Studies Relevant
Georgia State University ScholarWorks @ Georgia State University English Dissertations Department of English Summer 8-7-2012 Teaching Speculative Fiction in College: A Pedagogy for Making English Studies Relevant James H. Shimkus Follow this and additional works at: https://scholarworks.gsu.edu/english_diss Recommended Citation Shimkus, James H., "Teaching Speculative Fiction in College: A Pedagogy for Making English Studies Relevant." Dissertation, Georgia State University, 2012. https://scholarworks.gsu.edu/english_diss/95 This Dissertation is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. TEACHING SPECULATIVE FICTION IN COLLEGE: A PEDAGOGY FOR MAKING ENGLISH STUDIES RELEVANT by JAMES HAMMOND SHIMKUS Under the Direction of Dr. Elizabeth Burmester ABSTRACT Speculative fiction (science fiction, fantasy, and horror) has steadily gained popularity both in culture and as a subject for study in college. While many helpful resources on teaching a particular genre or teaching particular texts within a genre exist, college teachers who have not previously taught science fiction, fantasy, or horror will benefit from a broader pedagogical overview of speculative fiction, and that is what this resource provides. Teachers who have previously taught speculative fiction may also benefit from the selection of alternative texts presented here. This resource includes an argument for the consideration of more speculative fiction in college English classes, whether in composition, literature, or creative writing, as well as overviews of the main theoretical discussions and definitions of each genre. -
Solar System Exploration: a Vision for the Next Hundred Years
IAC-04-IAA.3.8.1.02 SOLAR SYSTEM EXPLORATION: A VISION FOR THE NEXT HUNDRED YEARS R. L. McNutt, Jr. Johns Hopkins University Applied Physics Laboratory Laurel, Maryland, USA [email protected] ABSTRACT The current challenge of space travel is multi-tiered. It includes continuing the robotic assay of the solar system while pressing the human frontier beyond cislunar space, with Mars as an ob- vious destination. The primary challenge is propulsion. For human voyages beyond Mars (and perhaps to Mars), the refinement of nuclear fission as a power source and propulsive means will likely set the limits to optimal deep space propulsion for the foreseeable future. Costs, driven largely by access to space, continue to stall significant advances for both manned and unmanned missions. While there continues to be a hope that commercialization will lead to lower launch costs, the needed technology, initial capital investments, and markets have con- tinued to fail to materialize. Hence, initial development in deep space will likely remain govern- ment sponsored and driven by scientific goals linked to national prestige and perceived security issues. Against this backdrop, we consider linkage of scientific goals, current efforts, expecta- tions, current technical capabilities, and requirements for the detailed exploration of the solar system and consolidation of off-Earth outposts. Over the next century, distances of 50 AU could be reached by human crews but only if resources are brought to bear by international consortia. INTRODUCTION years hence, if that much3, usually – and rightly – that policy goals and technologies "Where there is no vision the people perish.” will change so radically on longer time scales – Proverbs, 29:181 that further extrapolation must be relegated to the realm of science fiction – or fantasy. -
Deuterium – Tritium Pulse Propulsion with Hydrogen As Propellant and the Entire Space-Craft As a Gigavolt Capacitor for Ignition
Deuterium – Tritium pulse propulsion with hydrogen as propellant and the entire space-craft as a gigavolt capacitor for ignition. By F. Winterberg University of Nevada, Reno Abstract A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus. 1. Introduction The idea to use the 80% of the neutron energy released in the DT fusion reaction for nuclear micro-bomb rocket propulsion, by surrounding the micro-explosion with a thick layer of liquid hydrogen heated up to 105 K thereby becoming part of the exhaust, was first proposed by the author in 1971 [1]. Unlike the Orion pusher plate concept, the fire ball of the fully ionized hydrogen plasma can here be reflected by a magnetic mirror. The 80% of the energy released into 14MeV neutrons cannot be reflected by a magnetic mirror for thermonuclear micro-bomb propulsion. This was the reason why for the Project Daedalus interstellar probe study of the British Interplanetary Society [2], the neutron poor deuterium-helium 3 (DHe3) reaction was chosen. -
Ringworld 01 Ringworld Larry Niven CHAPTER 1 Louis Wu
Ringworld 01 Ringworld Larry Niven CHAPTER 1 Louis Wu In the nighttime heart of Beirut, in one of a row of general-address transfer booths, Louis Wu flicked into reality. His foot-length queue was as white and shiny as artificial snow. His skin and depilated scalp were chrome yellow; the irises of his eyes were gold; his robe was royal blue with a golden steroptic dragon superimposed. In the instant he appeared, he was smiling widely, showing pearly, perfect, perfectly standard teeth. Smiling and waving. But the smile was already fading, and in a moment it was gone, and the sag of his face was like a rubber mask melting. Louis Wu showed his age. For a few moments, he watched Beirut stream past him: the people flickering into the booths from unknown places; the crowds flowing past him on foot, now that the slidewalks had been turned off for the night. Then the clocks began to strike twenty-three. Louis Wu straightened his shoulders and stepped out to join the world. In Resht, where his party was still going full blast, it was already the morning after his birthday. Here in Beirut it was an hour earlier. In a balmy outdoor restaurant Louis bought rounds of raki and encouraged the singing of songs in Arabic and Interworld. He left before midnight for Budapest. Had they realized yet that he had walked out on his own party? They would assume that a woman had gone with him, that he would be back in a couple of hours. But Louis Wu had gone alone, jumping ahead of the midnight line, hotly pursued by the new day. -
Interstellar Travel and the Fermi Paradox
Interstellar Travel If aliens haven’t visited us, could we go to them? In this lecture we will have some fun speculating about future interstellar travel by humans. Please keep in mind that, as we discussed earlier, this cannot be considered a solution for the problems that we have on Earth, for the simple reason that the expense per person is utterly prohibitive and will remain so in any conceivable future scenario. Nonetheless, given enough time it could be that we have the capacity to move out into the galaxy. Incidentally, we will leave discussions of really far-out concepts such as wormholes to a future class. Interstellar distances The major barrier to interstellar travel is the staggering distance between stars. The closest one to the Sun is Proxima Centauri, which is 4.3 light years away but not a likely host to planets. There are, however, a few possibilities within roughly 10 light years, so that is a good target. How far is 10 light years? By definition it is how far light travels in 10 years, but let’s put this into a more familiar context. A moderately brisk walking pace is 5 km/hr, and since one light year is about 10 trillion kilometers, you would need about 20 trillion hours, or about 2.3 billion years, to walk that distance. The fastest cars sold commercially go about 400 km/hr, so you would need about three billion hours or a bit less than thirty million years. The speed of the Earth in its orbit, which is comparable to the speed of the fastest spacecraft we have constructed (all unmanned, of course), is about 30 km/s and even at that rate it would take about a hundred thousand years to travel ten light years. -
Interstellar Travel Or Even 1.3 Mlbs at Launch
Terraforming Mars: By Aliens? Astronomy 330 •! Sometime movies are full of errors. •! But what can you do? Music: Rocket Man– Elton John Online ICES Question •! ICES forms are available online, so far 39/100 Are you going to fill out an ICES form before the students have completed it. deadline? •! I appreciate you filling them out! •! Please make sure to leave written comments. I a)! Yes, I did it already. find these comments the most useful, and typically b)! Yes, sometime today that’s where I make the most changes to the c)! Yes, this weekend course. d)! Yes, I promise to do it before the deadline of May6th! e)! No, I am way too lazy to spend 5 mins to help you or future students out. Final Final •! In this classroom, Fri, May 7th, 0800-1100. •! A normal-sized sheet of paper with notes on both •! Will consist of sides is allowed. –! 15 question on Exam 1 material. •! Exam 1and 2 and last year’s final are posted on –! 15 question on Exam 2 material. class website (not Compass). –! 30 questions from new material (Lect 20+). –! +4 extra credit questions •! I will post a review sheet Friday. •! A total of 105 points, i.e. 5 points of extra credit. •! Final Exam grade is based on all three sections. •! If Section 1/2 grade is higher than Exam 1/2 grade, then it will replace your Exam 1/2 grade. Final Papers Outline •! Final papers due at BEGINNING of discussion •! Rockets: how to get the most bang for the buck. -
Simone Caroti – the Generation Starship in Science Fiction
Book Review: The Generation Starship In Science Fiction A Critical History, 1934-2001 Simone Caroti reviewed by John I Davies Dr Simone Caroti has now delivered his presentation on The Generation Starship In Science Fiction to students taking the i4is-led interstellar elective at the International Space University in both 2020 and 2021. Here John Davies reviews his 2011 book based on his PhD work at Purdue University*. Within an overall chronological plan the major themes in Dr Caroti's book seem to me to be - ■ The conflict between the two conceptions of a worldship. Is it a world which happens have an artificial "substrate" or is it a ship with a mission which happens to require a multi-generation crew. ■ How can the vision of dreamers like Tsiolkovsky, J D Bernal and Robert Goddard be made to inspire the source civilisation, for whom this is a massive enterprise, the initial travellers, their intermediate descendants and those who must make a new world at journeys end? ■ And, more practically, how can culture, science and technology be sufficiently preserved over many generations? Opening Chapters The book sees the development of the worldship as a fictional theme in six overlapping eras - the first worldship ideas (not all as fiction), Published: McFarland 2011 mcfarlandbooks.com The Gernsback Era, 1926-1940 , The Campbell Era, 1937-1949, The Image credit: Bill Knapp,Arrival Birth of the Space Age, 1946-1957, The New Wave and Beyond, www.artprize.org/bill-knapp 1957-1979 and The Information Age, 1980-2001. Caroti read a lot of science fiction and speculative non-fiction before beginning his PhD at Purdue University. -
Space Propulsion.Pdf
Deep Space Propulsion K.F. Long Deep Space Propulsion A Roadmap to Interstellar Flight K.F. Long Bsc, Msc, CPhys Vice President (Europe), Icarus Interstellar Fellow British Interplanetary Society Berkshire, UK ISBN 978-1-4614-0606-8 e-ISBN 978-1-4614-0607-5 DOI 10.1007/978-1-4614-0607-5 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011937235 # Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to three people who have had the biggest influence on my life. My wife Gemma Long for your continued love and companionship; my mentor Jonathan Brooks for your guidance and wisdom; my hero Sir Arthur C. Clarke for your inspirational vision – for Rama, 2001, and the books you leave behind. Foreword We live in a time of troubles. -
A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense Abstract We Argue That It Is Essential Fo
LA-UR-15-23198 A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense G. A. Wurden1, T. E. Weber1, P. J. Turchi2, P. B. Parks3, T. E. Evans3, S. A. Cohen4, J. T. Cassibry5, E. M. Campbell6 1Los Alamos National Laboratory 2Santa Fe, NM 3General Atomics 4Princeton Plasma Physics Laboratory 5University of Alabama, Huntsville 6Sandia National Laboratory Abstract We argue that it is essential for the fusion energy program to identify an imagination- capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible. The US Department of Energy’s magnetic fusion research program, based in its Office of Science, focuses on plasma and fusion science1 to support the long term goal of environmentally friendly, socially acceptable, and economically viable electricity production from fusion reactors.2 For several decades the US magnetic fusion program has had to deal with a lack of urgency towards and inconsistent funding for this ambitious goal. In many American circles, fusion isn’t even at the table3 when it comes to discussing future energy production. Is there another, more urgent, unique, and even more important application for fusion? Fusion’s unique application As an on-board power source and thruster for fast propulsion in space,4 a fusion reactor would provide unparalleled performance (high specific impulse and high specific power) for a spacecraft.