Elasmobranchii - Accessscience from Mcgraw-Hill Education Page 1 of 4

Total Page:16

File Type:pdf, Size:1020Kb

Elasmobranchii - Accessscience from Mcgraw-Hill Education Page 1 of 4 Elasmobranchii - AccessScience from McGraw-Hill Education Page 1 of 4 Elasmobranchii Article by: Schaeffer, Bobb American Museum of Natural History, New York, New York. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.214800 (http://dx.doi.org/10.1036/1097-8542.214800) Content • Evolutionary development • Modern features • Bibliography • Additional Readings The subclass within the Chondrichthyes (cartilaginous fishes) that includes the sharks (Euselachii) and the skates and rays (Batoidei). The other subclass within Chondrichthyes, according to traditional classifications, is the Holocephali (chimaera, or ratfishes). It is probable that both groups arose independently during the Silurian or Early Devonian from a group of extinct armored fishes, the Placodermi. The elasmobranchs are distinguished by separate gill openings, amphistylic or hyostylic jaw suspension, and sensory ampullae (of Lorenzini) in the head region. Characters shared with the holocephalans include a variably calcified cartilaginous endoskeleton, placoid scales, urea-retention mechanism, clasper organs in the male for internal fertilization, and the absence of an air (swim) bladder. See also: Chimaeriformes (/content/chimaeriformes/129900); Chondrichthyes (/content/chondrichthyes/133100); Placodermi (/content/placodermi/520900); Scale (zoology) (/content/scale-zoology/604100); Swim bladder (/content/swim-bladder/672500) Evolutionary development The history of the elasmobranchii can best be understood in terms of three successive evolutionary levels: cladodont, hybodont, and modern. Because of their incomplete fossil record, it is impossible to work out the detailed phylogenetic relationships of the extinct and living groups. Cladodonts The cladodont sharks first appeared in the Devonian; except for the specialized pleuracanths (Fig. 1a), which persisted into the Triassic, they had disappeared by the end of the Pennsylvanian. The cladodonts all possess amphistylic jaw suspension. Their teeth have a pointed central cusp, two or more lateral cusps, and a flattened disklike base. The notochord was persistent and was not replaced by centra. http://www.accessscience.com/content/elasmobranchii/214800 7/23/2015 Elasmobranchii - AccessScience from McGraw-Hill Education Page 2 of 4 Fig. 1 Lateral views of fossil sharks. (a) Pleurocanthus, a specialized cladodont. (b) Cladoselache, a cladodont. (c) Hybodus, a hybodont. The basal part of the pectoral fin skeleton is variable in design but never tribasal. The radial cartilages of the pectoral and pelvic fins are not divided and extend more or less to the fin margin. The pelvic plates are separated. Claspers are usually present. The dorsal fins are preceded by spines. The caudal fin is heterocercal, nearly equilobate, and the radials of the hypochordal lobe are unsegmented. The body scales are usually multilobed, each lobe having a separate pulp cavity. Some cladodont sharks possess relatively large semicircular canals; in others these are the same size as in modern sharks. See also: Copulatory organ (/content/copulatory-organ/161360); Ear (vertebrate) (/content/ear-vertebrate/208600) Cladodonts were primarily pelagic predators, capable of seizing and tearing prey. The relatively stiff fins suggest that their maneuverability was more limited than in modern sharks. Representative cladodonts include the Devonian genera Cladodus and Cladoselache (Fig. 1b). See also: Devonian (/content/devonian/189500) Hybodonts The hybodonts first appeared in the Mississippian Period. Although their skeleton resembles that of the cladodonts, they were more advanced in having only a tribasal pectoral fin skeleton, divided and shortened paired fin radials, clearly differentiated anal fin, and ribs and hemal arches along the entire length of the unreduced notochord. The acquisition of the tribasal pectoral fin, present in all later sharks, and a more flexible hypochordal lobe in the caudal fin apparently enabled these sharks to maintain their equilibrium more effectively than the cladodonts. http://www.accessscience.com/content/elasmobranchii/214800 7/23/2015 Elasmobranchii - AccessScience from McGraw-Hill Education Page 3 of 4 Some hybodonts had cladodont-like teeth and presumably fed on swimming prey, but much of the adaptive radiation at this level involved the development of crushing or grinding dentitions related mainly to bottom feeding. The late Palaeozoic genus Ctenacanthus is a good example of a conservative hybodont; the Mesozoic Hybodus (Fig. 1c) has a more advanced fin structure and a crushing dentition. Ctenacanthus lived from the Mississippian into the Permian, and Hybodus from the Triassic through the Cretaceous. Modern elasmobranchs Modern sharks arose during the Jurassic Period long before the hybodonts had become extinct in the Late Cretaceous. The transition from the hybodont to the modern level is poorly documented by fossils. However, there are three groups of aberrant (part hybodont, part modern) living sharks. Heterodontidae (Port Jackson sharks), Chlamydoselachidae (frilled sharks), and Hexanchidae (six-gill and seven-gill sharks). All except the Port Jackson sharks are rare deep-water forms, and each group has a somewhat different combination of hybodont and modern shark characters. These archaic sharks suggest the kind of evolutionary experimentation that took place during the rise of the modern sharks. See also: Jurassic (/content/jurassic/361100); Selachii (/content/selachii/613500) The skates and rays (batoids) are mostly bottom-dwelling elasmobranchs that possess many features distinct from the sharks. Present evidence suggests that the batoids arose during the Jurassic from some benthic hybodont group. Modern features Morphologically the modern shark level may be defined by the following features: hyostylic jaw suspension, shortened jaws, jaw protrusion mechanism, complete replacement of the notochord by calcified centra, fusion of the pelvic plates, and presence of only single-lobed placoid scales. Although the rostrum was short and blunt in the cladodonts, it became elongated in some hybodonts and, with a few exceptions, it projects well beyond the mouth in all modern sharks (Fig. 2). Fig. 2 Mackeral shark (Isurus). (After H. B. Bigelow and W. C. Schroeder, Fishes of the Western North Atlantic, pt. 1, 1948) Skates and rays differ from the sharks in having a depressed body, modification in the mode of gill ventilation, freer hyostylic jaw suspension, elaboration of the pavement dentition for crushing or grinding, enlargement of the pectoral fins, and disappearance of the anal fin. With the pectoral fins assuming the main role in locomotion, the posterior part of the body, including the caudal fin, became reduced to whiplike proportions (Fig. 3). http://www.accessscience.com/content/elasmobranchii/214800 7/23/2015 Elasmobranchii - AccessScience from McGraw-Hill Education Page 4 of 4 Fig. 3 Skate (Raja). (After H. B. Bigelow and W. C. Schroeder, Fishes of the Western North Atlantic, pt. 2, 1953) Bobb Schaeffer Bibliography H. B. Bigelow and W. C. Schroeder, Fishes of the Western North Atlantic, pt. 1, 1948, pt. 2, 1953 C. E. Bond, Biology of Fishes, 2d ed., 1997 E. S. Herald, Living Fishes of the World, 1961 F. H. Pough et al., Vertebrate Life, 5th ed., 1998 B. Schaeffer, Comments on elasmobranch evolution, in P. W. Gilbert et al. (eds.), Sharks, Skates and Rays, 1967 Additional Readings J. C. Carrier, J. A. Musick, and M. R. Heithaus (eds.), Biology of Sharks and Their Relatives, 2d ed., CRC Press, Boca Raton, FL, 2012 G. S. Helfman et al., The Diversity of Fishes: Biology, Evolution, and Ecology, 2d ed., John Wiley & Sons, Chichester, West Sussex, UK, 2009 J. T. Springer and D. Holley, An Introduction to Zoology: Investigating the Animal World, Jones & Bartlett Learning, Burlington, MA, 2013 http://www.accessscience.com/content/elasmobranchii/214800 7/23/2015 .
Recommended publications
  • FISHING for DUNKLEOSTEUS You’Re Definitely Gonna Need a Bigger Boat by Mark Peter
    OOhhiioo GGeeoollooggyy EEXXTTRRAA July 31, 2019 FISHING FOR DUNKLEOSTEUS You’re definitely gonna need a bigger boat by Mark Peter At an estimated maximum length of 6 to 8.8 meters (20–29 sediments that eroded from the Acadian Mountains, combined feet), Dunkleosteus terrelli (Fig. 1) would have been a match for with abundant organic matter from newly evolved land plants even the Hollywood-sized great white shark from the and marine plankton, settled in the basin as dark organic movie Jaws. Surfers, scuba divers, and swimmers can relax, muds. Over millions of years, accumulation of additional however, because Dunkleosteus has been extinct for nearly 360 overlying sediments compacted the muds into black shale rock. million years. Dunkleosteus was a placoderm, a type of armored The rocks that formed from the Late Devonian seafloor fish, that lived during the Late Devonian Period from about sediments (along with fossils of Dunkleosteus) arrived at their 375–359 million years ago. Fossil remains of the large present location of 41 degrees north latitude after several species Dunkleosteus terrelli are present in the Cleveland hundred million years of slow plate tectonic movement as the Member of the Ohio Shale, which contains rocks that are North American Plate moved northward. approximately 360–359 million years old. Figure 1. A reconstruction of a fully-grown Dunkleosteus terrelli, assuming a length of 29 feet, with angler for scale. Modified from illustration by Hugo Salais of Metazoa Studio. Dunkleosteus cruised Late Devonian seas and oceans as an Figure 2. Paleogeographic reconstruction of eastern North America during apex predator, much like the great white shark of today.
    [Show full text]
  • Symmoriiform Sharks from the Pennsylvanian of Nebraska
    Acta Geologica Polonica, Vol. 68 (2018), No. 3, pp. 391–401 DOI: 10.1515/agp-2018-0009 Symmoriiform sharks from the Pennsylvanian of Nebraska MICHAŁ GINTER University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland. E-mail: [email protected] ABSTRACT: Ginter, M. 2018. Symmoriiform sharks from the Pennsylvanian of Nebraska. Acta Geologica Polonica, 68 (3), 391–401. Warszawa. The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010, and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long, monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably represent- ing the head cover or the spine-brush complex. A review of the available information on the fossil record of Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the Middle Permian (Capitanian). Key words: Symmoriiformes; Microfossils; Carboniferous; Indian Cave Sandstone; USA Midcontinent. INTRODUCTION size and shape is concerned [compare the thick me- dian cusp, almost a centimetre long, in Stethacanthus The Symmoriiformes (Symmoriida sensu Zan- neilsoni (Traquair, 1898), and the minute, 0.5 mm gerl 1981) are a group of Palaeozoic cladodont sharks wide, multicuspid, comb-like tooth of Denaea wangi sharing several common characters: relatively short Wang, Jin and Wang, 2004; Ginter et al. 2010, figs skulls, large eyes, terminal mouth, epicercal but ex- 58A–C and 61, respectively].
    [Show full text]
  • Sharks from the Middle-Late Devonian Aztec Siltstone, Southern Victoria Land, Antarctica
    Records of the Western Australian Museum 17: 287-308 (1995). Sharks from the Middle-Late Devonian Aztec Siltstone, southern Victoria Land, Antarctica John A. Longl and Gavin C. Young2 I Western Australian Museum, Francis Street, Perth, Western Australia 6000 2 Australian Geological Survey Organisation, p.a. Box 378, Canberra, A.C.T. 2601 Abstract Shark teeth representing three new taxa are described from the Middle-Late Devonian Aztec Siltstone of southern Victoria Land, Antarctica. Portalodus bradshawae gen. et sp. novo is represented by large diplodont teeth which have a base with a well-produced labial platform. It occurs in the middle to upper sections of the Aztec Siltstone. Aztecodus harmsenae gen. et sp. novo is represented by broad bicuspid teeth, wider than high, with numerous medial crenulations and twin nutritive foramina penetrating the rectangular base. It occurs in the middle sections of the Aztec Siltstone. The teeth of Anareodus statei gen. et sp. novo are characterised by having a main cusp which is more than twice as high as the second cusp, a small cusplet developed on the outer cutting edge of the main cusp, sometimes with few crenulations developed in the middle of the two cusps, and the base is strongly concave. Antarctilanma cf. prisca Young, 1982 is also recorded from the middle and upper sections of the Aztec Siltstone above the thelodont horizons and occurring with phyllolepids and Pambulaspis in the Cook Mountains section south of Mt Hughes. The chondrichthyan fauna from the Aztec Siltstone now contains at least 5 species, being the most diverse assemblage of Middle Devonian chondrichthyans (based on teeth) from one stratigraphic unit.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences
    Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al.
    [Show full text]
  • Great White Shark) on Appendix I of the Convention of International Trade in Endangered Species of Wild Fauna and Flora (CITES)
    Prop. 11.48 Proposal to include Carcharodon carcharias (Great White Shark) on Appendix I of the Convention of International Trade in Endangered Species of Wild Fauna and Flora (CITES) A. PROPOSAL ..............................................................................................3 B. PROPONENT............................................................................................3 C. SUPPORTING STATEMENT....................................................................3 1. Taxonomy.........................................................................................................................3 1.1 Class.................................................................................................................................... 1.2 Order................................................................................................................................... 1.3 Family ................................................................................................................................. 1.4 Species ................................................................................................................................ 1.5 Scientific Synonyms............................................................................................................. 1.6 Common Names .................................................................................................................. 2. Biological Parameters......................................................................................................3
    [Show full text]
  • 'Placoderm' (Arthrodira)
    Jobbins et al. Swiss J Palaeontol (2021) 140:2 https://doi.org/10.1186/s13358-020-00212-w Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access A large Middle Devonian eubrachythoracid ‘placoderm’ (Arthrodira) jaw from northern Gondwana Melina Jobbins1* , Martin Rücklin2, Thodoris Argyriou3 and Christian Klug1 Abstract For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontich- thys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered syna- pomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were pos- sibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large. Keywords: Arthrodira, Dentition, Food web, Givetian, Maïder basin, Palaeoecology Introduction important to reconstruct character evolution in early ‘Placoderms’ are considered as a paraphyletic grade vertebrates.
    [Show full text]
  • Chondrichthyan Fauna of the Frasnian–Famennian Boundary Beds in Poland
    Chondrichthyan fauna of the Frasnian–Famennian boundary beds in Poland MICHAŁ GINTER Michał Ginter. 2002. Chondrichthyan fauna of the Frasnian–Famennian boundary beds in Poland. Acta Palaeontologica Polonica 47 (2): 329–338. New chondrichthyan microremains from several Frasnian–Famennian sections in the Holy Cross Mountains and Dębnik area (Southern Poland) are investigated and compared to previous data. The reaction of different groups of chondrichthyans to environmental changes during the Kellwasser Event is analysed. Following the extinction of phoebodont sharks of Phoebodus bifurcatus group before the end of the Frasnian, only two chondrichthyan species, viz. Protacrodus vetustus Jaekel, 1921 and Stethacanthus resistens sp. nov. (possibly closely related to “Cladodus” wildungensis Jaekel, 1921), occur in the upper part of Frasnian Palmatolepis linguiformis conodont Zone and persist into the Famennian. Global cooling is considered a possible cause of the extinction of Frasnian subtropical phoe− bodonts on Laurussian margins. Key words: Chondrichthyes, Kellwasser Event, Devonian, Poland. Michał Ginter [[email protected]], Instytut Geologii Podstawowej, Uniwersytet Warszawski, Żwirki i Wigury 93, PL−02−089 Warszawa, Poland. Introduction Characteristics of the localities Chondrichthyan faunas of the late Palmatolepis linguiformis Three sections spanning the Frasnian–Famennian boundary and the Palmatolepis triangularis conodont zones on south− were sampled bed by bed (for location of most samples, see ern Laurussian margins substantially differ from those of the Racka 2000): the middle wall of the Kowala–Wola Quarry in rest of the Frasnian and Famennian. The main difference is the south−western Holy Cross Mts, south of Kielce; an artficial the absence of Phoebodus, a typical Mid− to Late Devonian trench on the eastern bank of Łagowica River, between the vil− pelagic, shelf dwelling shark (Ginter and Ivanov 1992).
    [Show full text]
  • Fishes Scales & Tails Scale Types 1
    Phylum Chordata SUBPHYLUM VERTEBRATA Metameric chordates Linear series of cartilaginous or boney support (vertebrae) surrounding or replacing the notochord Expanded anterior portion of nervous system THE FISHES SCALES & TAILS SCALE TYPES 1. COSMOID (most primitive) First found on ostracaderm agnathans, thick & boney - composed of: Ganoine (enamel outer layer) Cosmine (thick under layer) Spongy bone Lamellar bone Perhaps selected for protection against eurypterids, but decreased flexibility 2. GANOID (primitive, still found on some living fish like gar) 3. PLACOID (old scale type found on the chondrichthyes) Dentine, tooth-like 4. CYCLOID (more recent scale type, found in modern osteichthyes) 5. CTENOID (most modern scale type, found in modern osteichthyes) TAILS HETEROCERCAL (primitive, still found on chondrichthyes) ABBREVIATED HETEROCERCAL (found on some primitive living fish like gar) DIPHYCERCAL (primitive, found on sarcopterygii) HOMOCERCAL (most modern, found on most modern osteichthyes) Agnatha (class) [connect the taxa] Cyclostomata (order) Placodermi Acanthodii (class) (class) Chondrichthyes (class) Osteichthyes (class) Actinopterygii (subclass) Sarcopterygii (subclass) Dipnoi (order) Crossopterygii (order) Ripidistia (suborder) Coelacanthiformes (suborder) Chondrostei (infra class) Holostei (infra class) Teleostei (infra class) CLASS AGNATHA ("without jaws") Most primitive - first fossils in Ordovician Bottom feeders, dorsal/ventral flattened Cosmoid scales (Ostracoderms) Pair of eyes + pineal eye - present in a few living fish and reptiles - regulates circadian rhythms Nine - seven gill pouches No paired appendages, medial nosril ORDER CYCLOSTOMATA (60 spp) Last living representatives - lampreys & hagfish Notochord not replaced by vertebrae Cartilaginous cranium, scaleless body Sea lamprey predaceous - horny teeth in buccal cavity & on tongue - secretes anti-coaggulant Lateral Line System No stomach or spleen 5 - 7 year life span - adults move into freshwater streams, spawn, & die.
    [Show full text]
  • Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America
    Acta Geologica Polonica, Vol. 49 (J 999), No.3, pp. 215-266 406 IU S UNES 0 I Dentitions of Late Palaeozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America GARY D. JOHNSON Department of Earth Sciences and Physics, University of South Dakota; 414 East Clark Street, Vermillion, SD 57069-2390, USA. E-mail: [email protected] ABSTRACT: JOHNSON, G.D. 1999. Dentitions of Late Palaeozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America. Acta Geologica Polonica, 49 (3),215-266. Warszawa. Orthacanthus lateral teeth have paired, variably divergent, smooth, usually carinated labio-lingually compressed principal cusps separated by a central foramen; one or more intermediate cusps; and an api­ cal button on the base isolated from the cusps. Several thousand isolated teeth from Texas Artinskian bulk samples are used to define the heterodont dentitions of O. texensis and O. platypternus. The O. tex­ ensis tooth base has a labio-Iingual width greater than the anteromedial-posterolateral length, the basal tubercle is restricted to the thick labial margin, the principal cusps are serrated to varying degrees, and the posterior cusp is larger. The O. platypternus tooth base is longer than wide, its basal tubercle extends to the center, the labial margin is thin, serrations are absent on the principal cusps, the anterior cusp is larger, and a single intermediate cusp is present. More than two hundred isolated teeth from Nebraska (Gzhelian) and Pennsylvania (Asselian) provide a preliminary description of the heterodont dentition of O. compress us . The principal cusps are similar to O.
    [Show full text]
  • Unmasking Evolution
    UNMASKING EVOLUTION by Laurence D Smart BScAgr, Dip Ed, Grad Dip Ed The Resource Book REPRODUCIBLE BLACK-LINE Copy freely MASTERS August 1995 May 1996 July 2000 September 2000 -1- FORWARD The theory of evolution is believed to be an incontrovertible fact by the general public and most of the scientific community, and is taught as such by most educators. This should not be the case. The theory of evolution is a valid scientific hypothesis, but the facts are that it has not been proved beyond a shadow of a doubt. To be proven valid, the theory of evolution must undergo the scrutiny (rigours) of the scientific method. This, however, cannot be accomplished because the millions of years required for experimental testing are beyond the reasonable limit of human observation. The current ‘evidence’ for the theory of evolution would not stand up in a court of law while undergoing judicial scrutiny. There would be indications that biased interpretation of data had occurred, as alternative theories could be presented to account for observed and tested facts. The theory of evolution needs its facade of scientific immutability lifted, and exposed for what it really is - an unproven scientific theory. My university training and experience as a research scientist, led me to do an analysis of the scientific data on evolution. This set of facts and quotes is my expose, and it is a step in the direction of lifting evolution’s facade. (15/4/95) INTRODUCTION I have been teaching science for over 25 years, but I have had a number of problems with the theory of evolution.
    [Show full text]
  • Late Devonian and Early Carboniferous Chondrichthyans from the Fairfield Group, Canning Basin, Western Australia
    Palaeontologia Electronica palaeo-electronica.org Late Devonian and Early Carboniferous chondrichthyans from the Fairfield Group, Canning Basin, Western Australia Brett Roelofs, Milo Barham, Arthur J. Mory, and Kate Trinajstic ABSTRACT Teeth from 18 shark taxa are described from Upper Devonian to Lower Carbonif- erous strata of the Lennard Shelf, Canning Basin, Western Australia. Spot samples from shoal facies in the upper Famennian Gumhole Formation and shallow water car- bonate platform facies in the Tournaisian Laurel Formation yielded a chondrichthyan fauna including several known species, in particular Thrinacodus ferox, Cladodus thomasi, Protacrodus aequalis and Deihim mansureae. In addition, protacrodont teeth were recovered that resemble formally described, yet unnamed, teeth from Tournaisian deposits in North Gondwanan terranes. The close faunal relationships previously seen for Late Devonian chondrichthyan taxa in the Canning Basin and the margins of north- ern Gondwana are shown here to continue into the Carboniferous. However, a reduc- tion in species overlap for Tournaisian shallow water microvertebrate faunas between the Canning Basin and South China is evident, which supports previous studies docu- menting a separation of faunal and terrestrial plant communities between these regions by this time. The chondrichthyan fauna described herein is dominated by crushing type teeth similar to the shallow water chondrichthyan biofacies established for the Famennian and suggests some of these biofacies also extended into the Early Carboniferous. Brett Roelofs. Department of Applied Geology, Curtin University, GPO Box U1987 Perth, WA 6845, Australia. [email protected] Milo Barham. Department of Applied Geology, Curtin University, GPO Box U1987 Perth, WA 6845, Australia. [email protected] Arthur J.
    [Show full text]