Sharks from the Middle-Late Devonian Aztec Siltstone, Southern Victoria Land, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Sharks from the Middle-Late Devonian Aztec Siltstone, Southern Victoria Land, Antarctica Records of the Western Australian Museum 17: 287-308 (1995). Sharks from the Middle-Late Devonian Aztec Siltstone, southern Victoria Land, Antarctica John A. Longl and Gavin C. Young2 I Western Australian Museum, Francis Street, Perth, Western Australia 6000 2 Australian Geological Survey Organisation, p.a. Box 378, Canberra, A.C.T. 2601 Abstract Shark teeth representing three new taxa are described from the Middle-Late Devonian Aztec Siltstone of southern Victoria Land, Antarctica. Portalodus bradshawae gen. et sp. novo is represented by large diplodont teeth which have a base with a well-produced labial platform. It occurs in the middle to upper sections of the Aztec Siltstone. Aztecodus harmsenae gen. et sp. novo is represented by broad bicuspid teeth, wider than high, with numerous medial crenulations and twin nutritive foramina penetrating the rectangular base. It occurs in the middle sections of the Aztec Siltstone. The teeth of Anareodus statei gen. et sp. novo are characterised by having a main cusp which is more than twice as high as the second cusp, a small cusplet developed on the outer cutting edge of the main cusp, sometimes with few crenulations developed in the middle of the two cusps, and the base is strongly concave. Antarctilanma cf. prisca Young, 1982 is also recorded from the middle and upper sections of the Aztec Siltstone above the thelodont horizons and occurring with phyllolepids and Pambulaspis in the Cook Mountains section south of Mt Hughes. The chondrichthyan fauna from the Aztec Siltstone now contains at least 5 species, being the most diverse assemblage of Middle Devonian chondrichthyans (based on teeth) from one stratigraphic unit. INTRODUCTION the first illustrations of the large diplodont teeth Fossil shark remains were first identified in the from Portal Mountain recorded by Ritchie (1971) Devonian Aztec fish fauna of southern Victoria as resembling those of Xenacanthus sp. These shark Land in the material collected from moraine at remains form part of a diverse fish fauna from the Granite Harbour, near the coast of McMurdo Aztec Siltstone, including arthrodires (Ritchie 1975; Sound, during the British Antarctic 'Terra Nova' Long in press), antiarchs (Young 1988), Expedition of 1910-13. Among the fish scales acanthodians (Young 1989b), rhipidistians (Young observed in thin section were some which et al. 1992), lungfish (Woolfe et al. 1990, Young Woodward (1921: 57) described as 'typically 1991), and an undescribed actinopterygian (Young Elasmobranch, each large cusp showing a trace of 1991). The faunal list now stands at 22 named an original pulp cavity'. Many of these scales genera and 31 species, including the new forms subsequently turned out to be thelodont scales, described here, of which all species and 18 genera whose existence in a fish fauna of Late Devonian are endemic to the region of East Gondwana (Table aspect was completely unsuspected by Woodward 1). and other early workers. These were recently The material described herein comes mainly described as a new species of Turinia by Turner from a new collection of Aztec Siltstone fossils and Young (1992). White (1968), who studied the made by J. Long on the joint 1991/92 New Zealand first in situ material, collected by B.M. Gunn and Antarctic Research Program-Australian National G. Warren during the Trans-Antarctic Expedition Antarctic Research Expedition trip to the Cook of 1958 (Gunn and Warren 1962), then found one Mountains and SkeIton Neve regions, but also definitive shark specimen, a single tooth which he includes shark material previously collected by A. described as a new form, Mcmurdodus featherensis, Ritchie and G.c. Young during the Victoria placed in a new family Mcmurdodontidae. This University of Wellington Antarctic Expedition specimen came from Mt Feather, 18 km due east of VUWAE 15 (1970/71 season). The new material is the Lashly Range (Figure 1). Young (1982) sufficient to describe three new genera of Devonian described a second shark, Antarctilanma prisca, sharks, based on teeth. In addition, information based on partially articulated remains which from the new localities in the Cook Mountains included teeth, scales and fin-spines also provided extends the known stratigraphic range of 288 J.A. Long, G.c. Young Table 1 Vertebrate faunal list for the Aztec Siltstone, Antarctilamna prisca. Specimens are lodged in the Antarctica. Western Australian Museum, Perth (prefix WAM), the Australian Museum, Sydney (prefix AMF), and AGNATHA Turinia antarctica Turner and Young, the Commonwealth Palaeontological Collection, 1992 Australian Geological Survey Organisation, PLACODERMI Canberra (prefix CPC). Antiarchi Bothriolepis antarctica Woodward, 1921 B. alexi Young, 1988 LOCALITY INFORMAnON B. askinae Young, 1988 Full details of all fossil fish localities known to B. barretti Young, 1988 that time from the Aztec Siltstone were provided B. karawaka Young, 1988 by Young (1988). Information is given below for B. kohni Young, 1988 new localities and previous localities yielding B. macphersoni Young, 1988 described shark material. Numbers refer to B.mawsoniYoung,1988 localities 1-24 of Young (1988, figure 3). The B. portalensis Young, 1988 B. vuwae Young, 1988 regions are dealt with here from south to north. B. sp. indet 1-13. Pambulaspis antarctica Young, 1989 Cook Mountains Arthrodira Antarctolepis gunni White, 1968 Several new sites were discovered in the Cook Groenlandaspis antarcticus Ritchie, Mountains during the 1991/92 field season (Figure 1975 1, left). Shark teeth were recovered from "Gorgon's Groenlandaspis spp. Head" near Mt Hughes, the same area from where Boomeraspis goujeti Long, 1995a fish were first recorded during the 1988/89 season phlyctaeniids spp. (Woolfe et al. 1990). Other material came from the Phyllolepida ?Austrophyl/olepis sp. Fault Bluff sections and at Mt Gudmundson. phyllolepid indet. Stratigraphic sections of the Aztec Siltstone and Beacon Heights Orthoquartzite from these lncertae sedis Antarctaspis mcmurdoensis White, 1968 localities were measured by M. Bradshaw and F. CHONDRICHTHYES Harmsen and are currently being compiled. Figure Mcmurdodus featherensis White, 1968 2 shows the provisional stratigraphic position of Antarctilamna prisca Young, 1982 the fish faunas from the Cook Mountains referred Anareodus statei gen. et sp. novo to in the text, based on field measurement of Aztecodus harmsenae gen. et sp. novo stratigraphic sections. Portalodus bradshawae gen. et sp. novo Fault Bluff, "fish hotel" section ACANTHODlI Gyracanthides warreni White, 1968 This stratigraphic section was measured along a Antarctonchus glacialis White, 1968 low ridge running north-south outcropping Byssacanthoides debenhami Woodward, 1921 immediately north of Fault Bluff (79°18'5, 157° Culmacanthus antarctica Young, 1989 41 'E). The stratigraphic sections were logged by M. Cheiracanthoides sp. (scales). Bradshaw and F. Harmsen. A continuous outcrop lschnacanthid gen. indet. of Aztec Siltstone approximately 91 m thick is exposed here, although the base of the section is OSTEICHTHYES covered by scree. By comparison with the Actinopterygii palaeoniscoid gen. novo surrounding outcrops, the top of the Beacon ?palaeoniscoid indet. Heights Orthoquartzite would sit within 20 m of Rhipidistia Gyroptychius? antarcticus the base of the section. Several fossil fish bearing (Woodward) horizons were located: site "A", about 45 m above Koharalepis jarviki Young et al., 1992 the base, contained isolated impressions of fish Mahalalepis resima Young et al., 1992 plates in hard white orthoquartzite; site "B", about Platyethmoidea antarctica Young et al., 67 m above the base, has rich accumulations of 1992 well-preserved fish remains in a medium-coarse to Vorobjevaia dolonodon Young et al., gritty quartzose sandstone; site "M", about 72 m 1992 above the base, is a fine, green siltstone with small Notorhizodon mackelveyi Young et al., fragments of well-sorted fish bone and scale debris; 1992 site "Y" about 85 m above the base, has occasional porolepiform indet. fish plates in quartz sandstone; and site "2", at the Dipnoi ? Eoctenodus sp. top of the exposure about 88-90 m above the base, Howidipterus sp. is a clean, indurated orthoquartzite rich in fish and ?ctendontid indet. plant remains. Lycopod stem axes are here Devonian sharks from Antarctica 289 N ~ /i ~I \) a: sect:~ ~;~en.............. ~ I ~-- -~'--~ ~ I section LA . / -'\ () a: lJJ- \ ~zl I . \ A .. .. '-- ~. '~\~ ! -(-------- )....11.·····-.. " ;1--I ~/j Mt. Gudmundson ! : ~I V ~\ % 79015' \ ,~I \ -.j \ \ ~ . 1'7 ~) ·-.VA~ ~ / Fish Hotel site \1 _/ Portal Mountain Fault Bluff ~ ~', (1'-\ (1\)(0\ iW - ,"'- ~ ~ 31/12/91 I \"dJ •.0. ;,<' \ , \ ~ \ Ml(Q IUJ lNJr/P\ lllNJ \,.. \ \ I l. Campsite \, I :0: C-130 landing site I I I o Depot I / I I I I I ,I I \ MUlgrew \ \ \ Nunatak \ t<- \ , , \ \ , \~ \ \ \ -- \ '-::' flI- \ \ -..9 \ \ , -.,> \I \ \ 'f " \ \ ""- , \ \ I ! Figure 1 Locality map showing sites visited during the 1991/92 field expedition and localities mentioned in the text. 290 I.A. Long, G.c. Young preserved as 3-D impressions (McLoughlin and conglomerate, and site "6", about 90 m above the Long 1994). base in the highest exposure of flat-lying sandstones of the Aztec Siltstone, also a gritty layer Mt Gudmundson with abundant fish bones. Some scree material Approximately 93 m of Aztec Siltstone is containing fish fossils in a coarse sandstone was exposed here in continuous outcrop, conformably found in between sites 5 and 6 and labelled as site resting upon a thick exposure
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Symmoriiform Sharks from the Pennsylvanian of Nebraska
    Acta Geologica Polonica, Vol. 68 (2018), No. 3, pp. 391–401 DOI: 10.1515/agp-2018-0009 Symmoriiform sharks from the Pennsylvanian of Nebraska MICHAŁ GINTER University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland. E-mail: [email protected] ABSTRACT: Ginter, M. 2018. Symmoriiform sharks from the Pennsylvanian of Nebraska. Acta Geologica Polonica, 68 (3), 391–401. Warszawa. The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010, and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long, monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably represent- ing the head cover or the spine-brush complex. A review of the available information on the fossil record of Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the Middle Permian (Capitanian). Key words: Symmoriiformes; Microfossils; Carboniferous; Indian Cave Sandstone; USA Midcontinent. INTRODUCTION size and shape is concerned [compare the thick me- dian cusp, almost a centimetre long, in Stethacanthus The Symmoriiformes (Symmoriida sensu Zan- neilsoni (Traquair, 1898), and the minute, 0.5 mm gerl 1981) are a group of Palaeozoic cladodont sharks wide, multicuspid, comb-like tooth of Denaea wangi sharing several common characters: relatively short Wang, Jin and Wang, 2004; Ginter et al. 2010, figs skulls, large eyes, terminal mouth, epicercal but ex- 58A–C and 61, respectively].
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Geological Survey of Ohio
    GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups.
    [Show full text]
  • Chondrichthyan Fauna of the Frasnian–Famennian Boundary Beds in Poland
    Chondrichthyan fauna of the Frasnian–Famennian boundary beds in Poland MICHAŁ GINTER Michał Ginter. 2002. Chondrichthyan fauna of the Frasnian–Famennian boundary beds in Poland. Acta Palaeontologica Polonica 47 (2): 329–338. New chondrichthyan microremains from several Frasnian–Famennian sections in the Holy Cross Mountains and Dębnik area (Southern Poland) are investigated and compared to previous data. The reaction of different groups of chondrichthyans to environmental changes during the Kellwasser Event is analysed. Following the extinction of phoebodont sharks of Phoebodus bifurcatus group before the end of the Frasnian, only two chondrichthyan species, viz. Protacrodus vetustus Jaekel, 1921 and Stethacanthus resistens sp. nov. (possibly closely related to “Cladodus” wildungensis Jaekel, 1921), occur in the upper part of Frasnian Palmatolepis linguiformis conodont Zone and persist into the Famennian. Global cooling is considered a possible cause of the extinction of Frasnian subtropical phoe− bodonts on Laurussian margins. Key words: Chondrichthyes, Kellwasser Event, Devonian, Poland. Michał Ginter [[email protected]], Instytut Geologii Podstawowej, Uniwersytet Warszawski, Żwirki i Wigury 93, PL−02−089 Warszawa, Poland. Introduction Characteristics of the localities Chondrichthyan faunas of the late Palmatolepis linguiformis Three sections spanning the Frasnian–Famennian boundary and the Palmatolepis triangularis conodont zones on south− were sampled bed by bed (for location of most samples, see ern Laurussian margins substantially differ from those of the Racka 2000): the middle wall of the Kowala–Wola Quarry in rest of the Frasnian and Famennian. The main difference is the south−western Holy Cross Mts, south of Kielce; an artficial the absence of Phoebodus, a typical Mid− to Late Devonian trench on the eastern bank of Łagowica River, between the vil− pelagic, shelf dwelling shark (Ginter and Ivanov 1992).
    [Show full text]
  • Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America
    Acta Geologica Polonica, Vol. 49 (J 999), No.3, pp. 215-266 406 IU S UNES 0 I Dentitions of Late Palaeozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America GARY D. JOHNSON Department of Earth Sciences and Physics, University of South Dakota; 414 East Clark Street, Vermillion, SD 57069-2390, USA. E-mail: [email protected] ABSTRACT: JOHNSON, G.D. 1999. Dentitions of Late Palaeozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America. Acta Geologica Polonica, 49 (3),215-266. Warszawa. Orthacanthus lateral teeth have paired, variably divergent, smooth, usually carinated labio-lingually compressed principal cusps separated by a central foramen; one or more intermediate cusps; and an api­ cal button on the base isolated from the cusps. Several thousand isolated teeth from Texas Artinskian bulk samples are used to define the heterodont dentitions of O. texensis and O. platypternus. The O. tex­ ensis tooth base has a labio-Iingual width greater than the anteromedial-posterolateral length, the basal tubercle is restricted to the thick labial margin, the principal cusps are serrated to varying degrees, and the posterior cusp is larger. The O. platypternus tooth base is longer than wide, its basal tubercle extends to the center, the labial margin is thin, serrations are absent on the principal cusps, the anterior cusp is larger, and a single intermediate cusp is present. More than two hundred isolated teeth from Nebraska (Gzhelian) and Pennsylvania (Asselian) provide a preliminary description of the heterodont dentition of O. compress us . The principal cusps are similar to O.
    [Show full text]
  • The Pharynx of the Stem-Chondrichthyan Ptomacanthus and the Early Evolution of the Gnathostome Gill Skeleton
    ARTICLE https://doi.org/10.1038/s41467-019-10032-3 OPEN The pharynx of the stem-chondrichthyan Ptomacanthus and the early evolution of the gnathostome gill skeleton Richard P. Dearden 1, Christopher Stockey1,2 & Martin D. Brazeau1,3 The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appen- 1234567890():,; dages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states. However, only a handful of early chondrichthyan gill skeletons are known and palaeontological work is increasingly challenging other pre- supposed shark-like aspects of ancestral gnathostomes. Here we use computed tomography scanning to image the three-dimensionally preserved branchial apparatus in Ptomacanthus,a 415 million year old stem-chondrichthyan. Ptomacanthus had an osteichthyan-like compact pharynx with a bony operculum helping constrain the origin of an elongate elasmobranch-like pharynx to the chondrichthyan stem-group, rather than it representing an ancestral condition of the crown-group. A mixture of chondrichthyan-like and plesiomorphic pharyngeal pat- terning in Ptomacanthus challenges the idea that the ancestral gnathostome pharynx con- formed to a morphologically complete ancestral type. 1 Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. 2 Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK. 3 Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. Correspondence and requests for materials should be addressed to M.D.B.
    [Show full text]
  • Late Devonian and Early Carboniferous Chondrichthyans from the Fairfield Group, Canning Basin, Western Australia
    Palaeontologia Electronica palaeo-electronica.org Late Devonian and Early Carboniferous chondrichthyans from the Fairfield Group, Canning Basin, Western Australia Brett Roelofs, Milo Barham, Arthur J. Mory, and Kate Trinajstic ABSTRACT Teeth from 18 shark taxa are described from Upper Devonian to Lower Carbonif- erous strata of the Lennard Shelf, Canning Basin, Western Australia. Spot samples from shoal facies in the upper Famennian Gumhole Formation and shallow water car- bonate platform facies in the Tournaisian Laurel Formation yielded a chondrichthyan fauna including several known species, in particular Thrinacodus ferox, Cladodus thomasi, Protacrodus aequalis and Deihim mansureae. In addition, protacrodont teeth were recovered that resemble formally described, yet unnamed, teeth from Tournaisian deposits in North Gondwanan terranes. The close faunal relationships previously seen for Late Devonian chondrichthyan taxa in the Canning Basin and the margins of north- ern Gondwana are shown here to continue into the Carboniferous. However, a reduc- tion in species overlap for Tournaisian shallow water microvertebrate faunas between the Canning Basin and South China is evident, which supports previous studies docu- menting a separation of faunal and terrestrial plant communities between these regions by this time. The chondrichthyan fauna described herein is dominated by crushing type teeth similar to the shallow water chondrichthyan biofacies established for the Famennian and suggests some of these biofacies also extended into the Early Carboniferous. Brett Roelofs. Department of Applied Geology, Curtin University, GPO Box U1987 Perth, WA 6845, Australia. [email protected] Milo Barham. Department of Applied Geology, Curtin University, GPO Box U1987 Perth, WA 6845, Australia. [email protected] Arthur J.
    [Show full text]
  • Techniques for Virtual Palaeontology
    Sutton New Analytical Methods Rahman TECHNIQUES FOR Garwood in Earth and VIRTUAL PALAEONTOLOGY Environmental Science Virtual palaeontology, the use of interactive three-dimensional digital models as a supplement or alternative to physical specimens for scientific study and communication, is rapidly becoming important to advanced students and researchers. Using non-invasive techniques, the method allows the capture of large quantities of useful data without damaging the fossils being studied. Techniques for Virtual Palaeontology guides palaeontologists through the decisions involved in TECHNIQUES FOR designing a virtual palaeontology workflow and gives a comprehensive overview, providing discussions of underlying theory, applications, historical development, details of practical methodologies, and case studies. Techniques covered include physical-optical tomography (serial sectioning), focused ion beam tomography, all forms of X-ray CT, neutron tomography, magnetic resonance imaging, optical tomography, laser scanning, and photogrammetry. Visualization techniques and data/file formats are also discussed in detail. TECHNIQUES FOR Readership: All palaeontologists and students interested in three-dimensional visualization and analysis. VIRTUAL Mark Sutton is a Senior Lecturer at Imperial College, London, UK specializing in Palaeozoic invertebrate palaeobiology and in three- PALAEONTOLOGY dimensional visualization techniques. He is the primary author of the SPIERS software suite for palaeontological 3D reconstruction. VIRTUAL Imran Rahman is a Research Fellow at The University of Bristol, UK. He specializes in the origin and early evolution of echinoderms, and uses virtual palaeontology to study the form and function of fossil taxa. Russell Garwood is an 1851 Royal Commission Research Fellow based at The University of Manchester, UK. He uses X-ray techniques Mark Sutton to study fossils, primarily early terrestrial arthropods.
    [Show full text]
  • A Classic Late Frasnian Chondrichthyan Assemblage from Southern Belgium
    Acta Geologica Polonica, Vol. 67 (2017), No. 3, pp. 381–392 DOI: 10.1515/agp-2017-0017 A classic Late Frasnian chondrichthyan assemblage from southern Belgium 1 2 3 MICHAŁ GINTER , SOFIE GOUWY and STIJN GOOLAERTS 1 Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland. E-mail: [email protected] 2 Paleontology Section, Geological Survey of Canada, 3303, 33str NW Calgary, T2L 2A7, Canada E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium E-mail: [email protected] ABSTRACT: Ginter, M., Gouwy, S. and Goolaerts, S. 2017. A classic Late Frasnian chondrichthyan assemblage from southern Belgium. Acta Geologica Polonica, 67 (3), 381–392. Warszawa. Samples from the Upper Frasnian (Devonian) of Lompret Quarry and Nismes railway section in Dinant Synclinorium, southern Belgium, yielded several chondrichthyan teeth and scales. The teeth belong to three genera: Phoebodus, Cladodoides and Protacrodus. The comparison with selected Late Frasnian chondrich- thyan assemblages from the seas between Laurussia and Gondwana revealed substantial local differences of taxonomic composition due to palaeoenvironmental conditions, such as depth, distance to submarine platforms, oxygenation of water, and possibly also temperature. The assemblage from Belgium, with its high frequency of phoebodonts, is the most similar to that from the Ryauzyak section, South Urals, Russia, and the Horse Spring section, Canning Basin, Australia. Key words: Late Devonian; Belgium; Dinant Synclinorium; Chondrichthyes; Microfossils. INTRODUCTION in several of the collection samples (Collections of the Royal Belgian Institute for Natural Sciences, Excavation in the Lompret Quarry expanded north- Brussels, Belgium).
    [Show full text]
  • American Museum Novitates
    AMERICAN MUSEUM NOVITATES Number 3954, 29 pp. June 16, 2020 A new genus of Late Cretaceous angel shark (Elasmobranchii; Squatinidae), with comments on squatinid phylogeny JOHN G. MAISEY,1 DANA J. EHRET,2 AND JOHN S.S. DENTON3 ABSTRACT Three-dimensional Late Cretaceous elasmobranch endoskeletal elements (including palato- quadrates, ceratohyals, braincase fragments, and a series of anterior vertebrae) are described from the Late Cretaceous University of Alabama Harrell Station Paleontological Site (HSPS), Dallas County, Alabama. The material is referred to the extant elasmobranch Family Squatinidae on the basis of several distinctive morphological features. It also exhibits features not shared by any modern or fossil Squatina species or the extinct Late Jurassic squatinid Pseudorhina. A new genus and species is erected, despite there being some uncertainty regarding potential synonymy with existing nominal species previously founded on isolated fossil teeth (curiously, no squatinid teeth have been docu- mented from the HSPS). A preliminary phylogenetic analysis suggests that the new genus falls on the squatinid stem, phylogenetically closer to Squatina than Pseudorhina. The craniovertebral articu- lation in the new genus exhibits features considered convergent with modern batomorphs (skates and rays), including absence of contact between the posterior basicranium and first vertebral cen- trum, and a notochordal canal which fails to reach the parachordal basicranium. Supporting evi- dence that similarities in the craniovertebral articulation of squatinoids and batomorphs are convergent rather than synapomorphic (as “hypnosqualeans”) is presented by an undescribed Early Jurassic batomorph, in which an occipital hemicentrum articulates with the first vertebral centrum as in all modern sharklike (selachimorph) elasmobranchs. The fossil suggests instead that the bato- 1 Department of Vertebrate Paleontology, American Museum of Natural History, NY.
    [Show full text]
  • Holocephalan Embryos Provide Evidence for Gill Arch Appendage Reduction and Opercular Evolution in Cartilaginous fishes
    Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes J. Andrew Gillisa,1, Kate A. Rawlinsonb, Justin Bellc, Warrick S. Lyond, Clare V. H. Bakera, and Neil H. Shubine,1 aDepartment of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom; bDepartment of Genetics, Evolution and Environment, University College London, London, WC1E 6BT United Kingdom; cDepartment of Primary Industries, Marine and Freshwater Fisheries Resource Institute, Queenscliff, Victoria 3225, Australia; dNational Institute of Water and Atmospheric Research, Hataitai, Wellington 6021, New Zealand; and eDepartment of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637 Edited by Sean B. Carroll, University of Wisconsin, Madison, WI, and approved December 15, 2010 (received for review August 31, 2010) Chondrichthyans possess endoskeletal appendages called branchial extensive analyses, including exceptionally complete material of the rays that extend laterally from their hyoid and gill-bearing (bran- stethacanthid Akmonistion zangerli (11), however, suggest an al- chial) arches. Branchial ray outgrowth, like tetrapod limb out- ternative placement of key ray-bearing taxa. These analyses resolve growth, is maintained by Sonic hedgehog (Shh) signaling. In limbs, Cladoselache and the symmoriids (including the hyoid plus gill arch distal endoskeletal elements fail to form in the absence of normal ray-bearing Akmonistion) as paraphyletic stem-group
    [Show full text]