Determination of the Spatial and Temporal Variability of Size-Resolved
Total Page:16
File Type:pdf, Size:1020Kb
Analysis of ATOFMS datasets for apportionment of PM2.5 in California Final Report to California Air Resources Board Contract No. 07-357 Prepared for the California Air Resources Board and the California Environmental Protection Agency May 15, 2010 Principal Investigator Kimberly Prather Contributors Andrew P. Ault Cassandra Gaston Kerri A. Pratt Steve M. Toner Department of Chemistry & Biochemistry University of California San Diego 9500 Gilman Drive MC 0314 La Jolla, CA 92093-0314 DISCLAIMER 1 The statements and conclusions in this Report are those of the contractor and not 2 necessarily those of the California Air Resources Board. The mention of commercial 3 products, their source, or their use in connection with material reported herein is not to be 4 construed as actual or implied endorsement of such products. 5 6 7 8 9 ACKNOWLEDGEMENTS 10 11 We thank Drs. William Vance and Eileen McCauley (CARB) for their assistance and 12 advice during this contract. 13 14 This Report was submitted in fulfillment of Contract No. 07-357, “Analysis of ATOFMS 15 datasets for apportionment of PM2.5 in California” under the sponsorship of the 16 California Air Resources Board. Work was completed as of May 15, 2010. 17 18 19 TABLE OF CONTENTS 20 DISCLAIMER .............................................................................................................................................. 2 21 ACKNOWLEDGEMENTS ......................................................................................................................... 3 22 TABLE OF CONTENTS ............................................................................................................................. 4 23 LIST OF FIGURES ...................................................................................................................................... 6 24 ABSTRACT .................................................................................................................................................. 8 25 EXECUTIVE SUMMARY .......................................................................................................................... 9 26 Background: ............................................................................................................................................... 9 27 Methods: .................................................................................................................................................... 9 28 Results and Conclusions: ........................................................................................................................... 9 29 Applying the ATOFMS technique to new research topics was a focus of this report. Methanesulfonic 30 acid (MSA) is formed from the oxidation of dimethyl sulfide (DMS) and since it does not have an 31 anthropogenic source it is an ideal marker for ocean-derived biogenic sulfur. MSA was observed at an 32 inland location (Riverside) and the high levels observed may have been due, in part, to vanadium in 33 mixed particles catalyzing MSA formation. In Riverside organic carbon often is a significant fraction of 34 the particles observed by ATOFMS measurements and secondary species such as ammonium nitrate, 35 ammonium sulfate, and amines account for >50% by of these organic carbon particles. Analysis of 36 thermal denuder – ATOFMS measurements shows that at 230 °C particle spectra resemble those of 37 freshly emitted particles as secondary species are vaporized. This allows sources to be determined even 38 in highly aged environments. Using the ATOFMS sources library shows that in 2 urban areas outside of 39 California (Athens, Greece and Mexico City, Mexico) dust and biomass burning are significant sources 40 of atmospheric particles. In the larger Mexico City the particles are observed to be more aged with 41 secondary species. The research shown in this report displays the broad applicability of ATOFMS 42 studies to tackle a multitude of different areas of interest in air quality and climate studies. .................... 9 43 BODY OF REPORT ...................................................................................................................................11 44 A. Introduction .....................................................................................................................................11 45 1. Research Objectives .........................................................................................................................11 46 2. Summary of Chapters .......................................................................................................................11 47 i. Introduction ........................................................................................................ 11 48 ii. Materials and Methods ..................................................................................... 11 49 iii. Results and Conclusions .................................................................................. 11 50 B. Materials and Methods .........................................................................................................................12 51 1. Instrumentation ................................................................................................................................12 52 3. Data Analysis Methods ....................................................................................................................16 53 C. Results ..................................................................................................................................................19 54 1. Real-time detection and mixing state of methanesulfonate in single particles at an inland urban 55 location during a phytoplankton bloom ...............................................................................................19 56 i. Introduction ........................................................................................................ 19 57 iii. Results and Discussion .................................................................................... 22 58 iv. Acknowledgements .......................................................................................... 33 59 2. Real-time, single-particle volatility, size, and chemical composition measurements of aged urban 60 aerosols ................................................................................................................................................34 61 i. Introduction ........................................................................................................ 34 62 ii. Experimental ..................................................................................................... 35 63 iii. Results and Discussion .................................................................................... 36 64 iv. Acknowledgements .......................................................................................... 55 65 3. Source apportionment of PM2.5 in Athens (Greece) and Mexico City using an ATOFMS derived 66 mass spectral source library ................................................................................................................56 67 i. Introduction ........................................................................................................ 56 68 ii. Experimental ..................................................................................................... 57 69 iii. Results and Discussion .................................................................................... 58 70 iv. Acknowledgements .......................................................................................... 73 71 D. References ............................................................................................................................................74 72 E. Publications produced ..........................................................................................................................88 73 74 75 76 77 78 79 LIST OF FIGURES 80 Figure 1: Instrument schematic diagrams of the (a) ATOFMS and (b) UF-ATOFMS. ................................14 81 Figure 2: (a) Schematic of the A-ATOFMS illustrating the dometop alignment interface, aerodynamic 82 sizing region, desorption/ ionization laser alignment, and dual-polarity Z-TOF mass spectrometer. (b) 83 Schematic of dual polarity Z-TOF mass spectrometer illustrating ion extraction region and ion 84 trajectory. .............................................................................................................................................16 85 Figure 3: Average positive and negative ion mass spectra for the OC-V-sulfate particle type containing 86 MSA (m/z -95) during SOAR-1. ..........................................................................................................23 87 Figure 4: (a) Time series showing the fraction of MSA-containing submicron (red line) and supermicron 88 (blue line) particles during SOAR-1 and chlorophyll concentrations (green line) taken from the 89 Newport Beach station (33.6ºN, 117.9°W) at 3 m depth. Gaps in chlorophyll data occur from August 90 2-4. Inset shows typical HYSPLIT 48 hour back-trajectories for air masses arriving to the sampling 91 site during different time periods in addition to the locations of the automated chlorophyll stations. 92 Each trajectory is taken at 500 m altitude, and each point on the trajectory corresponds to a 12-hour 93 increment. (b) Time series showing the corresponding