WO 2018/057420 Al 29 March 2018 (29.03.2018) W!P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2018/057420 Al 29 March 2018 (29.03.2018) W!P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/057420 Al 29 March 2018 (29.03.2018) W!P O PCT (51) International Patent Classification: Chestnut Run Plaza 721/2340, 974 Centre Road, PO Box A23K 20/189 (2016.01) A23K 50/10 (2016.01) 2915, Wilmington, Delaware 19805 (US). A23K 10/14 {2016.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US2017/051758 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (22) International Filing Date: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 15 September 2017 (15.09.2017) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (25) Filing Language: English KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (26) Publication Langi English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (30) Priority Data: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, 62/398,741 23 September 2016 (23.09.2016) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant: DUPONT NUTRITION BIOSCIENCES (84) Designated States (unless otherwise indicated, for every APS [DK/DK]; Langebrogade 1, DK-141 1 Copenhagen K kind of regional protection available): ARIPO (BW, GH, (DK). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant (for SC only): E. I. DU PONT DE NEMOURS TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, AND COMPANY [US/US]; Chestnut Run Plaza, 974 Cen EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, tre Road, P. O. Box 2915, Wilmington, Delaware 19805 MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (US). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (72) Inventors: YU, Shukun; GUNNAR HEJDEMANS GATA KM, ML, MR, NE, SN, TD, TG). 29, S-212 40 Malmo (SE). KRAGH, Karsten Matthias; Madsbjergparken 21, DK-8270 Hoejbjerg (DK). LI, Went- Published: ing; 92B HIGH STREET, Marlborough Wiltshire SN8 1HD — with international search report (Art. 21(3)) (GB). (74) Agent: CHRISTENBURY, Lynne M.; E.I. du Pont de Nemours and Company, Legal Patent Records Center, (54) Title: USE OF LOW PH ACTIVE ALPHA- 1,4/1 ,6-GLYCOSIDE HYDROLASES AS A FEED ADDITIVE FOR RUMINANTS TO ENHANCE STARCH DIGESTION 60 50 □ Glucose (Gl) ■ Maltose (G2) 40 5 30 20 10 AkAA 20µ Ι Pepsin 50µ Ι Α Ι<ΑΑ 20µ Ι + Pepsin Α Ρ 0µ Ι AkAA 20µ Ι + AFP o 50µ Ι 50µ Ι Figure 1. Release of glucose and maltose from corn flour by AkAA alpha-amylase in the presence © of pepsin and AFP proteases at pH3.2. 00 (57) Abstract: Disclosed are uses at least one alpha- 1,4/ 1,6-glycoside hydrolase (GLCH) as a feed additive for a ruminant wherein said hydrolase: (a) has at least 20% activity at pH less than or equal to 3 in the presence of pepsin as compared to activity of the hydrolase o at pH 6 in the presence of pepsin, (b) said hydrolase is active in at least two of three digestive chambers of a ruminant comprising a rumen, an abomasum and a small intestine and (c) the hydrolase works with pancreatic amylase to increase glucose yield. USE OF LOW PH ACTIVE ALPHA-1 ,4/1 ,6-GLYCOSIDE HYDROLASES AS A FEED ADDITIVE FOR RUMINANTS TO ENHANCE STARCH DIGESTION FIELD The field relates to animal nutrition and, in particular, to the use of low pH active alpha-1 ,4/1 ,6 glycoside hydrolases (GLCH) such as alpha-amylases, glucoamylases and alpha-glucosidases as a feed additive for ruminants to enhance starch digestion. BACKGROUND Ruminants have the unique ability to convert roughage into protein and energy through their microbial/enzyme digestive systems. Accordingly, ruminants play an important role in the earth's ecology and in the food chain. The primary difference between ruminants and nonruminants is that ruminants' stomachs have four compartments: the rumen, reticulum, omasum, and abomasum. In the first two chambers, the rumen and the reticulum, the food is mixed with saliva and separates into layers of solid and liquid material. Solids clump together to form the cud or bolus. The cud is then regurgitated and chewed to completely mix it with saliva and to break down the particle size. Fiber, especially cellulose and hemicellulose, is primarily broken down in these chambers by microbes (mostly bacteria, as well as some protozoa, fungi and yeast) into the three major volatile fatty acids (VFAs): acetic acid, propionic acid, and butyric acid. Protein and nonstructural carbohydrate (pectin, sugars, and starches) are also fermented. Though the rumen and reticulum have different names, they represent the same functional space as digesta and can move back and forth between them. Together, these chambers are called the reticulorumen. The degraded digesta, which is now in the lower liquid part of the reticulorumen, then passes into the next chamber, the omasum, where water and many of the inorganic mineral elements are absorbed into the blood stream. After this, the digesta is moved to the true stomach, the abomasum. The abomasum is the direct equivalent of the monogastric stomach, and digesta is digested here in much the same way. Digesta is finally moved into the small intestine, where the digestion and absorption of nutrients occurs. Microbes produced in the reticulorumen are also digested in the small intestine. Fermentation continues in the large intestine in the same way as in the reticulorumen. Enzymes for use as feed additives ruminants are mainly fibrolytic enzymes, such as cellulases, beta-glucanases and hemicellulases (Table 1 in Beauchemin et al., 2004. A rationale for the development of feed enzyme products for ruminants. Can. J . Anim. Sci. 84: 23-36). Reports on starch hydrolases for ruminant uses are limited. Starch hydrolases are grouped as endo- and exo-amylases. Endoamylases, also called alpha-amylases (E.C. 3.2.1 . 1 ) , are starch-degrading enzymes that catalyse the hydrolysis of internal alpha-1 ,4-O-glycosidic bonds in polysaccharides while retaining an alpha-anomeric configuration in the products. Most of the alpha-amylases need calcium ions (Ca2+) for their activity, structural integrity and stability. The alpha-amylase family, i.e., the clan GH-H of glycoside hydrolases is the largest family of glycoside hydrolases, transferases, and isomerases comprising nearly 30 different enzyme specificities. A large variety of enzymes are able to act on starch. These enzymes can be divided into four groups: endoamylases, exoamylases, debranching enzymes and transferases. Endoamylases cleave internal alpha-1 ,4 bonds resulting in alpha-anomeric products. Exoamylases cleave alpha-1 ,4 or alpha-1 ,6 bonds of the external glucose residues resulting in alpha- or beta-anomeric products. Debranching enzymes hydrolyze alpha-1 ,6 bonds exclusively leaving long linear polysaccharides. Transferases cleave alpha-1 ,4 glycosidic bond of the donor molecule and transfer part of the donor to a glycosidic acceptor forming a new glycosidic bond. Glycoside hydrolases have been divided into classes based on their mode of reaction and families based on their well-defined amino acid sequence similarities. Most of the starch converting enzymes belong to GH-1 3 family. The GH-1 3 family can be further classified based on a larger unit called clan, which is the three-dimensional structure of catalytic module. Among the fourteen clans (A-N) defined for glycosidases and transglycosidases, alpha-amylase family (GH-13) belongs to the eighth clan GH-H. Animals synthesize and secret digestive pancreatic alpha-amylase for starch hydrolysis. This alpha-amylase has an optimal pH around pH 6-7 and is active in the small intestine. The addition of microbial amylases to feed can further increase animals' starch digestion possibly due to the fact that the secreted pancreatic amylase is not enough and/or the feed passage in the digestive tract of the small intestine is quite fast so that the pancreatic amylase does not have enough time to thoroughly digest the starch, especially in the case of poultry. (Isaksen, M . F. Cowieson, A . J . Kragh, K . M . (201 0). Starch- and protein-degrading enzymes: biochemistry, enzymology and characteristics relevant to animal feed use. In: Enzymes in farm animal nutrition /edited by M.R. Bedford and G.G. Partridge. Pages 85-95). Thus, endoamylases have been one of the feed enzymes widely used in the feed industry. The most common used feed amylases are derived from Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and Aspergillus oryzae. These feed amylases have optimal activity in the pH range of pH4 to pH8. Most of them have considerable tolerance to pepsin. However, these feed enzymes appear not to have a raw starch binding domain (SBD) and may have limited capability to hydrolyze non-gelatinized raw starch. Pianchot et aL, (Extensive degradation of native starch granules by alpha- amylase from Aspergillus fumigatus, Journal of Cereal Science, Volume 2 1, Issue 2 , 1995, Pages 163-1 7 1) , reported the low efficiency of alpha-amylase from Bacillus sp. in degrading granular starch compared to pancreatic amylase. EFSA (Scientific Opinion on the safety and efficacy of Ronozyme RumiStar (alpha-amylase) as a feed additive for dairy cows.
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Cyclomaltodextrinase 13A, Paenibacillus Sp. Pcda13a (CBM34-GH13)
    Cyclomaltodextrinase 13A, Paenibacillus sp. PCda13A (CBM34-GH13) Catalogue number: CZ08721 , 0,25 mg CZ08722 , 3 × 0,25 mg Description Storage temperature PCda13A (CBM34-GH13), E.C. number 3.2.1.54, is a This enzyme should be stored at -20 °C. cyclomaltodextrinase from Paenibacillus sp. Recombinant PCda13A (CBM34-GH13), purified from Escherichia coli , is a modular family 13 Glycoside Hydrolase (GH13) with an N-terminal Substrate specificity family 34 Carbohydrate Binding Module (CBM34) (www.cazy.org). The enzyme is provided in 35 mM NaHepes buffer, pH 7.5, 750 PCda13A (CBM34-GH13) hydrolyses α-, β-, and γ-cyclodextrins (CDs). The enzyme hydrolyze CDs and linear maltooligosaccharides mM NaCl, 200 mM imidazol, 3.5 mM CaCl 2 and 25% (v/v) glycerol, at a 0,25 mg/mL concentration. Bulk quantities of this product are to yield maltose and glucose with less amounts of maltotriose and available on request. maltotetraose. Electrophoretic Purity Temperature and pH optima PCda13A (CBM34-GH13) purity was determined by sodium The pH optimum for enzymatic activity is 7 while temperature dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) optimum is 40 °C. followed by BlueSafe staining (MB15201) (Figure 1). Enzyme activity Substrate specificity and kinetic properties of PCda13A (CBM34- GH13) are described in the reference provided below. Follow the instructions described in the paper for the implementation of enzyme assays and to obtain values of specific activity. To measure catalytic activity of GHs, quantify reducing sugars released from polysaccharides through the method described by Miller (1959; Anal. Chem. 31, 426-428). Reference Kaulpiboon and Pongsawasdi. J Biochem Mol Biol.
    [Show full text]
  • Final Thesis
    UNDERSTANDING HTLV-I ENZYMOLOGY & PREPARATION AND CHARACTERIZATION OF LEAD INHIBITORS FOR THE TREATMENT OF HTLV-I INFECTION A Dissertation Presented to The Academic Faculty By Kelly Joy Dennison In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Chemistry Georgia Institute of Technology December 2005 Copyright © 2005 by Kelly Joy Dennison UNDERSTANDING HTLV-I ENZYMOLOGY & PREPARATION AND CHARACTERIZATION OF LEAD INHIBITORS FOR THE TREATMENT OF HTLV-I INFECTION Approved by: Dr. Suzanne B. Shuker, Advisor Dr. Andrew S. Bommarius School of Chemistry and Biochemistry School of Chemical and Biochemical Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Thomas M. Orlando, Co-Advisor School of Chemistry and Biochemistry Dr. S. Michele Owen Georgia Institute of Technology National Center for HIV, STD, and TB Prevention Dr. Donald F. Doyle Centers for Disease Control & School of Chemistry and Biochemistry Prevention Georgia Institute of Technology Dr. Vicky L. H. Bevilacqua Dr. C. David Sherrill Edgewood Chemical Biological Center School of Chemistry and Biochemistry US Army Georgia Institute of Technology Date approved: August 11, 2005 ii ACKNOWLEDGEMENTS I would like to thank the many people that supported me through this process. To all my family: my parents, Chuck and Joy; my sisters, Gerri and Laurel; and my brother Keary, as well as Kent, Brian, and Brandy; the Chapels; the Bonuras; Tekkie and Chet; Auntie Marie; and my nephews and niece, Patrick, Ryan, Kevin, Kaitlyn, and Riley. Thanks for all your encouragement and/or financial support and most of all, for believing in me. To my friends: thanks for being present.
    [Show full text]
  • Expression of Cyclomaltodextrinase Gene from Bacillus Halodurans C-125 and Characterization of Its Multisubstrate Specificity
    Food Sci. Biotechnol. Vol. 18, No. 3, pp. 776 ~ 781 (2009) ⓒ The Korean Society of Food Science and Technology Expression of Cyclomaltodextrinase Gene from Bacillus halodurans C-125 and Characterization of Its Multisubstrate Specificity Hye-Jeong Kang, Chang-Ku Jeong, Myoung-Uoon Jang, Seung-Ho Choi, Min-Hong Kim1, Jun-Bae Ahn2, Sang-Hwa Lee3, Sook-Ja Jo3, and Tae-Jip Kim* Department of Food Science and Technology, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea 1MH2 Biochemical Co., Ltd., Eumseong, Chungbuk 369-841, Korea 2Department of Food Service Industry, Seowon University, Cheongju, Chungbuk 361-741, Korea 3Department of Food and Nutrition, Seowon University, Cheongju, Chungbuk 361-741, Korea Abstract A putative cyclomaltodextrinase (BHCD) gene was found from the genome of Bacillus halodurans C-125, which encodes 578 amino acids with a predicted molecular mass of 67,279 Da. It shares 42-59% of amino acid sequence identity with common cyclomaltodextrinase (CDase)-family enzymes. The corresponding gene was cloned by polymerase chain reaction (PCR) and the dimeric enzyme with C-terminal 6-histidines was successfully overproduced and purified from recombinant Escherichia coli. BHCD showed the highest activity against β-CD at pH 7.0 and 50oC. Due to its versatile hydrolysis and transglycosylation activities, BHCD has been confirmed as a member of CDases. However, BHCD can be distinguished from other typical CDases on the basis of its novel multisubstrate specificity. While typical CDases have over 10 times higher activity on β-CD than starch or pullulan, the CD-hydrolyzing activity of BHCD is only 2.3 times higher than pullulan.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Function and Structure Studies of GH Family 31 and 97 \Alpha
    110610 (RV-17) Biosci. Biotechnol. Biochem., 75 (12), 110610-1–9, 2011 Award Review Function and Structure Studies of GH Family 31 and 97 -Glycosidases Masayuki OKUYAMA Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan Online Publication, December 7, 2011 [doi:10.1271/bbb.110610] A huge number of glycoside hydrolases are classified an evolutionary relationship of proteins in the family, into the glycoside hydrolase family (GH family) based from which it is often possible to extract information on on their amino-acid sequence similarity. The glycoside function and structure.3) Classification in a GH family hydrolases acting on -glucosidic linkage are in GH has, accordingly, become indispensable for research on family 4, 13, 15, 31, 63, 97, and 122. This review deals glycoside hydrolases. Glycoside hydrolases are also mainly with findings on GH family 31 and 97 enzymes. divided into two mechanistic classes, inverting and Research on two GH family 31 enzymes is described: retaining enzymes: with inversion or net retention of clarification of the substrate recognition of Escherichia anomeric configuration during the catalytic reaction.4) coli -xylosidase, and glycosynthase derived from Schiz- The stereochemical outcome is generally conserved in a osaccharomyces pombe -glucosidase. GH family 97 is GH family. The inverting mechanism proceeds via a an aberrant GH family, containing inverting and simple single displacement. Two functional groups, retainingAdvance glycoside hydrolases. The inverting View enzyme usually carboxyl groups, act as general acid and general in GH family 97 displays significant similarity to base catalysts. The general acid catalyst donates a proton retaining -glycosidases, including GH family 97 retain- to the departure aglycon, and the general base catalyst ing -glycosidase, but the inverting enzyme has no simultaneously deprotonates the incoming water mole- catalytic nucleophile residue.
    [Show full text]
  • Characterization of Starch Debranching Enzymes of Maize Endosperm Afroza Rahman Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Characterization of starch debranching enzymes of maize endosperm Afroza Rahman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Rahman, Afroza, "Characterization of starch debranching enzymes of maize endosperm " (1998). Retrospective Theses and Dissertations. 12519. https://lib.dr.iastate.edu/rtd/12519 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Treatment of Cashew Extracts with Aspergillopepsin Reduces Ige Binding to Cashew Allergens
    Journal of Applied Biology & Biotechnology Vol. 4 (02), pp. 001-010, March-April, 2016 Available online at http://www.jabonline.in DOI: 10.7324/JABB.2016.40201 Treatment of cashew extracts with Aspergillopepsin reduces IgE binding to cashew allergens Cecily B. DeFreece1, Jeffrey W. Cary2, Casey C. Grimm2, Richard L. Wasserman3, Christopher P Mattison2* 1Department of Biology, Xavier University of Louisiana, New Orleans, LA, USA. 2USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA. 3Allergy Partners of North Texas Research, Department of Pediatrics, Medical City Children’s Hospital, Dallas, Texas, USA. ARTICLE INFO ABSTRACT Article history: Enzymes from Aspergillus fungal species are used in many industrial and pharmaceutical applications. Received on: 21/10/2015 Aspergillus niger and Aspergillus oryzae were cultured on media containing cashew nut flour to identify secreted Revised on: 06/12/2015 proteins that may be useful as future food allergen processing enzymes. Mass-spectrometric analysis of secreted Accepted on: 20/12/2015 proteins and protein bands from SDS-PAGE gels indicated the presence of at least 63 proteins. The majority of Available online: 21/04/2016 these proteins were involved in carbohydrate metabolism, but there were also enzymes involved in lipid and protein metabolism. It is likely that some of these enzymes are specifically upregulated in response to cashew Key words: nut protein, and study of these enzymes could aid our understanding of cashew nut metabolism. Aspergillus, cashew, food Aspergillopepsin from A. niger was one of the proteolytic enzymes identified, and 6 distinct peptides were allergy, immunoglobulin E, matched to this protein providing 22% coverage of the protein.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Methods for Production of Recombinant Enzymes for Collagen Degradation
    Methods for production of recombinant enzymes for collagen degradation Master thesis Tea Eriksson & Elin Su Faculty of Engineering, LTH Department of Chemistry Division of Pure & Applied Biochemistry Spring 2020 Course: KBKM05 Degree Project in Applied Biochemistry for Engineers ​ Extent: 30 Credits Examiner: Lei Ye Supervisor: Johan Svensson Bonde Assistant supervisor: Mohamad Takwa Project period: 2020.01.20 - 2020.06.08 2 Populärvetenskaplig sammanfattning Metoder för produktion av enzymer för nedbrytning av kollagen Kollagenrika restprodukter kan användas i värdefulla livsmedels- och läkemedelsprodukter. Enzymatisk behandling tillåter kontrollerad och effektiv nedbrytning. I det här projektet har metoder utvecklats och testats för produktion av enzymer i bakterier. Kollagen är det vanligaste proteinet i däggdjur. Proteinet finns i ben, vävnader och senor och ger mekanisk stabilitet och styrka. Den kompakta strukturen av kollagen gör molekylen svår att bryta ner. Det finns stora mängder av många olika restprodukter med höga kollagenhalter som har lågt värde och det finns därför intresse att omvandla kollagenet i de här materialen till värdefulla produkter. Detta skulle minska avfallshanteringen och därmed minska klimatpåverkan. Nedbrutet kollagen kan användas till en mängd olika tillämpningar som i kosttillskott, antioxidanter, hudvårdsprodukter och mervärdesmat. Marknaden drivs främst av stillahavsområdet i Asien där efterfrågan på näringsrik mat och dryck är hög. Åtta enzymer har valts ut och studerats. Fyra av dessa är vanligt förekommande enzymer som bryter bindningar i proteiner. De resterande fyra enzymer är kollagenaser som kan specifikt bryta ner kollagen. Generna för dessa enzymer har optimerats för insättning i cirkulära DNA-molekyler (plasmider) och tillverkning i olika celler. I det här projektet har två strategier utvecklats för produktion av enzymer för nedbrytning av kollagen eller kollagenderiverade produkter.
    [Show full text]
  • Enzyme Potentialities of the Abomasum and Pancreas of the Calf
    Enzyme potentialities of the abomasum and pancreas of the calf. II. – Effects of weaning and feeding a liquid supplement to ruminant animals P. Guilloteau, T. Corring, R. Toullec, R. Guilhermet, Marguerite Beaufils, S. Boussion, Mireille Connan, H. Flageul, Anne-Marie Gueugneau, Monique Lesne To cite this version: P. Guilloteau, T. Corring, R. Toullec, R. Guilhermet, Marguerite Beaufils, et al.. Enzyme potentialities of the abomasum and pancreas of the calf. II. – Effects of weaning and feeding a liquid supplement to ruminant animals. Reproduction Nutrition Développement, 1985, 25 (3), pp.481-193. hal-00898291 HAL Id: hal-00898291 https://hal.archives-ouvertes.fr/hal-00898291 Submitted on 1 Jan 1985 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Enzyme potentialities of the abomasum and pancreas of the calf. II. &mdash; Effects of weaning and feeding a liquid supplement to ruminant animals P. GUILLOTEAU, T. CORRING R. TOULLEC, R. GUILHERMET Marguerite BEAUFILS S. BOUSSION Mireille CONNAN H. FLAGEUL Anne-Marie GUEUGNEAU Monique LESNE Laboratoire du Jeune Ruminant, I.N.R.A., 65, rue de St-Brieuc, 35042 Rennes Cedex, France. (*) Laboratoire de Physiologie de la Nutrition, I.N.R.A., 78350 Jouy-en-Josas, France.
    [Show full text]
  • Identification of the Sequence Motif of Glycoside Hydrolase 13 Family Members
    open access www.bioinformation.net Hypothesis Volume 6(2) Identification of the sequence motif of glycoside hydrolase 13 family members Vikash Kumar* Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Vikash kumar - Email: [email protected]; *Corresponding author Received December 17, 2010; Accepted February 07, 2011; Published March 26, 2011 Abstract: A bioinformatics analysis of sequences of enzymes of the glycoside hydrolase (GH) 13 family members such as α-amylase, cyclodextrin glycosyltransferase (CGTase), branching enzyme and cyclomaltodextrinase has been carried out in order to find out the sequence motifs that govern the reactions specificities of these enzymes by using hidden Markov model (HMM) profile. This analysis suggests the existence of such sequence motifs and residues of these motifs constituting the –1 to +3 catalytic subsites of the enzyme. Hence, by introducing mutations in the residues of these four subsites, one can change the reaction specificities of the enzymes. In general it has been observed that α -amylase sequence motif have low sequence conservation than rest of the motifs of the GH13 family members. Keywords: α-Amylases; Glycoside hydrolase family 13; Sequence motif; Reaction specificity; Substrate specificity; HMM profile. Background: enzymes with mixed specificities of α-amylase, cyclomaltodextrinase and A large group of “Carbohydrate Active enzymes” that hydrolyse neopullulanase [12]. Currently, the catalytic triad residues Asp206, Glu230 and polysaccharides have been divided into the glycoside hydrolase (GH) families Asp297 seem to be the only residues that are absolutely invariant among all the of the CAZy database [1] based on their amino acid sequence similarity. GH-H clan members [11].
    [Show full text]